Severe back pain and nerve damage may be caused by injured, degraded, or diseased spinal joints and particularly, spinal discs. Current methods of treating these damaged spinal discs may include vertebral fusion, nucleus replacements, or motion preservation disc prostheses. Other treatment methods include spinal stabilization implants whereby a stabilization connector is secured to a pair of vertebral members spaced from one another. Some stabilization connectors are constructed to flex in a certain orientation or plane yet block or restrict movement in another plane. In this regard, determining the proper orientation of the connector relative to spinal joints greatly affects the effectiveness of the connector as a spinal stabilizer.
One exemplary connector is a spinal stabilization rod. Conventionally, these rods, which may be straight or pre-bent to have desired curvature, have a circular cross-section. The shape of the spinal stabilization rod has typically been applauded as allowing the surgeon a great degree of freedom in orientating the rod relative to a vertebral member. Notwithstanding this advantage, increasingly there is a desire for the rod to positionable at one of a number of discrete orientations. That is, stabilization rods can be constructed to provide a desired performance when placed in a specific orientation. It is difficult to achieve a specific orientation with conventional rods because the shape of conventional rods results in indefinitely defined possible orientations.
Moreover, a set screw is often used to secure the spinal stabilization rod in the rod-receiving channel of a receiver. The set screw typically has a planar surface that interfaces with the outer, and curved, surface of the stabilization rod. As a result, the set screw tangentially seats against the round stabilization rod. This tangential seating can result in focalized or poorly distributed contact forces.
Therefore, it would be desirable to have a spinal stabilization connector that presents discrete orientations at which the connector can be oriented. It would also be desirable to have a spinal stabilization connector that presents a relatively planar surface for engagement with the planar surface of a set screw used to secure the connector in a receiver so that contact forces are more effectively distributed.
In one aspect of the present disclosure, a spinal stabilizing system is presented having a spinal stabilization connector designed to traverse a space between a pair of vertebral members. The spinal stabilization connector is constructed to have first and second ends shaped to define a plurality of discrete positions relative to the vertebral members. The spinal stabilization connector further has a body connected to the first and second ends, and a curved portion extending between the first and second ends.
In another aspect, the present disclosure includes a spinal stabilizing kit. The kit has a pair of receivers, a pair of bone-engaging screws, a spinal stabilization connector, and a pair of locking screws. Each bone-engaging screw is retainable by a receiver and drivingly engageable with a bony structure. The spinal stabilization connector has a curved potion and first and second ends spaced from one another by the curved portion. The first and second ends are shaped to define a discrete number of positions at which the spinal stabilization connector may be retained by the pair of receivers. Each locking screw is designed to lock the spinal stabilization connector in a receiver.
According to another aspect of the present disclosure, a surgical method is presented for stabilizing a spinal joint with a spinal stabilizing system that includes a spinal stabilization connector having a curved portion that can be oriented at one of a plurality of discrete orientation positions relative to the spinal joint. The method includes fastening a first receiver to a first vertebral member and determining a desired orientation of the curved portion of the spinal stabilization connector relative to the vertebral member. The method further includes rotating the spinal stabilization connector to the discrete orientation position that corresponds to the desired orientation of the spinal stabilization connector and securing a first end of the spinal stabilization connector to the first receiver. A second receiver is fastened to a second vertebral member spaced from the first vertebral member. A second end of the spinal stabilization connector is then secured to the second receiver.
According to a further aspect of the present disclosure, an implant for stabilizing bony structures is presented. The implant has a first boss and a second boss laterally spaced from the first boss. A ribbon member extends between the first boss and the second boss along a plane different from that of the first and the second bosses. Moreover, the ribbon member has a length sufficient to traverse a space between at least two bony structures.
These and other aspects, forms, objects, features, and benefits of the present invention will become apparent from the following detailed drawings and descriptions.
a-4c are partial perspective views of the vertebral stabilizing system illustrating various orientation positions for a spinal stabilization connector according to one embodiment of the present disclosure.
a-5b are perspective views of another vertebral stabilizing system illustrating various orientation positions for a spinal stabilization connector according to another embodiment of the present disclosure.
a-6c are perspective views of yet another vertebral stabilizing system illustrating various orientation positions for a spinal stabilization connector according to yet another embodiment of the present disclosure.
a-7b are perspective views of another vertebral stabilizing system illustrating various orientation positions for a spinal stabilization connector according to another embodiment of the present disclosure.
a is a perspective view of the spinal stabilization connector of
b is a top view of that illustrated in
The present disclosure relates generally to the field of orthopedic surgery, and more particularly to systems and methods for stabilizing a spinal joint. For the purposes of promoting an understanding of the principles of the invention, reference will now be made to embodiments or examples illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alteration and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the disclosure relates.
Referring to
A facet joint 44 is formed, in part, by the adjacent articular processes 32, 40. Likewise, another facet joint 46 is formed, in part, by the adjacent articular processes 30, 42. Facet joints also may be referred to as zygapophyseal joints. A healthy facet joint includes a facet capsule extending between the adjacent articular processes. The facet capsule comprises cartilage and synovial fluid to permit the articulating surfaces of the articular processes to remain lubricated and glide over one another. The type of motion permitted by the facet joints is dependent on the region of the vertebral column. For example, in a healthy lumbar region, the facet joints limit rotational motion but permit greater freedom for flexion, extension, and lateral bending motions. By contrast, in a healthy cervical region of the vertebral column, the facet joints permit rotational motion as well as flexion, extension, and lateral bending motions. As the facet joint deteriorates, the facet capsule may become compressed and worn, losing its ability to provide a smooth, lubricated interface between the articular surfaces of the articular processes. This may cause pain and limit motion at the affected joint. Facet joint deterioration may also cause inflammation and enlargement of the facet joint which may, in turn, contribute to spinal stenosis. Removal of an afflicted articular process may result in abnormal motions and loading on the remaining components of the joint. The embodiments described below may be used to stabilize a deteriorated facet joint while still allowing some level of natural motion.
Injury, disease, and deterioration of the intervertebral disc 14 may also cause pain and limit motion. In a healthy intervertebral joint, the intervertebral disc permits rotation, lateral bending, flexion, and extension motions. As the intervertebral joint deteriorates, the intervertebral disc may become compressed, displaced, or herniated, resulting in excess pressure in other areas of the spine, particularly the posterior bony elements of the afflicted vertebrae. This deterioration may lead to spinal stenosis. In one application, the embodiments described below may restore more natural spacing to the posterior bony elements of the vertebrae, decompress an intervertebral disc, and/or may relieve spinal stenosis. Referring still to
Connected at each end to vertebral fasteners 50, 52, a spinal stabilization connector 54 may provide compressive support and load distribution, providing relief to the intervertebral disc 14. In addition, the spinal stabilization connector 54 may dampen the forces on the intervertebral disc 14 and facet joint 46 during motion such as flexion. Because the spinal stabilization connector 54 is securely connected to the vertebral fasteners 50, 52, the spinal stabilization connector 54 also provides relief in tension/extension. Accordingly, during bending or in extension, the spinal stabilization connector 54 may assist in providing a flexible dampening force to limit the chance of overcompression or overextension when muscles are weak. In addition, the spinal stabilization connector 54 allows at least some torsional movement of the vertebra 16 relative to the vertebra 18. In one exemplary embodiment, the fasteners 50, 52 include a pedicle screw 56, 58 that together with receivers 60, 62 secure the spinal stabilization connector 54 in place. Such an exemplary fastener is described in U.S. Pat. No. 6,280,442, the disclosure of which is incorporated herein by reference.
Referring now to
Vertebral fastener 50 includes a receiver 60, pedicle screw 56, and a locking screw or cap 66. More particularly, receiver 60 defines an upper opening portion 60(a) and a lower opening portion 60(b), which collectively form a single opening (not numbered) that extends through the receiver 60 from an upper aperture (shown occupied by locking screw 66) in top end 72 and a lower aperture (shown occupied by pedicle screw 56) in bottom end 74. Although not shown, the bottom end 74 includes an annular groove that is sized to receive a retaining ring (not shown) against which the head (not shown) of the pedicle screw 56 seats.
Receiver 60 includes a pair of upright branches 76, 78 that collectively define a U-shaped channel 80 transverse to the single opening defined longitudinally through the receiver. Moreover, the U-shaped channel 80 communicates with upper opening portion 60(a) and lower opening portion 60(b). The U-shaped channel 80 is sized to receive the distal end 82 of spinal stabilization connector 54.
Locking cap 66 has a threaded body 84 that includes a series of threads that are compatible with internal threads (not shown) formed along the interior walls 86, 88 of branches 76, 78, respectively. In one embodiment, the internal threads of branches 76, 78 are reverse angle threads, such as disclosed in U.S. Pat. No. 6,296,242, the disclosure of which is incorporated herein by reference. It is understood, however, that the present disclosure is applicable with vertebral fasteners having other thread orientations. The branches 76, 78 also have indentations or holes 90, 92 that allow a surgeon to grip the receiver 60 with an appropriate gripping tool (not shown).
Vertebral fastener 50 also has a crown member 94 shaped to accommodate the head of pedicle screw 56. One exemplary crown member is more fully described in U.S. Pat. No. 6,280,442, the disclosure of which is incorporated herein by reference. Crown member 94 is constructed to fit within the lower opening portion 60(b) and compresses against the head of the pedicle screw when the spinal stabilization connector 54 is secured within U-shaped channel 80.
More particularly, crown member 94 and pedicle screw 56 are retained within the receiver 60 by inserting the crown member 94 and the head of the pedicle screw 56 through the lower aperture in bottom end 74. The retaining ring is then positioned within the annual groove defined in the bottom end 74 of the receiver to prevent the crown member 94 and pedicle screw 56 from translating through the lower aperture. A hole (not shown) formed in the crown member 94 allows a surgeon to engage a driving tool with a corresponding printed surface (not shown) of the pedicle screw head. In this regard, once a hole is appropriately prepared in a vertebral member, the pedicle screw can be threaded into the vertebral member. It is understood that the present disclosure is applicable with vertebral fasteners having configurations different from the vertebral fasteners described herein.
Following insertion of the pedicle screw 56 into the vertebral member, the spinal stabilization connector 54 is placed in the U-shaped channel 80 and in contact with the top surface of crown member 94. Locking screw 66 or other compression member is then threaded into corresponding threads of the receiver 60 and into contact with the spinal stabilization connector 54. As the locking screw 66 is driven into contact with the spinal stabilization connector 54, the spinal stabilization connector 54 is forced downward against the crown member 94 which then compresses against the head of the pedicle screw 56. It is understood that the present disclosure is applicable with other known or to be developed locking configurations.
Once the spinal stabilization connector 54 is secured by fastener 50, the proximal end 96 of the spinal stabilization connector 54 is secured to fastener 52. Fastener 52 is similar in design to fastener 50 described above. Specifically, vertebral fastener 52 includes receiver 62, pedicle screw 56, and a locking screw or cap 98. Receiver 62 defines an upper opening portion 62(a) and a lower opening portion 62(b), which collectively form a single opening (not numbered) that extends through the receiver 62 from an upper aperture (shown occupied by locking screw 98) in top end 100 and a lower aperture (shown occupied by pedicle screw 58) in bottom end 102. Although not shown, the bottom end 102 includes an annular groove that is sized to receive a retaining ring (not shown) against which the head (not shown) of the pedicle screw 58 seats.
Receiver 62 includes a pair of upright branches 104, 106 that collectively define a U-shaped channel 108 transverse to the single opening defined longitudinally through the receiver. Moreover, the U-shaped channel 108 communicates with upper opening portion 62(a) and lower opening portion 62(b). The U-shaped channel 108 is sized to receive the proximal end 96 of spinal stabilization connector 54.
Locking cap 98 has a threaded body 110 that includes a series of threads that are compatible with internal threads (not shown) formed along the interior walls 112, 114 of branches 104, 106, respectively. In one embodiment, the internal threads of branches 104, 106 are reverse angle threads, such as disclosed in U.S. Pat. No. 6,296,242, the disclosure of which is incorporated herein by reference. It is understood, however, that the present disclosure is applicable with vertebral fasteners having other thread orientations. The branches 104, 106 also have indentations or holes 116, 118 that allow a surgeon to grip the receiver 62 with an appropriate gripping tool (not shown).
Vertebral fastener 52 also has a crown member 120 shaped to accommodate the head of pedicle screw 58. One exemplary crown member is more fully described in U.S. Pat. No. 6,280,442, the disclosure of which is incorporated herein by reference. Crown member 120 is constructed to fit within the lower opening portion 62(b) and compresses against the head of the pedicle screw 58 when the spinal stabilization connector 54 is secured within U-shaped channel 108.
Thus, once an appropriate hole is formed a vertebral member, pedicle screw 58, having been placed and secured within receiver 62, is inserted into the vertebral member. Once secured, the spinal stabilization connector 54 is placed within rod-receiving channel 108. Locking cap 98 is then threadingly connected to the receiver 62, in a manner similar to that described above. The locking cap 98 contacts against the proximal end 96 of the spinal stabilization connector 54, which causes the spinal stabilization connector 54 to push against crown member 120. Crown member 120 then compresses against the head of the pedicle screw 58 thereby locking fastener 52 and the spinal stabilization connector 54 into place. It is recognized that the spinal stabilization connector 54 may have a length greater than the distance between the fasteners 50, 52. As such, an appropriate cutting tool (not shown) may be used to cut-off lengths of the spinal stabilization connector 54 that extends distally past fastener 50 and proximally past fastener 52.
Referring now to
Alternatively, the spinal stabilization connector can be constructed to have a groove defined along its length, or portion thereof, that is contoured to receive the distal end of the locking screw. In this arrangement, the groove in the connector provides a contoured seat for the locking screw. In another alternate embodiment, the crown member of each vertebral fastener can be constructed to have a groove or other geometry matched to the shape of the spinal stabilization connector. In this regard, the crown member is contoured to match the shape of the spinal stabilization connector and to thereby provide a seat for the spinal stabilization connector. For example, if the spinal stabilization connector is constructed to have a triangular cross-section, the crown member could be constructed to have a V-shaped groove appropriately contoured to receive the spinal stabilization connector.
In addition to providing a planar contact interface between the spinal stabilization connector 54 and the locking screw 98, the symmetry of the spinal stabilization connector 54 results in a planar interface with crown member 120. As shown in
In addition to providing planar interfaces, the planar sidewalls of the spinal stabilization connector 54 define discrete positions of orientation for the spinal stabilization connector 54. As shown in
Increasingly, spinal stabilization connectors are being manufactured to perform differently based on the orientation of the spinal stabilization connector relative to a spinal joint. In this regard, by constructing the spinal stabilization connector to have a plurality of discrete positions at which the spinal stabilization connector can be placed, optimal or preferred performance characteristics of the spinal stabilization connector can be readily achieved with appropriate placement of the spinal stabilization connector in the vertebral fasteners. In the case of the illustrated example, the spinal stabilization connector 54 can be placed at six discrete orientations based on the planar sidewall that is used to interface with the locking screw 98. Moreover, since the curvature is pre-defined along the length of the spinal stabilization connector 54, discrete angular positions of the curved portion 128 relative to the vertical axes can be similarly realized. That is, if it is desired for the curved portion 128 to be offset from the vertical axes by 240 degrees, than the spinal stabilization is rotated in such a manner to place planar sidewall 64(d) perpendicular to the vertical axes and thereby forming a planar interface between the planar sidewall 64(d) and the planar distal surface 124 of the locking screw 98. It is understood that the number of discrete positions can be more or less than the six positions defined by the spinal stabilization connector 54 illustrated in
a-9b illustrate spinal stabilization connectors according to alternate embodiments of the present disclosure. In some of the figures, the spinal stabilization connectors are shown connected to a single fastener. However, it is understood that in practice, the spinal stabilization connectors would be connected to at least two vertebral fasteners to provide spinal stabilization. Also, in describing the spinal stabilization connectors of
a-4c illustrate a spinal stabilization connector 54(a) constructed to have four equally sized sidewalls 64(g), 64(h), 64(i), 64(j), i.e., a square cross-section. The spinal stabilization connector 54(a) is shown connected at one end to vertebral fastener 52. Specifically,
a and 5b illustrate a spinal stabilization connector 54(b) according to another embodiment of the present disclosure. Spinal stabilization connector 54(b) has a curved portion 128(b) with a circular cross-section with ends 84(b) and 96(b) each having a multi-sided boss 130, 132, respectively. In the illustrated embodiment, boss 130 has four planar sidewalls, of which sidewalls 134, 136, and 138 are shown. Similarly, boss 132 has four planar sidewalls, of which sidewalls 140 and 142 are shown. In one embodiment, bosses 130, 132 are integrally formed with curved portion 128(b). Alternately, the bosses may be separately formed and connected using adhesive or other mechanical connections, such as twist-lock or threaded engagements. Similar to the spinal stabilization connectors described above, the sidewalls of bosses 130, 132 define discrete positions at which the spinal stabilization connector 54(b) can be oriented relative to a spinal joint. In
Also,
a-6c illustrated spinal stabilization connectors according to additional aspects of the present disclosure. The spinal stabilization connectors illustrated in
Contrastingly, the spinal stabilization connector 54(d) illustrated in
a-9b illustrate spinal stabilization connectors according to another aspect of the invention. As will be described, the spinal stabilization connectors illustrated in
b illustrate a spinal stabilization connector 54(f) incorporating translational stops. While the translational stops are illustrated with respect to a spinal stabilization connector similar to that illustrated in
Spinal stabilization connector 54(f) is similar to the spinal stabilization connector illustrated in
The spinal stabilization connectors shown in
The spinal stabilization connectors described herein may be placed directly adjacent the vertebrae, or alternatively, may be spaced from the vertebrae. In some embodiments, placement of the spinal stabilization connector directly adjacent the vertebrae may impart specific characteristics to the spinal stabilization connector. In some examples, the spinal stabilization connector may be spaced from the vertebrae. Accordingly even when the vertebral column is in flexion, causing the spine to bend forward, the vertebral fasteners maintain a line of sight position, so that the spinal stabilization connector extends only along a single axis, without bending. In other examples, after placement, the spinal stabilization connector may contact portions of the vertebrae during the flexion process. For example, during flexion, the vertebrae may move so that the first and second vertebral fasteners do not have a line of sight position. Accordingly, the spinal stabilization connector may be forced to bend around a protruding portion of the vertebrae. This may impart additional characteristics to the spinal stabilization connector. For example, because the spinal stabilization connector would effectively contact the spinal column at three locations (its two ends and somewhere between the two ends), its resistance to extension might be increased.
In the exemplary embodiments described, the spinal stabilization connector is the only component extending from one vertebral fastener to the other. This may be referred to as a single spinal stabilization connector. This single spinal stabilization connector may be contrasted with conventional systems that employ more than one connector extending between attachment points, such as systems with one component connected at the attachment points and another component extending between attachment points. Because it employs a single spinal stabilization connector, the vertebral stabilizing system disclosed herein may be easier and quicker to install, may be less complex, and may be more reliable than prior devices.
It should be noted however, that a spinal column may employ the spinal stabilization connector to extend across a first vertebral space, with a second spinal stabilization connector extending across a second vertebral space. Accordingly, more than one vertebral stabilizing system may be used in a spinal column. In some instances where more than one stabilizing system is use, the first and second vertebral spaces may be adjacent. In alternative embodiments, a vertebral stabilizing system may have a single spinal stabilization connector with a length allowing it to extend across more than one intervertebral space, with or without connecting to an intermediate vertebra.
Additionally, it is noted that a spinal stabilization connector can have a length that spans multiple spinal joints and, if necessary, more than two vertebral fasteners may be used to secure the spinal stabilization connector to vertebral members. Moreover, while the figures have been described with respect to placement of vertebral fasteners at the ends of a spinal stabilization connector, it is noted that vertebral fasteners could be placed at any position along the length of the spinal stabilization connector as deemed appropriate. It also noted that in the figures above, the geometry of the curved portion of a spinal stabilization connector is shown as being uniform in shape and size; however, it is contemplated that the spinal stabilization connector can have a variability in size and geometry along its length. For example, the spinal stabilization connector could be tapered from one end to the other or have multiple geometries defined along its length. In another example, spinal stabilization across multiple spinal joints is provided by using multiple spinal stabilization systems connected to one another. In this regard, it is contemplated that multiple spinal stabilization connectors can extend along the spinal column. Moreover, it is contemplated that the geometry (or size) of the spinal stabilization connectors used to provide spinal stabilization may vary along the length of the spinal column.
Also, a spinal stabilization connector has been described and shown as having planar sidewalls extending along its length. It is contemplated that the spinal stabilization connector could be constructed to have “soft” or slightly curved joints formed between the generally planar sidewalls rather than the “hard” joints shown in the figures. Further, the spinal stabilization connectors have been described and shown as having ends that are similarly shaped. However, it is contemplated that a spinal stabilization connector may have one end (or fastening position) with a first geometry and may have another end (or other fastening position) with a second geometry, different from the first geometry. Additionally, the present disclosure has been described with respect to various threaded engagements; however, it is understood that other types of engagements could be used, such as twist-locks, quarter-turn or half-turn locks, straps, clamps, and the like.
In certain anatomies, the vertebral stabilizing system may be used alone to provide decompression or compression to a single targeted facet joint or to relieve pressure on a particular side of the intervertebral disc, such as a herniation area. However, in some instances, a second vertebral stabilizing system may be installed on the opposite lateral side of the vertebrae across from the vertebral stabilizing system. Use of first and second vertebral stabilizing systems may provide more balanced support and equalized stabilization. The second vertebral stabilizing system may be substantially similar to system and therefore will not be described in detail.
The vertebral stabilizing system, as installed, may flexibly restrict over-compression of the vertebrae, thereby relieving pressure on the intervertebral disc and the facet joint. In addition, the vertebral stabilizing system may flexibly restrict axial over-extension of the intervertebral disc and the facet joint. By controlling both compression and extension, the vertebral stabilizing system may reduce wear and further degeneration. The spinal stabilization connector may also dampen the forces on the intervertebral disc and facet joint during motion such as flexion and extension. Because the spinal stabilization connector may be positioned relatively close to the natural axis of flexion, the vertebral stabilizing system may be less likely to induce kyphosis as compared to systems that rely upon inter-spinous process devices to provide compressive and tensile support. Additionally, the system may be installed minimally invasively with less dissection than the inter-spinous process devices of the prior art. Furthermore, an inter-pedicular system can be used on each lateral side of the vertebrae, and may provide greater and more balanced stabilization than single inter-spinous process devices.
It should be noted that in some embodiments, the spinal stabilization connector may be configured so that orientation in one direction provides one set of stabilizing properties to the vertebrae, while orienting the spinal stabilization connector in the other direction would provide a second set of stabilizing properties. Also, while the figures have been described with respect to a spinal stabilization rod, it is understood that the present disclosure is applicable with other types of connectors or tension members such as spinal stabilization plates.
It should be noted that the spinal stabilization connector can be made of elastic or semi-elastic materials in parts or in its entirety. On the other hand, the spinal stabilization connector can be made of a composite of elastic/semi-elastic and inelastic or rigid materials, such as that described in U.S. Ser. No. 11/7413,448, the disclosure of which is incorporated herein by reference. Exemplary elastic materials include polyurethane, silicone, silicone-polyurethane, polyolefin rubbers, hydrogels, and the like. The elastic materials can be resorbable, semi-resorbable, or non-resorbable. Exemplary inelastic materials include polymers, such as polyetheretherketone (PEEK), polyetherketoneketone (PEKK), and polylactic acid materials (PLA and PLDLA), metals, such as titanium, NITINOL, and stainless steel, and/or ceramics, such as calcium phosphate and alumina. Further, the various connector components can be solid, hollow, semi-hollow, braided, woven, mesh, porous, or combinations thereof. The connector can also be reinforced or semi-reinforced. Additionally, the connector can be made to have a variable rigidity, such as that described in U.S. Ser. No. 11/563,594, the disclosure of which is incorporated herein by reference. It is also contemplated that the connector can be fabricated using a number of fabrication techniques, such as injection molding as described in U.S. Ser. No. 11/469,354, the disclosure of which is incorporated herein by reference. Also, in one embodiment, the width between the planar sidewalls is equal to the diameter of conventional round spinal stabilization connectors; however, it is contemplated the distance between the planar sidewalls could be more or less than the diameter of conventional round spinal stabilization rounds. Therefore, it is also contemplated that the vertebral fasteners could be constructed to have a wider or narrow rod-receiving channel to accommodate the width of the spinal stabilization connectors described herein. Also, the spinal stabilization connectors may have different cross-sectional shapes than those shown and described. For example, the spinal stabilization connector could be constructed to have a D-shaped cross-section.
Although disclosed as being used at the posterior areas of the spine, the spinal stabilization connector may also be used in the anterior region of the spine to support the anterior column. In such a use, the spinal stabilization connector may be oriented adjacent to and connect to the anterior column, and may span a vertebral disc space.
The foregoing embodiments of the stabilization system may be provided individually or in a kit providing a variety of sizes of components as well as a variety of strengths for the connector. It is also contemplated that the connector's characteristics may be color coded or otherwise indicated on the connector itself to expedite identification of a desired connector.
The invention is also embodied in a surgical method for spinal or other bone stabilization. In accordance with this method, a surgeon performs a conventional interbody fusion/nucleus replacement/disc replacement followed by placement of pedicles/bone screws or other inserters into appropriate vertebral or other bony structures. The surgeon may then anchor one end of a connector into a first vertebral or other bony structure. If necessary or otherwise desired, tension is applied to the connector spanning the space between bony structures. The un-anchored end of the connector is then anchored to a second vertebral or other bony structure spaced from the first vertebral or other bony structure.
It is noted that various embodiments of the spinal stabilization connector described herein may include disjointed sections that can be threadingly engaged or otherwise connected to each other on a per patient basis. Thus, the above surgical method contemplates a surgeon connecting segments to each other until a desired length, elasticity, and the like is achieved. Moreover, a surgeon can construct such a connector on-the-fly quickly and with relative ease by connecting segments or components to one another.
Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this disclosure. Accordingly, all such modifications and alternative are intended to be included within the scope of the invention as defined in the following claims. Those skilled in the art should also realize that such modifications and equivalent constructions or methods do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure. It is understood that all spatial references, such as “horizontal,” “vertical,” “top,” “upper,” “lower,” “bottom,” “left,” “right,” “cephalad,” “caudal,” “upper,” and “lower,” are for illustrative purposes only and can be varied within the scope of the disclosure. Further, the embodiments of the present disclosure may be adapted to work singly or in combination over multiple spinal levels and vertebral motion segments. Also, though the embodiments have been described with respect to the spine and, more particularly, to vertebral motion segments, the present disclosure has similar application to other motion segments and parts of the body. In the claims, means-plus-function clauses are intended to cover the elements described herein as performing the recited function and not only structural equivalents, but also equivalent elements.
Number | Name | Date | Kind |
---|---|---|---|
3997138 | Crock et al. | Dec 1976 | A |
4386603 | Mayfield | Jun 1983 | A |
4573454 | Hoffman | Mar 1986 | A |
4686970 | Dove et al. | Aug 1987 | A |
4697582 | William | Oct 1987 | A |
4743260 | Burton | May 1988 | A |
4771767 | Steffee | Sep 1988 | A |
5092866 | Breard et al. | Mar 1992 | A |
5180393 | Commarmond | Jan 1993 | A |
5217461 | Asher et al. | Jun 1993 | A |
5282863 | Burton | Feb 1994 | A |
5330472 | Metz-Stavenhagen | Jul 1994 | A |
5375823 | Navas | Dec 1994 | A |
5387213 | Breard et al. | Feb 1995 | A |
5413576 | Rivard | May 1995 | A |
5415661 | Holmes | May 1995 | A |
5425732 | Ulrich | Jun 1995 | A |
5456722 | McLeod et al. | Oct 1995 | A |
5480401 | Navas | Jan 1996 | A |
5540688 | Navas | Jul 1996 | A |
5562660 | Grob | Oct 1996 | A |
5562737 | Graf | Oct 1996 | A |
5575819 | Amis | Nov 1996 | A |
5593408 | Gayet et al. | Jan 1997 | A |
5667506 | Sutterlin | Sep 1997 | A |
5672175 | Martin | Sep 1997 | A |
5681311 | Foley et al. | Oct 1997 | A |
5704936 | Mazel | Jan 1998 | A |
5733284 | Martin | Mar 1998 | A |
5738685 | Halm et al. | Apr 1998 | A |
5879351 | Viart | Mar 1999 | A |
RE36221 | Breard et al. | Jun 1999 | E |
5951553 | Betz et al. | Sep 1999 | A |
5961516 | Graf | Oct 1999 | A |
6099528 | Saurat | Aug 2000 | A |
6102912 | Cazin et al. | Aug 2000 | A |
6183473 | Ashman | Feb 2001 | B1 |
6210413 | Justis et al. | Apr 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6267764 | Elberg | Jul 2001 | B1 |
6280442 | Barker et al. | Aug 2001 | B1 |
6287308 | Betz et al. | Sep 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
6296642 | Morrison et al. | Oct 2001 | B1 |
6296643 | Hopf et al. | Oct 2001 | B1 |
6299613 | Ogilvie et al. | Oct 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6436099 | Drewry et al. | Aug 2002 | B1 |
6461359 | Tribus et al. | Oct 2002 | B1 |
6485492 | Halm et al. | Nov 2002 | B1 |
6488682 | Kikuchi et al. | Dec 2002 | B2 |
6488683 | Lieberman | Dec 2002 | B2 |
6551320 | Lieberman | Apr 2003 | B2 |
6554831 | Rivard et al. | Apr 2003 | B1 |
6616669 | Ogilvie et al. | Sep 2003 | B2 |
6623484 | Betz et al. | Sep 2003 | B2 |
6626904 | Jammet et al. | Sep 2003 | B1 |
6645211 | Magana | Nov 2003 | B2 |
6730092 | Songer | May 2004 | B2 |
6740086 | Richelsoph | May 2004 | B2 |
6746450 | Wall et al. | Jun 2004 | B1 |
6749614 | Teitelbaum et al. | Jun 2004 | B2 |
6752831 | Sybert et al. | Jun 2004 | B2 |
6758862 | Berry et al. | Jul 2004 | B2 |
6761719 | Justis et al. | Jul 2004 | B2 |
6773437 | Ogilvie et al. | Aug 2004 | B2 |
6783527 | Drewry et al. | Aug 2004 | B2 |
6802844 | Ferree | Oct 2004 | B2 |
6875212 | Shaolian et al. | Apr 2005 | B2 |
6899713 | Shaolian et al. | May 2005 | B2 |
6902565 | Berger et al. | Jun 2005 | B2 |
6921403 | Cragg et al. | Jul 2005 | B2 |
7083621 | Shaolian et al. | Aug 2006 | B2 |
7632292 | Sengupta et al. | Dec 2009 | B2 |
20020091388 | Nohara et al. | Jul 2002 | A1 |
20020116001 | Schafer et al. | Aug 2002 | A1 |
20020133155 | Ferree | Sep 2002 | A1 |
20020143329 | Serhan et al. | Oct 2002 | A1 |
20030009226 | Graf | Jan 2003 | A1 |
20030023241 | Drewry et al. | Jan 2003 | A1 |
20030055427 | Graf | Mar 2003 | A1 |
20030088251 | Braun et al. | May 2003 | A1 |
20030093078 | Ritland | May 2003 | A1 |
20030100897 | Metz-Stavenhagen | May 2003 | A1 |
20030109880 | Shirado et al. | Jun 2003 | A1 |
20030171749 | Le Couedic et al. | Sep 2003 | A1 |
20030191470 | Ritland | Oct 2003 | A1 |
20030220642 | Freudiger | Nov 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20030229347 | Sherman et al. | Dec 2003 | A1 |
20040002708 | Ritland | Jan 2004 | A1 |
20040049189 | Le Couedic et al. | Mar 2004 | A1 |
20040073215 | Carli | Apr 2004 | A1 |
20040082954 | Teitelbaum et al. | Apr 2004 | A1 |
20040092934 | Howland | May 2004 | A1 |
20040138666 | Molz, IV et al. | Jul 2004 | A1 |
20040147928 | Landry et al. | Jul 2004 | A1 |
20040172025 | Drewry et al. | Sep 2004 | A1 |
20040215341 | Sybert et al. | Oct 2004 | A1 |
20040220569 | Wall et al. | Nov 2004 | A1 |
20040225289 | Biedermann et al. | Nov 2004 | A1 |
20040236327 | Paul et al. | Nov 2004 | A1 |
20040236328 | Paul et al. | Nov 2004 | A1 |
20040236329 | Panjabi | Nov 2004 | A1 |
20050038432 | Shaolian et al. | Feb 2005 | A1 |
20050065515 | Jahng | Mar 2005 | A1 |
20050065516 | Jahng | Mar 2005 | A1 |
20050070908 | Cragg | Mar 2005 | A1 |
20050085812 | Sherman et al. | Apr 2005 | A1 |
20050085814 | Sherman et al. | Apr 2005 | A1 |
20050085815 | Harms et al. | Apr 2005 | A1 |
20050090822 | DiPoto | Apr 2005 | A1 |
20050102028 | Arnin et al. | May 2005 | A1 |
20050124991 | Jahng | Jun 2005 | A1 |
20050131405 | Molz, IV et al. | Jun 2005 | A1 |
20050143737 | Pafford et al. | Jun 2005 | A1 |
20050143823 | Boyd et al. | Jun 2005 | A1 |
20050149020 | Jahng | Jul 2005 | A1 |
20050154390 | Biedermann et al. | Jul 2005 | A1 |
20050171539 | Braun et al. | Aug 2005 | A1 |
20050171540 | Lim et al. | Aug 2005 | A1 |
20050171543 | Timm et al. | Aug 2005 | A1 |
20050177156 | Timm et al. | Aug 2005 | A1 |
20050177157 | Jahng | Aug 2005 | A1 |
20050182401 | Timm et al. | Aug 2005 | A1 |
20050182409 | Callahan et al. | Aug 2005 | A1 |
20050192581 | Molz et al. | Sep 2005 | A1 |
20050197660 | Haid et al. | Sep 2005 | A1 |
20050203511 | Wilson-MacDonald et al. | Sep 2005 | A1 |
20050203513 | Jahng et al. | Sep 2005 | A1 |
20050203514 | Jahng et al. | Sep 2005 | A1 |
20050203516 | Biedermann et al. | Sep 2005 | A1 |
20050203517 | Jahng et al. | Sep 2005 | A1 |
20050203518 | Biedermann et al. | Sep 2005 | A1 |
20050203519 | Harms et al. | Sep 2005 | A1 |
20050209694 | Loeb | Sep 2005 | A1 |
20050216004 | Schwab | Sep 2005 | A1 |
20050222569 | Panjabi | Oct 2005 | A1 |
20050228381 | Kirschman | Oct 2005 | A1 |
20050240183 | Vaughan | Oct 2005 | A1 |
20050245930 | Timm et al. | Nov 2005 | A1 |
20050261682 | Ferree | Nov 2005 | A1 |
20050261685 | Fortin et al. | Nov 2005 | A1 |
20050261686 | Paul | Nov 2005 | A1 |
20050267470 | McBride | Dec 2005 | A1 |
20050267473 | Vaughan | Dec 2005 | A1 |
20050273099 | Baccelli et al. | Dec 2005 | A1 |
20050277920 | Slivka et al. | Dec 2005 | A1 |
20050277922 | Trieu et al. | Dec 2005 | A1 |
20050277926 | Farris | Dec 2005 | A1 |
20050277932 | Farris | Dec 2005 | A1 |
20060064092 | Howland | Mar 2006 | A1 |
20060217719 | Albert et al. | Sep 2006 | A1 |
20060247638 | Trieu et al. | Nov 2006 | A1 |
20070173828 | Firkins et al. | Jul 2007 | A1 |
20070191841 | Justis et al. | Aug 2007 | A1 |
20070213720 | Gordon et al. | Sep 2007 | A1 |
20070270819 | Justis et al. | Nov 2007 | A1 |
20080086130 | Lake et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
9112466 | Dec 1991 | DE |
0576379 | Dec 1993 | EP |
0667127 | Aug 1995 | EP |
0669109 | Aug 1995 | EP |
0677277 | Oct 1995 | EP |
0820731 | Jan 1998 | EP |
1281361 | May 2003 | EP |
1388323 | Feb 2004 | EP |
2735351 | Dec 1996 | FR |
2799949 | Apr 2001 | FR |
WO 9519149 | Jan 1996 | WO |
WO 0145576 | Sep 2002 | WO |
WO 02102259 | Dec 2002 | WO |
WO 03003901 | Jan 2003 | WO |
WO 03003902 | Jan 2003 | WO |
WO 2005087121 | Sep 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080177318 A1 | Jul 2008 | US |