Data centers are designed to include various electrical equipment/components that are stacked in various rack type housings. The racks are typically configured to circulate airflow in a front to back arrangement, with cool to hot airflow. However, in certain instances, the electrical equipment is configured to vent and cool using a side to side airflow. Thus, racks filled that are filled with side to side airflow cooling configured equipment in a front to back cooling data center configuration may cause heated air to become trapped in the racks, which can result in superheating of the surrounding air. This situation therefore may result in premature side to side airflow equipment failure, while further corrupting the airflow of adjacent equipment designed for front to back cooling.
Accordingly, as it is impractical to fill a specific rack with all of one type of equipment that requires either side to side cooling or front to back cooling, there is a need in the art of rack mounted equipment for a selectively adjustable airflow segregation panel that permits cool aisle air to be selectively directed with respect to an equipment rack, to allow adequate heat transfer of the surrounding air.
Exemplary illustrations of the present disclosure are described in detail by referring to the drawings as follows.
Referring now to the discussion that follows and also to the drawings, illustrative approaches to the disclosed apparatuses and methods are shown in detail. Although the drawings represent some possible approaches, the drawings are not necessarily to scale and certain features may be exaggerated, removed, or partially sectioned to better illustrate and explain the disclosed device. Further, the descriptions set forth herein are not intended to be exhaustive or otherwise limit or restrict the claims to the precise forms and configurations shown in the drawings and disclosed in the following detailed description.
A communications rack cooling segregation panel is disclosed. The segregation panel may be selectively adjustable longitudinally within a communications equipment rack. The segregation panel may be configured to direct airflow though a specific hot or cool aisle within the equipment rack. The segregation panel may be removably installed within the rack to selectively direct the airflow. When installed, the segregation panel may be positioned to extend vertically between a first rack having at least one side flow electrical equipment component and a second rack having at least one additional side flow electrical equipment component to direct a cool aisle air to flow through a communication rack. A vented cable riser or support may be configured between adjacent racks to permit cool air to flow between adjacent racks and into the side of side vented equipment. Hot air may be exhausted out of a side of the electrical equipment and then deflected by the segregation panel to a hot aisle exhaust path. The segregation panel may also work with front to back airflow equipment that may be configured adjacent to the side to side airflow equipment. Additionally, a plurality of segregation panels may be employed in successive racks of electrical equipment.
Each individual segregation panel may be configured to be extendable in a substantially horizontal direction by at least one sliding joint positioned between at least two overlapping panel segments to adjust the size of the segregation panel to allow the two panel segments to expand to the length between two posts configured on a corner of each rack. The length that the two panel segments expand to may vary depending on spacing and depth of the space between the racks. The sliding joints may be configured as at least one slot that is positioned at a predetermined location on at least one of the two panel segments. The other of the two panel segments may include an aperture for receiving a fastener to lock the two panel segments in place once a desired length is achieved. The fastener may be a carriage or other type of bolt configured to engage the aperture and slot while receiving a nut on one end.
Further, an attachment point at a front end of the rack may be adjustable to ensure proper airflow. The panel may include one or more moveable and selectively lockable swivel joints, which may be configured to adjust the attachment points to the rack. The swivel joints create a hinge, which may allow the panel to pivot into a predetermined position. The swivel joints may be lockable through the use of a removable pin and fastener, such as, but not limited to a wing nut, lock nut, castle nut or other known locking fastener. The swivel joints may include correspondingly interlocking barrels on each panel that are configured to mesh together to create a single cylindrical aperture or sleeve that receives a pin. The pin may be configured with a stop on one end with a threaded opposing end. The threaded end may be configured to receive the fastener along with a buffer element, such as, but not limited to a rubber, plastic, or metallic bushing/washer. Other materials may be used depending on the application. The stop may be a formed head, an additional fastener, pin or other known element of preventing the rod from sliding through the interlocking barrel aperture.
Referring now to
Racks 12A, 12B are configured with a plurality of shelves 13 that serve to create storage shoes for receiving electronic equipment 14. To ensure proper airflow, empty shoes may be blocked with selectively removable blanking panels 15. Racks 12A, 12B may be constructed of fire resistant material, such as, for example, plenum rated material.
In one exemplary arrangement, a vented cable riser 30 may be supported between adjacent rack pillars 22. Cable riser 30 serves to organize and hold cable lines (not shown) extending from various electronic equipment 14 stored in racks 12A, 12B. Retaining bars 29 that extends across a face of the cable riser 30 may be employed to hold the cable lines. Vented cable riser 30 is configured provide openings 31 therethrough so as not to completely block airflow delivery aisle 16. More specifically, vented cable riser 30 is configured with openings 31 that serve to permit air to flow therethrough into airflow delivery aisle 16 and around the cables from cold aisle 18, as will be explained in further detail below. In one exemplary configuration vented cable risers 30 are configured as vertical cable risers 30, though it is understood that other configurations for a vented cable riser may be employed. While vented cable risers 30 are illustrated as extending above racks 12A, 12B, it is understood that other sized cable risers may be employed.
While in operation cold air is to be directed from the cold aisle to the hot aisle along the air flow delivery aisle 16 positioned between adjacent racks 10A, 10B, some of the electronic equipment 14 is actually vented transverse to the air flow delivery aisle 16, or through third 31A, 33A and fourth sides 31B, 33B (best seen in
To provide adequate cooling, and to preventing superheating of electronic equipment 14, an airflow segregation panel 40 may be provided between racks 10A, 10B. Airflow segregation panel 40 will now be described in connection with
In one exemplary configuration, airflow segregation panel 40 may be configured with at least one hinge portion that permits selectively orientation of panel 40, to be explained below. In the configuration depicted in
Mounting portions 44A, 44B may be shaped to have a generally L-shape. In one arrangement, mounting portions 44A, 44B are configured with a leg member 48A, 48B that mounts to hinge portion 42A, 42B. A foot member 50A, 50B is joined to leg member 48A, 48B. Foot member 50A, 50B may be fixedly connected to leg member 48A, 48B. Foot member 50A, 50B may be sized to have a length L1 that generally corresponds to the width of rack pillars 22 such that foot member 50A, 50B may be mounted flush against rack pillars 22, as best seen in
In one exemplary arrangement, for known sized racks 12A, 12B and spacing between successive racks 12A, 12B, a single air flow direction portion (not shown) may be provided between hinge portions 42A, 42B. However, to permit airflow segregation panel 40 to be used with a variety of different sized racks 12A, 12B, airflow segregation panel 40 may be configured to be selectively expandable, as illustrated in the FIGS. More specifically, air flow direction portions 46A, 46B are arranged in an overlapping manner, as best seen in
It is understood that a variety of configurations may be utilized to form hinge portions 42A, 42B. One non-limiting exemplary configuration is illustrated in
Operation of air flow segregation panel 40 will now be explained with reference to
In this configuration, cooling air (represented by arrow AC) is directed through vented cable risers 30 into air flow delivery aisle 16. Because air flow segregation panel 40 is positioned at an angle within air flow delivery aisle 16, cold air AC is directed to enter rack 12B through third side 33A and pass through rack 12B to exhaust from fourth side 33B. The cooling air will become heated at this point. Air flow segregation panel 40 also serves to make sure that exhausted heated air will be directed to the hot aisle 20. More specifically, as best seen in
An alternative arrangement of an air flow segregation panel 100 is shown in
Reference in the specification to “one example,” “an example,” “one arrangement,” or “a configuration” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example. The appearances of the phrase “in one example” in various places in the specification does not necessarily refer to the same example each time it appears.
With regard to the processes, systems, methods, heuristics, etc. described herein, it should be understood that, although the steps of such processes, etc. have been described as occurring according to a certain ordered sequence, such processes could be practiced with the described steps performed in an order other than the order described herein. It further should be understood that certain steps could be performed simultaneously, that other steps could be added, or that certain steps could be performed simultaneously, that other steps could be added, or that certain steps described herein could be omitted. In other words, the descriptions of processes herein are provided for the purpose of illustrating certain alternative arrangements, and should in no way be construed so as to limit the claimed invention.
Accordingly, it is to be understood that the above description is intended to be illustrative and not restrictive. Many arrangements and applications other than the examples provided would be apparent upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future arrangements. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary is made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.
Number | Name | Date | Kind |
---|---|---|---|
1727319 | Wasmuth | Sep 1929 | A |
2339515 | Parcher | Jan 1944 | A |
3178245 | Morioka et al. | Apr 1965 | A |
3232333 | Dixon | Feb 1966 | A |
3439377 | Bucholz | Apr 1969 | A |
3591247 | Berry et al. | Jul 1971 | A |
3629900 | Beerli, Jr. | Dec 1971 | A |
3744085 | Griego | Jul 1973 | A |
3745997 | Gledhill | Jul 1973 | A |
4758925 | Obata et al. | Jul 1988 | A |
5472037 | Hoffman | Dec 1995 | A |
6717807 | Hikawa | Apr 2004 | B2 |
6974037 | Haney | Dec 2005 | B2 |
7085133 | Hall | Aug 2006 | B2 |
7170745 | Bash et al. | Jan 2007 | B2 |
7595985 | Adducci et al. | Sep 2009 | B2 |
7855885 | Adducci et al. | Dec 2010 | B2 |
7983038 | Levesque et al. | Jul 2011 | B2 |
8035965 | Adducci et al. | Oct 2011 | B2 |
8113012 | Hoeft et al. | Feb 2012 | B2 |
8130494 | Larsen et al. | Mar 2012 | B2 |
8359709 | Van Gennep | Jan 2013 | B2 |
8363998 | Newman et al. | Jan 2013 | B2 |
8526181 | Levesque et al. | Sep 2013 | B2 |
8605435 | Ashby | Dec 2013 | B1 |
8804333 | Ashby | Aug 2014 | B2 |
20090129000 | Hoeft et al. | May 2009 | A1 |
20090129014 | Larsen et al. | May 2009 | A1 |
20100290752 | Newman et al. | Nov 2010 | A1 |
20140206273 | Larsen et al. | Jul 2014 | A1 |
20140223946 | Hall | Aug 2014 | A1 |
20140370798 | Larsen et al. | Dec 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20140016266 A1 | Jan 2014 | US |