Door installation varies from manufacturer to manufacturer and from site to site. Thus, what is needed is a flexible hinge system that adapts to each installation.
In the drawings:
Use of the same reference numbers in different figures indicates similar or identical elements.
Leaf 2 has a knuckle 56 that receives flanged bushings 8 from its top and bottom openings. Bushings 8 may each have internal ribs or a constricting internal bore that press fits to hinge pin 9. Knuckle 56 of leaf 2 is received between knuckles 52 and 54 of leaf 3. In another example the knuckle arrangement is reversed so leaf 3 has a knuckle received between two knuckles of leaf 2. Hinge pin 9 is inserted through knuckle 52, 56, and 54. Hinge pin 9 may have a knurled section 57 that is received in bushing 10 of knuckle 52 to prevent the hinge pin from working itself loose from leaves 2 and 3. Knuckle 56 may define a threaded hole 58 for receiving a hex key 6, and hinge pin 9 may have a circumferential groove 60. When screwed in, hex key 6 extends into groove 60 to prevent hinge pin 9 from being removed. Access to hex key 6 is only available from the interior of a structure. Leaf 2 defines a leaf opening 62 for receiving block 12. Leaf 2 is free to translate horizontally relative to block 12 so vertically adjustable hinge 200 accommodates horizontal adjustments from horizontally adjustable hinge 300. Alternatively block 12 is integrated with leaf 2.
Blocks 11 and 12 form a ramp mechanism that translates horizontal movement of one into a vertical movement of the other. One of blocks 11 and 12 is limited to horizontal movement while the other is limited to vertical movement. When the vertically limited element translates horizontally, the horizontally limited element translates vertically. Depending on the implement, only block 11 or 12 has one or more inclined surfaces or both blocks 11 and 12 have corresponding inclined surfaces.
In one example, block 12 defines a block opening 64 for receiving block 11. Block opening 64 has one or more inclined surfaces that rest against one or more inclined surfaces of block 11. The thickness of block 12 confines it horizontally within the leaf assembly housing. However, block 12 can be translated vertically within the leaf assembly housing. The inclined interface between blocks 11 and 12 transforms a horizontal movement of block 11 into a vertical movement of block 12. In one example, block 11 has inclined tongues 70 and 72 formed on its two sides, and block 12 has two inclined grooves 66 and 68 formed on two sides of block opening 64 for receiving inclined tongues 70 and 72 of block 11. Block 11 defines a threaded hole 74 for receiving screw 7.
Housing cover 1 and housing back plate 4 of the leaf assembly housing define vertical guides for block 12. In one example, housing cover 1 has a vertical surface with vertical slots (not visible) that receive pins 76 protruding from the front of block 12, and housing back plate 4 has a vertical surface with vertical slots 78 that receive pins 79 (only one is visible) protruding from the back of block 12. The vertical surface of housing cover 1 defines a screw hole 80 providing access to threaded hole 74 of block 11. The vertical surface of housing back plate 4 defines a screw hole 81 opposite screw hole 80. Screw 7 may have a stepped cylindrical head and screw hole 80 may have multiple counterbores that receive the stepped cylindrical head to allow screw 7 to rotate freely.
Screw 7 is inserted through screw hole 80, threaded through threaded hole 74, and has an end spin riveted to a washer 5 in screw hole 81. Washer 5 may be a stepped washer and screw hole 81 may be a counterbored screw hole that allows washer 5 to rotate freely. Screw 7 is able to rotate in place to horizontally translate block 11 relative to the leaf assembly housing. Screw 7 and washer 5 spin together. Washer 5 prevents housing back plate 4 from being pushed out by block 11. Blocks 11 and 12 are prevented from rotating in place as block 11 fits in block 12, and block 12 is constrained from rotating by its pin-in-slot interface with the leaf assembly housing.
To adjust vertically adjustable hinge 200, screw 7 is rotated as shown in
Leaf 2A has a knuckle 56 that receives flanged bushings 8 from its top and bottom openings. Knuckle 56 defines a threaded hole 58 (not visible) for receiving a hex key 6. Knuckle 56 of leaf 2A is received between knuckles 52 and 54 of leaf 3. Hinge pin 9 with circumferential groove 60 is inserted though knuckle 52, 56, 54 and secured by hex key 6. Leaf 2A defines a threaded hole 82 for receiving screw 7A. Leaf 2A defines rectangular slots 84 for receiving posts 86 from housing cover 1A, which guides the horizontal movement of leaf 2A within the leaf assembly housing while allowing vertical movement of leaf 2A within the leaf assembly housing to accommodate vertical adjustments from vertically adjustable hinge 200 (
Housing cover 1A and housing back plate 4A define vertical guides for screw 7A. In one example, housing cover 1A has a vertical surface with a counterbored vertical slot 88, and housing back plate 4A has a vertical surface with a counterbored vertical slot 90.
Screw 7A has a flanged end 92 and a grooved end 94. Screw 7A is threaded through threaded hole 82 of leaf 2A and grooved end 94 is secured by a circlip 5A. Circlip 5A prevents housing 1A from being pushed out by leaf 2A. Circlip 5A and flanged end 92 also serves as stops for leaf 2A. Ends 92 and 94 of screw 7A are received in counterbored vertical slots 88 and 90 of housing cover 1A and housing back plate 4A, respectively, so screw 7A is free to translate vertically relative to the leaf assembly housing to accommodate vertical adjustments from vertically adjustable hinge 200 (
Various other adaptations and combinations of features of the embodiments disclosed are within the scope of the invention. Numerous embodiments are encompassed by the following claims.