The present invention relates to a vertical-axis wind-powered electric power generator with photovoltaic cogeneration.
Vertical-axis wind-powered generators are generators of small and medium size which have become popular because of their high efficiency and their flexibility in terms of the wind speeds they can handle.
In fact, they can handle wind speeds of up to 200 km/hr without problem. Furthermore, unlike horizontal-axis generators, they need not be pointed into the wind, which can thus arrive from any direction to turn the rotor.
Among the various configurations, one particularly recalls the Darrieus rotor consisting of a pair of flattened, elongated elements that are connected to form a sort of ellipse whose focal points are along a vertical axis which is integral with the rotor of an electric power generator.
Another configuration comprises a rotor made up of two or more flat rectangular surfaces lying side-by-side-along one of their sides and twisted around said side (DE60315367T, GB1518151 and FI823501) to form a helical rotor.
The quantity of air striking the rotor is proportional to its active surface, so it is particularly difficult for weak winds to initiate rotation despite all possible measures taken to reduce friction.
Furthermore, the fact that the quantity of air striking the rotor is proportional to its active surface negatively affects the efficiency of the generator.
The object of the present invention is to provide a vertical-axis wind-powered electric power generator with photovoltaic cogeneration, whose purpose is to overcome said drawback.
The subject of the present invention is a wind-powered system of electric power generation according to claim 1.
According to another aspect of the invention, said device is set up to be partially disassembled and then packed into a standard container for transport to the installation site. Furthermore, the invention comprises special structural features and a kit of equipment that enable the invention to be assembled without the aid of external equipment.
The device can advantageously comprise means of photovoltaic cogeneration of electrical power.
The dependent claims describe the preferred embodiments of the invention and form an integral part of the present description.
Additional characteristics and advantages of the invention will become more apparent from a detailed description of a preferred but not exclusive embodiment of the vertical-axis wind-powered electric power generator. Said description, which is provided merely by way of example and without restricting the scope of the inventive concept, is aided by the attached tables of drawings, in which:
a, 7b and 7c constitute an example of how the disassembled generator is packed into a standard container;
a through 8g show the series of steps involved in the assembly of the wind-powered generator;
Like elements in the above drawings have the same reference numerals.
A generator according to the present invention, comprising a helical rotor 1 and a system of statoric shrouds 2 which in a possible variation are fixed 24 (
The purpose of said system of statoric shrouds is to increase the speed of the air striking the helical rotor.
The system of shrouds, rotor, electric power generator, and all other parts that will be described below are supported by a frame 10.
Besides being connected by a suitable joint to the axis of the electric power generator, the vertical axis of the helical rotor 1 is held in the vertical position by frame 10 employing suitable bushings and/or bearings 101 placed both above and below the helicoid.
An illustrative and not restricted example of an embodiment of the helical rotor 1 comprises two wings 1.1 and 1.2 that at least partially face each other and which twist around each other in a mutually opposing manner to form a spiral in the vertical direction, thus creating a conformation that is substantially of the overturned Bennesh type with a 90° angle of offset between the lower and upper discs.
Said system of shrouds, shown in
To enable the system of shrouds to rotate into the wind, said framework comprises a pair of bushings 231 and 232 which are compatible to the axis of the rotor, so that it can pass through them.
Shroud 21 is shaped in such a way that one of its transverse cross-sections, as shown in
The system of shrouds 2 can be moved either through mechanical means or automatically using a vane.
In another preferred embodiment of the invention, said system of shrouds is fixed and, as shown in
In this preferred embodiment of the invention, the shrouds 2 oriented in this way are able to direct the wind onto the rotor regardless of its direction and are shaped into an airfoil to increase the speed of the air striking the rotor.
The upper part of frame 10 is flat and forms an upper balustrade 11, which comprises possible walkways and on which one or more photovoltaic panels for cogeneration of electric power are preferably mounted. In this way, electric power can be generated not only simultaneously together with wind generation, but also when there is insufficient wind.
The frame 10 forms a tripod or quadruped at the bottom to raise the rotor and thus take better advantage of the wind.
A lower balustrade is located above the feet 12 formed by frame 10.
Both the helicoid comprising the rotor and the shrouds comprising the shroud system can be made of sturdy, light materials such as aluminium, carbon fibre and/or composite materials.
According to another aspect of the invention, said frame is designed to serve a dual purpose:
In this regard, it is worth pointing out that the efficiency of a generation system increases with the size of the generator. Thus, the conception of a generator that optimizes space inside a container is anything but trivial.
For this reason, and with particular reference to
The upper 11 and lower 14 balustrades have a preferable, but not essential, diameter of 3.9 metres. The diameter may vary by several decimetres, and the thickness may be from 40 to 50 centimetres.
In this regard, one can deduce from
The feet 12 of frame 10 preferably have a height of 1.8 metres.
As can be seen in
Assembly is performed, according to
After the shrouds 24 have been mounted, the packing and support elements 30 can be removed. In this example, the shrouds perform not only an aerodynamic function, but also a structural function since they support the upper part of frame 10, the upper balustrade 11 and the photovoltaic panels 5, if installed.
The above method of transport and assembly can be employed in the same way on the first example of the vertical-axis wind-powered generator in which the shroud system 2 can swivel.
As an additional advantage, the invention packed as described is particularly suited for use in places where no electrical power or lifting equipment such as cranes are available, since the invention can be assembled using the kit included with the packed materials.
The specific methods of construction illustrated herein do not limit the substance of this application, which covers all variations of the invention defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
VA2007-A000075 | Oct 2007 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB08/01428 | 6/4/2008 | WO | 00 | 4/7/2010 |