The present invention relates to a turbine with a vertical axis of rotation and particularly to a wind powered turbine with a built in speed regulator.
Wind-powered turbines conventionally comprise a plurality of sails or blades placed radially around a shaft. The sails or blades are appropriately shaped and positioned relative to an air flow so that, in operation, the force produced by the air flow impacting the turbine causes the shaft to rotate. Historically, this rotational movement was used to grind corn or pump water but it is now commonly used to generate electricity.
Wind powered turbines with a vertical axis provide certain advantages over wind powered turbines with a horizontal axis of rotation. For example, the blades extend horizontally, reducing the need for the rotor to be placed on a tall tower above the ground; the weight of shaft and blades can be evenly applied to the bearings supporting the shaft preventing excess wear at the bottom of horizontal bearings; and in certain embodiments, operation can be independent of the wind direction.
However, as with all wind powered turbines, there is a danger that in high winds the turbine blades may be damaged. Furthermore, it is advantageous for the shaft of a wind powered turbine to rotate at a substantially constant speed, as far as possible, regardless of the strength of the wind. Accordingly, it is an aim of the present invention to provide a mechanism whereby the blades of a wind powered turbine are protected from high winds and further to assist in maintaining the rotation of the turbine shaft at a substantially constant speed, regardless of the strength of the wind.
Accordingly, the present invention provides a turbine comprising: a plurality of turbine blades arranged about a substantially vertical central axis such that they can rotate together about the central axis, each turbine blade having a outer edge and an inner edge and being pivotally mounted near the outer edge about an axis substantially parallel to the central axis; and biasing means which biases the inner edge of each turbine blade towards the central axis, wherein: when the turbine blades are placed in a fluid flow they rotate together about the central axis and, as their speed of rotation increases, they pivot about their mountings against the bias of the biasing means and into a more circumferential orientation about the central axis; and the biasing means further comprises: a mass positioned substantially on the central axis and axially movable with respect thereto and connected with each turbine blade near its inner edge, wherein, as the speed of rotation of the turbine increases and turbine blades pivot about their mountings, the mass is lifted along the central axis.
Preferably, the speed of rotation is reduced as a result of the centre of gravity of the turbine blades moving away from the axis of rotation as they pivot about their mountings. Preferably, the speed of rotation is reduced as a result of the turbine blades moving out of the fluid flow as they pivot about their mountings.
Preferably, the turbine further comprises a shaft positioned along the central axis. Preferably, the mass is in the form of a collar positioned around the main shaft.
Preferably, the turbine further comprising a blade frame on which the turbine blades are mounted, spanning from the central axis. Preferably, each turbine blade comprises a substantially rectangular sheet with a curved profile. Preferably, each turbine blade has a concave face that is roughened or coated with a rough material. Preferably, each turbine blade has additional mass disposed towards its inner edge.
Preferably, the turbine is wind powered. Preferably, the turbine is used to generate electricity.
Specific embodiments of the invention will now be described by way of example with reference to the accompanying drawings in which:
As shown in the Figures, an embodiment of the turbine includes a vertical main shaft 8, supported by a frame 1 via main bearings 2. The shaft 8 is rotatable about its axis. A lower blade support 11A, comprising a metal ring, is attached by a pair of radial arms to the main shaft 8 and a similar upper blade support 11B is attached higher up the main shaft 8. A plurality of turbine blades 6 are disposed between the lower blade support 11A and the upper blade support 11B. The embodiment shown has six turbine blades 6 but any number of blades 6 may be used according to design choice. Each blade comprises a substantially rectangular plate of metal with a curved profile. Each blade is pivotally mounted towards its outer periphery in a bearing 12 positioned towards the outer circumference of the lower blade support 11A and is supported in a substantially vertical position by a corresponding bearing 12 in the upper blade support 11B. Each blade 6 is therefore hinged and can pivot around its mountings between an orientation substantially around a circle centred on the main shaft 8 and an orientation substantially radial to the main shaft 8. Each turbine blade 6 has reinforcement in the form of a vertical strut 7 positioned along its inner edge. The mass of the vertical strut 7 serves to position the centre of gravity of each turbine blade 6 towards the centre of the turbine.
The turbine blades 6 are biased towards a substantially radial orientation by means of a mass 9, in the form of a collar around the vertical shaft 8. The mass 9 is free to move along the axis of the vertical shaft 8. Each turbine blade 6 is coupled to the mass 9 by a link 10 attached towards the inner periphery of the turbine blade 6. Couplings are provided at each end of each link 10 providing two degrees of freedom so as to enable movement of the mass 9 along the axis of the vertical shaft 8 and linked movement of the blades from a substantially circumferential orientation to a substantially radial orientation around the vertical shaft 8. The link 10 may be of fixed length and may include an adjusting means for appropriately adjusting the length of the link 10 prior to use. Alternatively, the link 10 may be in the form of a strong spring.
The turbine is connected via a gearing arrangement 4 to a generator/alternator 3 for generating electricity.
One skilled in the art will quickly conceive of many alternative arrangements that fall within the scope of the present invention. The central portion of the main shaft 8 may be omitted, such that the turbine is held together between the frame 1, with the lower frame support 11A and the upper frame support 11B being held apart by the turbine blades 6. The main shaft 8 might be rigidly fixed to the frame 1 with bearings allowing rotation of the blade supports around the shaft 8. Struts may be disposed between the frame supports towards their outer periphery and rigidly fixed thereto with the turbine blades 6 being attached to the struts by conventional hinges. The turbine blades 6 of the described embodiment have a shallow āCā shaped profile but an āSā shaped profile or any other profile suitable for catching the wind from one direction only may be used. Turbine blades 6 with a flat profile may also be used, preferably in conjunction with appropriate cowling to direct the wind to one side of the blades 6 only. The concave face of the turbine blades 6 may be roughened or coated with a rough material to help catch the wind.
In the absence of a central shaft 8, the mass 9 no longer need be in the shape of a collar, although it is considered advantageous to guide its movement along the central axis of the turbine.
The turbine has uses other than the generation of electricity, although this provides a convenient means for transmission of power. For example, it could be used to drive mechanical machinery directly.
In one embodiment, the turbine may include a braking system (not shown) to slow or stop the rotation of the turbine when desired. This may take the form or a conventional disk break disposed around the main shaft 8.
In use, the turbine is placed in a fluid flow, preferably an air-flow or wind. The turbine blades 6 are preferably shaped such that the direction of the wind is immaterial. Wind impacting a concave surface of the blade will generate a force on the turbine blade tending to push the blade in the direction that the wind is flowing. Wind impacting the convex surface of the turbine blades 6 on the opposite side of the turbine will generate a similar but smaller force. The result will be rotation of the turbine around its central axis. For example, the turbine shown in
As the turbine rotates, the turbine blades tend to spin outwards as a result of the centrifugal forces acting on them and lift the mass 9 up the main shaft 8. This configuration is shown in
One skilled in the art will readily conceive of many alternative embodiments of the invention described above. The present invention includes all such alternatives which fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
04258273 | Nov 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB05/50212 | 11/23/2005 | WO | 00 | 3/25/2008 |