Vertical axis dual vortex downwind inward flow impulse wind turbine

Abstract
A wind-powered turbine has a housing with an inlet and an outlet. Located in the housing is a cylindrical stator array having a plurality of spaced-apart stators located in it. An annular cylindrical rotor array having a plurality of cups rotates about a central axis, fits inside of the stator array. The stators are positioned to cause air which flows around the outer periphery of the stator array to impinge on the rotors and an air handling system causes air entering the housing to be distributed substantially around the periphery of the stator array.
Description
BACKGROUND OF THE INVENTION

The subject invention relates to wind-powered turbines. Wind has been used as a source of power for many years. Windmills historically have been used to grind grain, pump water and provide other forms of mechanical energy. In recent times they have been used to generate electric power. However, windmills typically utilize a blade or air foil which the wind passes over without significantly changing directions.


Water-powered turbines, on the other hand, are often impulse turbines where the direction of the water is significantly changed as it interacts with the turbine blade. A typical example of this is the pelton turbine. However, impulse turbines have not been used to convert wind energy to electric power.


BRIEF SUMMARY OF THE INVENTION

In the subject invention, a wind-powered turbine has a housing with an inlet and an outlet. Mounted in the housing is a plurality of spaced-apart stators that are arranged in a fixed annular cylindrical stator array. A plurality of cupped rotors are arranged in an annular cylindrical rotor array which is rotatable about a central axis and fits inside of the stator array. The stators are positioned to cause air which flows around the outer periphery of the stator array to impinge on the rotors. An air handling system causes air entering the housing to flow around the outer periphery of the stator array.


The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a perspective view of a wind turbine embodying the subject invention.



FIG. 2 is a perspective view of the wind turbine of FIG. 1 with the housing in a different orientation.



FIG. 3 is a cross-sectional view, at an enlarged scale, taken along the lines 3-3 in FIG. 2.



FIG. 4 is a cross-sectional view, at an enlarged scale, taken along the lines 4-4 in FIG. 3.



FIG. 5 is an exploded fragmentary view showing how a rotor is attached to a rotor ring.



FIG. 6 is a cross-sectional view, at an enlarged scale, taken along the lines 6-6 in FIG. 3.



FIG. 7 is an exploded fragmentary view showing how a stator is attached to a stator ring.



FIG. 8 is an exploded view showing portions of the turbine.



FIG. 9 is a cross-sectional view taken on the line 9-9 in FIG. 8.



FIG. 10 is a cross-sectional view taken on the line 10-10 in FIG. 8.



FIG. 11 is a cross-sectional view taken on the line 11-11 in FIG. 2.



FIG. 12 is a perspective view, similar to FIG. 2 of an alternate embodiment of the invention.



FIG. 13 is a cross-sectional view, at an enlarged scale, taken along the lines 13-13 in FIG. 12.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENT

Referring now to FIGS. 1 and 2, a wind-powered turbine 10 comprises a housing 12 with an inlet end 24 containing an inlet 14 and an outlet end 22 containing an outlet 16. In the embodiment illustrated in FIGS. 1-3, the entire inlet end 12a is open to provide the inlet 14, and the entire outlet end 12b is open to provide the outlet 16. The housing 12 is mounted on a turntable 18 which in turn is mounted on top of a tower 20. Referring now also to FIG. 11, the turntable 18 has an outer ring 19 which is attached to the tower 20. The outer ring 20 has a slot 21 formed in its inner periphery. The outer periphery 23 of a cylindrical plate 25 extends into the slot 21. Roller bearings 27 are located between the top, bottom and edge of the plate 25 and the ring 19. Thus, the plate 25 rotates freely and supports the housing against vertical and radial loads. The housing 12 is attached to the plate through struts 29. The struts support the housing 10 sufficiently above the turntable 18 that the turntable has no effect on wind entering the housing. In the embodiment illustrated the struts separate the housing from the turntable by an amount equal to 50% of the height of the inlet 14. The turntable allows complete rotation of the housing 12 so that the inlet can face into the wind. The housing 12 has a larger cross-sectional shape at its outlet end 22 than at its inlet end 24. This causes wind-driven air passing over the housing to accelerate as it moves from the inlet end 24 to the outlet end 22, thereby causing the pressure at the housing outlet 16 to be lower than the pressure at the housing inlet 14. The advantage of this will be more fully explained later. In the embodiment illustrated, the housing is square in cross-section but it could have many other cross-sectional shapes. Preferably the entire housing is symmetrical so that the distance from the inlet end to the outlet end is equal around its entire extent.


Referring now to FIG. 3, a cylindrical turbine assembly 26 is mounted in the housing between the inlet end and the outlet end. The turbine assembly 26, best seen in FIGS. 4, 6 and 8 includes a plurality of stators 28 which are arranged in an annular cylindrical stator array 30. The stator array is divided into a first section 30a and a second section 30b which are separated from one another. The first stator section is located between an annular upper stator ring 32 and an annular middle stator ring 34 and the second stator section is located between the middle stator ring 34 and an annular lower stator ring 36. The outer periphery of the middle stator ring contains a rounded bull nose 37 which projects outwardly from the stators to assist in splitting air entering the turbine assembly 26 between the first and second Sections 30a, 30b. Each stator 28 has a hole 38 extending centrally through it, and a rod 40, which passes through the hole 38, is attached to the upper, middle and lower stator rings. Thus, the rod joins the stators and stator rings into an integral unit. The stators are tear-drop shaped and are symmetrical side to side. They are angled to direct air entering the turbine in the desired manner, as will be explained later. Pins 42 extend between the tops and bottoms of the stators into the stator rings to prevent the stators from rotating on the rods 40, FIG. 7. The number of stators, and thus the spacing between them, is set to cause the air entering the turbine assembly 26 to be distributed relatively equally around the entire outer periphery of the stator array 30.


The turbine assembly 26 also includes a plurality of cupped rotors 50 which are arranged in an annular rotor array 52 which fits immediately inside of the stator array 30. The rotors have an entry end and an opposed exit end such that air passing over each stator impinges on the entry end of an associated rotor, passes along the entire cupped face of the rotor and exits the exit end of this rotor. The cupped shape of the rotors causes air striking them to change direction much as the rotors do in a pelton hydraulic turbine. In the embodiment illustrated, the air exits the rotors at approximately 164 degrees relative where it enters them, but increasing or decreasing this angle may increase the efficiency of the turbine. There is one rotor for each stator and the stators and rotors are positioned such that air directed by each stator impinges substantially on the cupped side of an associated rotor. In the embodiment illustrated the rotors are oriented such that a line A, which connects their tips, extends through the center of the rotor array, FIG. 4. The rotor array also is divided into a first section 52a and a second section 52b, which are separated from one another.


The turbine assembly 26 also includes a plurality of cupped rotors 50 which are arranged in an annular rotor array 52 which fits immediately inside of the stator array 30. The rotor array also is divided into a first section 52a and a second section 52b, which are separated from one another. The cupped shape of the rotors causes air striking them to change direction much as the rotors do in an pelton hydraulic turbine. In the embodiment illustrated, the air exits the rotors at approximately 164 degrees relative to where it enters them, but increasing or decreasing this angle may increase the efficiency of the turbine. Iii the embodiment illustrated the rotors are oriented such that a line A which connects their tips extends through the center of the rotor array, FIG. 4.


The first rotor section 52a is located between an annular upper rotor ring 54 and a cylindrical cross-sectioned rotor plate 56, and the second rotor section 52b is located between the rotor plate 56 and an annular lower rotor ring 58. In the embodiment illustrated, the rotor plate is wider proximate its center than at its periphery to assist in dividing air between the first and second sections 52a, 52b. Each rotor 50 has a hole 60 extending centrally through it, and a rod 62, which passes through the hole 60, is attached to the upper and lower rotor rings and the rotor plate. Thus, the rod joins the rotors, rotor rings and rotor plate into an integral unit. Pins 63 extend between the tops and bottoms of the rotors into the rotor rings and rotor plate to prevent the rotors from rotating on the rods 62, FIG. 5. In the embodiment illustrated there are the same number of rotors as there are stators. An axle 66, which is attached to the center plate 56, extends downwardly out of the housing to a driven device such as a generator, compressor, flywheel, etc. (not shown). The axle 66 is journaled in stabilizer bearings 68 which are mounted in the housing 12. A thrust bearing 70 located on the ground at the bottom of the axle supports it. A pulley 74 located on the axle 66 is connected through a belt 78 to a small alternator 76, which is mounted on the housing. The alternator keeps a battery 80 located in an isolation space 81 between the isolation walls 47 charged. The battery powers a small computer 82 which monitors environmental conditions and shuts the turbine down when conditions, such as high wind or ice, dictate.


A rectangular nozzle 72 located in the inlet end 22 of the housing directs wind-driven air entering the housing onto the turbine assembly 26.


The turbine is initially started with the valves 48 in the draft tubes 44, 46 closed so that no air enters the housing 12 through the inlet 14. As mentioned above, because of the shape of the housing air flowing over it causes the pressure at its outlet 16 to be lower than the pressure at its inlet 14, and also below ambient pressure. When the valves 48 are opened this negative pressure pulls air through the draft tubes. This causes the air to spiral up and out of the first section 52a of the rotor array and into the first section 30a of the stator array, and down and out of the second section 52b of the rotor array and into the second section 30b of the stator array. It also causes air to be pulled into the inlet at a velocity above the ambient wind velocity. Providing the proper number of stators limits the amount of air that can pass between each adjacent pair of stators. This limitation and the alignment of the stators causes the air to enter the stator array 30 around substantially its entire peripheral extent. One function of the draft tubes is to convert into useable power the energy tied up in its high velocity as it leaves the rotors. This is done by gradually reducing the high air velocity at the inlet end of the draft tubes to a lower velocity at the discharge end of the draft tubes. The turbine is shut down by gradually closing the valves 48 in the draft tubes.


When the velocity of the wind entering the housing 12 reaches a certain level, the turbine and/or a device driven by it would rotate at a rate that is above their design limits. When this occurs one of the valves 48 can be closed and air will only enter the turbine through one of the draft tubes 44, 46. Thus the air will impact only one of the turbine sections. This will cause the turbine to operate at a lower speed than it would if air were admitted to both turbine sections and the turbine will provide roughly one-half of the energy. While the same result could be obtained by partially closing both valves 48, placing a partial restriction in the draft tubes would result in an unacceptable level of noise being generated.


The large cross-section area at the housing outlet 16 causes the turntable 18 to rotate such that the inlet 14 always faces into the wind. If the rotational force caused by the turbine assembly 26 causes misalignment of the housing relative to the direction of the wind, there are several ways of compensating for this. Due to the large cross-sectional area at the outlet end 22 of the housing 12, the housing will not pinwheel.


In another embodiment of the invention, shown in FIGS. 12 and 13, the outlet end 22 of the housing 12 extends rearwardly a short distance past where the upper and lower draft tubes 44, 46 come together. In this embodiment the outlet end 22 of the housing 12 is closed with an end plate 84, and the outlet is a series of slots 86 located in the lower wall 88 of the housing 12. The total cross sectional area of the slots 86 needs to be at least as equal as the total cross sectional area of the inlet 14, and preferably is considerably larger. This configuration provides a greater pressure differential between the inlet and outlet than the embodiment illustrated in FIGS. 1-3. As a result, the air enters the stator array 30 more uniformly around its periphery, which creates a higher turbine efficiency.


The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

Claims
  • 1. A wind powered turbine comprising: a. a housing having an inlet and an outlet;b. a plurality of spaced apart stators arranged in a fixed annular cylindrical stator array;c. a plurality of cupped rotors arranged in an annular cylindrical rotor array which is rotatable about a central axis and fits within said stator array;d. said stators being positioned to cause air which flows around an outer periphery of said stator array to impinge on said cupped rotors;e. an air handling system which causes air entering said housing to flow around substantially the entire outer periphery of said stator array; whereinf. there is one rotor for each stator and the stators and rotors are positioned such that substantially all of the air directed by each stator impinges on an associated rotor.
  • 2. The wind powered turbine of claim 1 wherein the rotors have an entry end and an opposed exit end and air passing over each stator impinges on the entry end of an associated rotor, is turned by said rotor and exits the exit end of said rotor in a different direction.
  • 3. A wind powered turbine comprising; a. a housing having an inlet and an outlet;b. a plurality of spaced apart stators arranged in a fixed annular cylindrical stator array;c. a plurality of cupped rotors arranged in an annular cylindrical rotor array which is rotatable about a central axis and fits within said stator array;d. said stators being positioned to cause air which flows around an outer periphery of said stator array to impinge on said cupped rotors;e. an air handling system which causes air entering said housing to flow around substantially the entire outer periphery of said stator array; whereinf. said rotors have an entry end and an opposed exit end and air passing over each stator impinges on the entry end of an associated rotor, is turned by said rotor and exits the exit end of said rotor in a different direction.
RELATED APPLICATIONS

This application is a Continuation of application Ser. No. 12/284,970 Filed Sep. 25, 2008 which is a Continuation-In-Part of application Serial No. 12/214,273, Filed Jun. 16, 2008 which in turn is a Continuation-In-Part of application Ser. No. 11/652,429, Filed Jan. 11, 2007.

US Referenced Citations (119)
Number Name Date Kind
455858 Pepper Jul 1891 A
588572 Hardaway Aug 1897 A
1248305 Gallagher Nov 1917 A
1531015 Maine Mar 1925 A
1595578 Sovereign Aug 1926 A
1619643 Webb Mar 1927 A
1636449 Adams Jul 1927 A
2812823 De Oviedo Nov 1957 A
3938907 Magoveny et al. Feb 1976 A
3994621 Bogie Nov 1976 A
4012163 Baumgartner et al. Mar 1977 A
4039849 Mater et al. Aug 1977 A
4047834 Magoveny et al. Sep 1977 A
4052134 Rumsey Oct 1977 A
4075500 Oman et al. Feb 1978 A
4084918 Pavlecka Apr 1978 A
4115027 Thomas Sep 1978 A
4132499 Igra Jan 1979 A
4142822 Herbert et al. Mar 1979 A
4154556 Webster May 1979 A
4162410 Amick Jul 1979 A
4174923 Williamson Nov 1979 A
4191505 Kaufman Mar 1980 A
4204799 de Geus May 1980 A
4234289 Lebost Nov 1980 A
4260325 Cymara Apr 1981 A
4269563 Sharak et al. May 1981 A
4279569 Harloff Jul 1981 A
4288200 O'Hare Sep 1981 A
4309146 Hein et al. Jan 1982 A
4418880 de Waal Dec 1983 A
4421452 Rougemont Dec 1983 A
4486143 McVey Dec 1984 A
4551631 Trigilio Nov 1985 A
4834610 Bond, III May 1989 A
4857753 Mewburn-Crook et al. Aug 1989 A
4960363 Bergstein Oct 1990 A
5009569 Hector et al. Apr 1991 A
5126584 Ouellet Jun 1992 A
5332354 Lamont Jul 1994 A
5380149 Valsamidis Jan 1995 A
5391926 Staley et al. Feb 1995 A
5447412 Lamont Sep 1995 A
5457346 Blumberg et al. Oct 1995 A
5463257 Yea Oct 1995 A
5664418 Walters Sep 1997 A
5969430 Forrey Oct 1999 A
5982046 Minh Nov 1999 A
6158953 Lamont Dec 2000 A
6309172 Gual Oct 2001 B1
6417578 Chapman et al. Jul 2002 B1
6465899 Roberts Oct 2002 B2
6638005 Holter et al. Oct 2003 B2
6666650 Themel Dec 2003 B1
6740989 Rowe May 2004 B2
6774504 Lagerwey Aug 2004 B1
6790007 Gingras et al. Sep 2004 B2
6841894 Gomez Gomar Jan 2005 B2
6870280 Pechler Mar 2005 B2
6955521 Yang Oct 2005 B2
6981839 Fan Jan 2006 B2
6984899 Rice Jan 2006 B1
7094017 Kurita Aug 2006 B2
7215037 Scalzi May 2007 B2
7230348 Poole Jun 2007 B2
7235893 Platt Jun 2007 B2
7329965 Roberts et al. Feb 2008 B2
7365448 Stephens Apr 2008 B2
7397144 Brostmeyer et al. Jul 2008 B1
7573148 Nica Aug 2009 B2
7591635 Ryu et al. Sep 2009 B2
7605491 Chung Oct 2009 B1
7713020 Davidson et al. May 2010 B2
7726933 Johnson Jun 2010 B2
7816802 Green Oct 2010 B2
7874787 Morris Jan 2011 B2
7880322 Cumings et al. Feb 2011 B2
7946802 Iskrenovic May 2011 B1
7960852 Cumings et al. Jun 2011 B2
7969036 Chung Jun 2011 B2
8262338 Cassidy Sep 2012 B2
20020047071 Illingworth Apr 2002 A1
20020148222 Zaslavsky et al. Oct 2002 A1
20030133782 Holter et al. Jul 2003 A1
20040041407 Pettersen et al. Mar 2004 A1
20040100103 Becherucci et al. May 2004 A1
20040156710 Gaskell Aug 2004 A1
20040183310 Mowll Sep 2004 A1
20050201855 Fan Sep 2005 A1
20060222483 Seiford, Sr. Oct 2006 A1
20060275105 Roberts et al. Dec 2006 A1
20080131273 Fuller Jun 2008 A1
20080232957 Presz et al. Sep 2008 A1
20080317582 Cassidy Dec 2008 A1
20090045632 Krauss Feb 2009 A1
20090087300 Cassidy Apr 2009 A1
20090097964 Presz et al. Apr 2009 A1
20090257862 Presz et al. Oct 2009 A2
20090263232 Jarrah Oct 2009 A1
20100003130 Gual Jan 2010 A1
20100111668 Kapich May 2010 A1
20100119361 Presz et al. May 2010 A1
20100196150 Nica Aug 2010 A1
20100213722 Scott Aug 2010 A1
20100254798 Tutt Oct 2010 A1
20100254799 Caines Oct 2010 A1
20100270802 Presz et al. Oct 2010 A1
20100296913 Lee Nov 2010 A1
20100316493 Presz et al. Dec 2010 A1
20110002781 Presz et al. Jan 2011 A1
20110020107 Presz et al. Jan 2011 A1
20110027067 Kennedy et al. Feb 2011 A1
20110033288 Pezaris Feb 2011 A1
20110058937 Presz et al. Mar 2011 A1
20110103942 Green et al. May 2011 A1
20110135458 Presz et al. Jun 2011 A1
20110135460 Presz et al. Jun 2011 A1
20130113217 Vaz May 2013 A1
20130136576 Wojnar May 2013 A1
Foreign Referenced Citations (4)
Number Date Country
2330700 Jan 2001 CA
3637831 Apr 1987 DE
4317004 Jan 1995 DE
2785336 May 2000 FR
Non-Patent Literature Citations (2)
Entry
http://en.wikipedia.org/wiki/Pelton wheel: Wikipedia, Pelton Wheel, pp. 1-5, printed May 1, 2009.
http://en.wikipedia.org/wiki/Francis turbine, Wikipedia, Francis turbine, pp. 1-3, printed May 31, 2009.
Related Publications (1)
Number Date Country
20130209244 A1 Aug 2013 US
Continuations (1)
Number Date Country
Parent 12284970 Sep 2008 US
Child 13588359 US
Continuation in Parts (2)
Number Date Country
Parent 12214273 Jun 2008 US
Child 12284970 US
Parent 11652429 Jan 2007 US
Child 12214273 US