The present invention relates to physical exercise machines and more particularly to an exercise apparatus that enables users to perform a simulated walking, running or other back and forth leg movement exercise.
Exercise machines for simulating walking or running are known and used for directing the movement of a user's legs and feet in a variety of repetitive paths of travel. Machines commonly referred to as elliptical path machines have been designed to pivot the foot pedals on which the user's feet reside causing the pedals and the user's feet to travel in an elliptical or arcuate path. The foot supports are typically disposed between a pair of pivoting support arms that support the foot pedals and the user when standing on the foot pedals. The angular degree of pivoting of the foot pedals as the foot pedals travel from back to front and front to back along the path of travel or translation of the pedals typically varies by more than about 3 degrees and more typically more than about 10-30 degrees.
In accordance with the invention there is provided an exercise device comprising:
The rear linkage can form one of the linkages of a four bar linkage, the four bar linkage further comprising a bottom linkage and a front linkage that are pivotally interconnected to the rear linkage for back and forth movement, the foot support being mounted on or to the bottom linkage in the cantilevered arrangement rearward of the rear linkage.
The front linkage of the four bar linkage is typically connected to an arm that reciprocally rotates together with the back and forth movement of the front linkage, the arm being interconnected to a resistance mechanism.
The resistance mechanism typically comprises a wheel mechanism.
The arm is pivotally interconnected to a link that is pivotally interconnected to the resistance mechanism.
The machine can include a manually graspable input arm pivotably interconnected to the foot support such that the arm pivots forwardly together with forward and upward movement of the foot support and rearwardly together with backward and downward movement of the foot support.
The foot support can be mounted for movement back and forth between a rearward down position and a forward up position.
In another aspect of the invention there is provided an exercise device comprising:
Such a machine can include a pair of left and right manually graspable input arms pivotably interconnected to a respective one of the left and right foot supports such that the left arm pivots forwardly together with forward movement of the left foot support and rearwardly together with backward movement of the left foot support and such that the right arm pivots forwardly together with forward movement of the right foot support and backwardly together with backward movement of the right foot support.
Further in accordance with the invention there is provided an exercise device comprising:
Also in accordance with the invention there is provided a method of performing a back and forth foot motion exercise comprising:
Typically the method includes disposing the foot supports in a cantilevered relationship on the frame linkage assembly.
And, the method can include preselecting one of a plurality of reproducible segments of the arcuate path through which the foot supports are forcibly driven.
The above and further advantages of the invention may be better understood by referring to the following description in conjunction with the accompanying drawings in which:
Generally, the present invention is an exercise apparatus that provides one or more foot supports arranged in a cantilevered fashion on linkages suspended on a frame, the foot supports being movable along an arcuate path and typically defined around a point of rotation. The arcuate path is divisible into a plurality of discrete, reproducible from front to back and back to front, machine defined, user selectable arc segments. The exercise apparatus includes a frame, a frame linkage movably engaged with the frame, one or more foot supports movably engaged with the frame linkage, a bell crank or drive arm connected to the frame linkage for back and forth reciprocal movement along a typically less than 360 degree arc, a resistance mechanism pivotally interconnected to the bell crank or arm via a crank that is typically rotatable 360 degrees and connected to the resistance mechanism for resistance against the rotation. The apparatus preferably includes a tilt mechanism operative to move or tilt the location of the resistance mechanism and the 360 degree rotative crank with respect to the linkage assembly and foot supports.
There is shown in
Foot supports 24a and 24b are sized to receive the foot of a user and are suspended on the frame 20 by a frame linkage assembly for front to back, back to front reciprocal movement under the force of a user's exerting a backwardly or forwardly directed force on the foot supports using the user's leg and hip muscles. The frame linkage assembly comprises forward linkages or legs 26a and 26b, and rear linkages 26c and 26d. Linkages 26a-26d are movably/pivotally connected to the upper support arms 18e, 18f of frame 20 at pivot points 527, 529. The foot supports 24a and 24b are mounted on lower linkages 525a, 525b which are in turn movably/pivotally connected to the frame assembly linkages 26a-26d at pivot points 531, 533, 535, and 537. Collectively, the linkages 26a-d, 525a-b and 18e-f comprise a four bar linkage. Although the device is shown as a four bar linkage with opposing pairs of linkages supporting each foot support, other embodiments are contemplated having fewer or more linkages supporting and controlling the range and path of motion of foot supports 24a and 24b associated with the linkage(s).
The foot supports 24a and 24b approximate a shoed human foot in size and shape. They can include a non-skid surface and be bounded by one or more low lips to help a shoe remain in place on the foot supports during use. Alternately, straps may maintain each foot within the foot support to further retain the user's foot in place during use. However, as used herein, a “foot support” can also encompass any designated support such as a pedal, a pad, a toe clip, or other foot/toe/leg and device interface structure as is known in the art. As shown, the sole receiving surface of the foot supports faces vertically upward and the supports 24a, 24b are mounted on the top surfaces of lower linkages 525a, 525b such that a user must stand on the foot supports in a generally vertically upright disposition and can forcibly move the foot supports together with the frame linkages in a generally horizontal front to rear and rear to front direction by pushing forwardly or pulling backwardly on the foot pedals by use of the user's leg and hip and associated muscles.
The forward linkages or legs 26a and 26b of the linkage assembly are rigidly connected to a bell crank or arm 828a, 828b via a tubular shaft 829 that is rotatably mounted on a bar or tube 831 that is fixedly/rigidly connected to the frame 20. The bell crank 828a, 828b,
As shown in
Monitor 20 may include displays and controls to allow the user to manipulate the intensity of the resistance to create an easier or more difficult exercise routine and to adjust the motion path of the foot supports to one that is more inclined or less inclined.
Although the brake/flywheel assembly 54 is one embodiment, various other braking devices such as known to those skilled in the art can be interconnected to the bell cranks 828a, 828b to inhibit rotation or pivoting thereof. The braking device may include but is not limited to any of the following: friction and air resistance devices such as fans, pneumatic or hydraulic devices, as well as various other types of electromechanical braking devices. This list is by no means exhaustive and represents only a few examples of resistance mechanisms that may be incorporated into the present invention. The configuration disclosed herein, i.e. use of a flywheel assembly 54 with crank arms 40a, 40b is one embodiment.
In operation, a user approaches the device from the rear region 14, grasps the hand grips 100c and 100d, and places a foot on each of the foot supports 24a and 24b. The user's feet and legs begin to move fore and aft in a comfortable stride. The user selects an exercise program or manually adjusts the device by imputing commands via the display/control panel 20. In response to the command input, the resistance to fore and aft movement of the foot supports 24a and 24b can be altered by impeding rotation of the pulleys 34, 42 or the flywheel. Also, in response to command input, the mounting 38 is moved fore or aft. As shown, when the mounting 38 moves forward, the motion path of the foot supports is on a more inclined or vertical defined arc segment. To discontinue use of the device, a user simply stops striding, thereby causing the movement of the device to stop, and dismounts from the foot supports.
The foot supports and the frame linkages are typically mounted/arranged on the frame such that the degree of rotation or pivot of the foot supports 24a, 24b from back to front and front to back along the arcuate path of translation of the foot pedal from front to back and vice versa is less than about 3 degrees, typically less than about 2.5 degrees. The foot pedals have a foot sole receiving upper surface that defines a generally planar orientation or plane in which the sole of the foot of the user is maintained when standing on a foot pedal.
A pair of pivoting upper body input arms 100a, 100b are provided that the user can manually grasp by hand at an upper region such as handles 100c, 100d, the handles being a rigidly connected extension of arms 100a, 100b respectively and moving/pivoting together with the arms forward or backward. The handles 100c, 100d and arms 100a, 100b are pivotably interconnected to the frame and to the pedals. As shown the arms 100a, 100b are pivotably interconnected to the frame 20 via a pivot mount member 104 that is connected to the frame 20, the bottom ends of the arms 100a, 100b being freely pivotably mounted via pin/aperture joints 104a, 104b at their bottom ends. Arm linkage members 102a, 102b, are pivotably attached at one end to the arms at joints 108a, 108b which allow the linkage members to rotate/pivot on and with respect to the arms and pivotably attached at another end to the forward longitudinal four bar linkage members 26a, 26b respectively via joints 110a, 110b that allow the linkage members 26a, 26b to rotate around the axes of the joints.
As shown in
In the
The linkage and foot support assemblies, 24a-b, 26a-d, 18e-f that are pivotably linked via the linkages 102a, 102b to the pivotably mounted arms 100a, b can be configured to enable the foot pedal and the plane in which the sole of the foot is mounted to either not rotate or to rotate/pivot to any desired degree during front to back movement by preselecting the lengths of each and any of the links 26a-d, 18e-f appropriately to cause the desired degree of rotation/pivoting.
In the embodiments shown, the drive linkages 28a and 28b are interconnected to the flywheel 54a at opposing 180 degree circle positions A1, A2 from the center of rotation of the shaft 32 and crank arms 40a, b of flywheel 54a, i.e. the linkages are connected at maximum forward and maximum rearward drive positions respectively. This 180 degree opposing interconnection causes the right 24a and left 24b foot pedals to always travel in opposite back and forth translational directions, i.e. when the right pedal is traveling forward the left pedal is traveling backwards and vice versa. Similarly, the pivotably mounted arms 100a and 100b are interconnected to the flywheel 54a such that when the right arm is moving forward the left arm is moving backward and vice versa. As shown in
In any event, the right side and left side pedals 24a, b and input arms 100a, b are linked to the resistance or drive assembly (in the embodiments shown, the flywheel and associated crank arms) such that when the left side components (i.e. left pedal and associated input arm) are traveling forward the right side components (i.e. right pedal associated input arm) are traveling backward for at least the majority of the travel path and vice versa.
The upper body input arms 100a, b are interconnected or interlinked to the same pivotable mounting member 38 as described above via the links 102a, b, four bar linkage members 26a, b and links 28a, b. In the same manner as forward or backward pivoting of the mounting member 38 changes the degree of incline, height and/or path of travel of foot pedals 24a, b as described above, a forward or backward pivoting of the mounting member 38 also changes the degree of back to front pivoting and/or the degree of path of travel of arms 100a, b. Thus, in the same manner as the user is able to select the degree of incline of the path of travel of the foot pedals, e.g. arc path P1, P2, the user is able to select the degree, length, path of travel of back to front, front to back pivot stroke or travel path of input arms, 100a, b, by adjusting the front to back pivot position of the linkage 102a, b.
As shown, e.g. in
As shown in the
The degree of leverage or cantileverage force exertable by exertion of a downward force DO on the foot supports 24a and 24b around the pivot points 535 can be varied by variably selecting the overall distance D,
Thus, by mounting or connecting the footplates 24a and 24b to the lower bar/linkage such that some portion or all of the length of the footplates extend rearwardly or beyond the position of the lower rear pivot points 535 of the four bar linkage, the user is provided with the ability to exert a lever or cantilever force when pushing downwardly DO,
The precise artistic or identifying shape, contour and visual appearance of the structural and functional components of the apparati depicted in all of the Figures in this application is a matter of visual or source identifying design choice, it being understood that many of said structural components can also serve the mechanical functions as described herein.
This application claims the benefit of priority to U.S. Provisional Application Ser. No. 60/896,570 filed Mar. 23, 2007 and also to U.S. Provisional Application Ser. No. 61/019,691 filed Jan. 8, 2008 pursuant to 35 U.S.C. Secs. 119 and/or 120. This application is also a continuation in part of and claims the benefit of priority under 35 U.S.C. Sections 119 and 120 to U.S. patent application Ser. No. 10/294,017 filed Nov. 13, 2002 which claims priority to Provisional Application No. 60/337,498 filed Nov. 13, 2001. This application is also a continuation in part of and claims the benefit of priority under 35 U.S.C. Sections 119 and 120 to U.S. patent application Ser. No. 10/806,833 filed Mar. 22, 2004 and U.S. patent application Ser. No. 29/276,253 filed Jan. 19, 2007 and U.S. patent application Ser. No. 29/276,249 filed Jan. 19, 2007. The disclosures of all of the foregoing applications are incorporated by reference herein in their entirety as if fully set forth herein. Also incorporated herein by reference in its entirety as if fully set forth herein is Applicant's non-provisional application being concurrently filed this same date entitled Home Arc Exercise Machine. Also incorporated herein by reference in their entireties as if fully set forth herein are the disclosures of published applications having publication numbers 2003-0092532 published May 15, 2003 (corresponding to Ser. No. 10/294,017) and 2004-0224825 published Nov. 11, 2004 (corresponding to Ser. No. 10/806,833).
Number | Date | Country | |
---|---|---|---|
60896570 | Mar 2007 | US | |
61019691 | Jan 2008 | US | |
60337498 | Nov 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10294017 | Nov 2002 | US |
Child | 12053234 | US | |
Parent | 10806833 | Mar 2004 | US |
Child | 10294017 | US | |
Parent | 29276253 | Jan 2007 | US |
Child | 10806833 | US | |
Parent | 29276249 | Jan 2007 | US |
Child | 29276253 | US |