The present disclosure relates generally to a vertical-cavity surface-emitting laser (VCSEL) array and to a VCSEL array with a tilted emitter pattern.
A structured light system may include an emitter array (e.g., a vertical-cavity surface-emitting laser (VCSEL) array), a lens, and a diffractive optical element (DOE). In operation, light emitted by emitters of the emitter array is collimated by the lens, and beams of collimated light (each corresponding to a respective emitter) are directed to the DOE. The DOE distributes the collimated beams of light in order to create a dot projection (e.g., a projection of the collimated beams). More specifically, the DOE diffracts a given beam of light such that diffracted orders of the given beam are transmitted by the DOE at different angles. An angular extent of the diffraction occurs over a range of angles relative to a surface of the DOE referred to as a field of view (FOV). The FOV can be, for example, a 60 degree FOV, a 90 degree FOV, or the like. These differently directed diffracted orders form a dot projection (e.g., that includes tens of thousands of spots) in the FOV.
In some implementations, a VCSEL array includes a semiconductor substrate; a plurality of emitters on the substrate that conforms to an emitter pattern, wherein the emitter pattern is oriented at a non-zero angle to an edge of the substrate, wherein the emitter pattern comprises two or more unit cells arranged to form the emitter pattern, wherein each unit cell, of the two or more unit cells, includes a same number of emitters, and wherein the two or more unit cells are arranged to cause a measurement of misalignment associated with two adjacent unit cells, of the two or more unit cells, to satisfy a misalignment threshold.
In some implementations, a structured light system includes a VCSEL array that comprises: a plurality of emitters that conforms to an emitter pattern, wherein the emitter pattern is oriented at a non-zero angle to a rectilinear axis of a DOE, wherein the emitter pattern comprises two or more unit cells arranged to form the emitter pattern, wherein each unit cell, of the two or more unit cells, includes a same number of emitters, and wherein the two or more unit cells are arranged to cause a measurement of unit cell misalignment associated with two adjacent unit cells, of the two or more unit cells, to satisfy a unit cell misalignment threshold; and the DOE, configured to generate a dot projection from light emitted by the plurality of emitters of the VCSEL array, wherein the dot projection comprises a plurality of tiles.
In some implementations, a structured light system includes a VCSEL array that comprises a plurality of emitters that conforms to an emitter pattern, wherein the emitter pattern is oriented at a non-zero angle to a rectilinear axis of a DOE, wherein the emitter pattern comprises one or more unit cells arranged to form the emitter pattern; and the DOE, configured to generate a dot projection from light emitted by the plurality of emitters of the VCSEL array, wherein the dot projection comprises a plurality of tiles, and wherein the plurality of tiles are arranged to cause a measurement of tile misalignment to satisfy a tile misalignment threshold.
The following detailed description of example implementations refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.
An indirect-time-of-flight (iToF) measurement system may include a structured light device (e.g., that includes an emitter array, such as VCSEL array; a lens; a DOE; and/or the like) for projecting dots onto a target (e.g., a screen, a face, a scene, and/or the like) to allow the iToF measurement system to measure the target. Typically, features of the DOE are formed along rectilinear axes of the DOE that are perpendicular to an optical axis of the lens and/or the DOE. Typically, a VCSEL array of the structured light device includes a plurality of emitters that conforms to an emitter pattern, which is positioned along an optical axis of the lens and/or the DOE of the structured light device. Typically, the emitter pattern is oriented parallel to an edge of a chip of the VCSEL, which is oriented parallel to one of the rectilinear axes of the DOE. This may produce a homogeneous dot projection on the target (e.g., many dots of the dot projection may be vertically or horizontally aligned), which may prevent the iToF measurement system from obtaining an accurate measurement of the target. Moreover, in some cases, the emitter pattern of the VCSEL array may be horizontally or vertically aligned parallel to an edge of a chip of the VCSEL array, which may allow crystal plane defects (e.g., that typically run vertically or horizontally along the chip) of the chip to easily propagate to sets of emitters of the emitter pattern. This may cause some emitters to fail and therefore negatively impact a performance of the VCSEL array.
Some implementations described herein provide a VCSEL array that includes a plurality of emitters that conforms to an emitter pattern that is oriented at a non-zero angle (e.g., between 1 and 45 degrees, between 5 and 20 degrees, and/or between 9 and 13 degrees, among other examples) to a rectilinear axis of an associated DOE and/or to a reference edge of a chip of the VC SEL array (e.g., a semiconductor substrate of the VCSEL on which the plurality of emitters are formed). The emitter pattern may comprise one or more unit cells (e.g., that act as fundamental units of the emitter pattern) that may be arranged to form the emitter pattern (e.g., placed side-by-side in m rows and n columns, where m and n are greater than or equal to 1). Each unit cell, when the emitter pattern comprises two or more unit cells, may include a same number of emitters, and the two or more unit cells may be arranged to minimize an amount of misalignment between adjacent unit cells (e.g., in an x-direction and/or a y-direction).
In some implementations, the DOE may generate a dot projection from light emitted by the plurality of emitters of the VCSEL array. The dot projection may comprise a plurality of tiles, wherein each tile comprises a plurality of dots that conforms to a dot pattern that corresponds to the emitter pattern (e.g., a dot of the dot pattern is respectively associated with an emitter of the emitter pattern). The DOE may be configured such that the plurality of tiles are arranged to minimize an amount of misalignment between adjacent tiles (e.g., in the x-direction and/or the y-direction).
In this way, some implementations described herein allow a DOE to generate an aligned and/or consistently spaced dot projection from light produced by a VCSEL array with an emitter pattern with a non-zero tilt angle (e.g. in relation to a rectilinear axis of the DOE and/or to a reference edge of the VCSEL chip). Accordingly, the dot projection generated in some implementations described herein is more heterogeneous than that produced using a conventional VCSEL array without a non-zero tilt angle (e.g., few dots of the dot projection are vertically or horizontally aligned), which allows an iToF measurement system that includes the VCSEL array and/or the DOE described herein to obtain a more accurate measurement of a target. Moreover, by using an emitter pattern with a non-zero tilt angle (e.g. in relation to a rectilinear axis of the DOE and/or to a reference edge of the VCSEL chip), the emitter pattern is not horizontally or vertically aligned with a reference edge of a chip of the VCSEL array, which reduces a likelihood that crystal plane defects will propagate to sets of emitters of the emitter pattern. Accordingly, this prevents some emitters from failing and therefore improves a performance of the VCSEL array and/or improves a robustness of the VCSEL array.
As shown in
As indicated above,
As indicated above,
However, because of the eleven degree tilt, dots in a middle tile of the example dot projection 300 are not aligned with dots in adjacent tiles of the middle tile. For example, as shown by line 304, dots from tiles that are above and below the middle tile are not aligned with dots from the middle tile. As another example, as shown by line 306, dots from tiles that are to the left and right of the middle tile are not aligned with dots from the middle tile.
Moreover, as shown by arrows 308, dots from an edge of the middle tile may not have a uniform and/or consistent spacing from dots of adjacent tiles.
Accordingly, due to misalignment and spacing issues when using a conventional VCSEL array with a non-zero tilt angle, some implementations described herein provide a VCSEL array with an emitter pattern that has a non-zero tilt and that emits light that can be projected (e.g., by a lens and/or DOE) into an aligned and/or consistently spaced dot projection. Additionally, some implementations described herein provide a method for designing such a VCSEL array with an emitter pattern that has a non-zero tilt.
As indicated above,
In some implementations, a user device may be used to design the emitter pattern. In some implementations, the user device may include a communication device and/or a computing device. For example, the user device may include a wireless communication device, a mobile phone (e.g., a smart phone or a cell phone, among other examples), a laptop computer, a tablet computer, a handheld computer, a desktop computer, or a similar type of device. The user device may include a processor, such as a central processing unit (CPU), a graphics processing unit (GPU), an accelerated processing unit (APU), a microprocessor, a microcontroller, a digital signal processor (DSP), a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), or another type of processing component. The processor may be implemented in hardware, firmware, and/or a combination of hardware and software. The user device may include one or more processors capable of being programmed to perform a function. One or more memories, including a random-access memory (RAM), a read only memory (ROM), and/or another type of dynamic or static storage device (e.g., a flash memory, a magnetic memory, and/or an optical memory) may store information and/or instructions for use by the user device. The user device may include a memory (e.g., a non-transitory computer-readable medium) capable of storing instructions, that when executed, cause the processor to perform one or more processes and/or methods described herein.
In some implementations, the user device may obtain one or more optical requirements (e.g., from a data structure, from information input by a user via a user interface of the user device, and/or the like) for a structured light device. For example, the optical system requirements may include information concerning a target dot projection (e.g., a target dot pattern of each tile that comprises the dot projection, a target number of dots of the dot projection, and/or the like), information concerning a target operating current (Iop), information concerning a target output optical power for the Top (Pop), information concerning a target range for a number of emitters of the VCSEL array, information concerning a target tilt angle range of an emitter pattern of the VCSEL, array information concerning a target chip size (e.g., an active area, one or more dimensions, and/or the like of a chip that includes the VCSEL array), information concerning a target FOV of the DOE (e.g., an angular size of an FOV), information concerning a target aspect ratio of the DOE (e.g., a number of rows and/or columns of an emitter pattern that the DOE optically projects), and/or the like. Accordingly, the user device may adjust, design, and/or the like, parameters associated with an emitter pattern for a VCSEL array, based on one or more of the optical requirements, to provide an optimal configuration of the emitter pattern for the VCSEL array.
In some implementations, the user device may determine (e.g., based on one or more of the optical requirements) an emitter pattern for the VCSEL array, such as hexagonal emitter pattern 402 in
In some implementations, the emitter pattern may be a hexagonal emitter pattern that includes one or more instances of the hexagonal emitter pattern 402 arranged next to each other (e.g. wherein emitters of the one or more instances of the hexagonal emitter pattern 402 are aligned and consistently spaced). Such a hexagonal emitter pattern may provide a compact VCSEL array while maintaining a maximum spacing between emitters of the hexagonal emitter pattern. Additionally, or alternatively, the emitter pattern may conform to another pattern, such as a square pattern, a rectangular pattern, an octagonal pattern, and/or the like.
In some implementations, the user device may determine a unit cell of emitters to be able to determine an emitter pattern of a VCSEL array. A unit cell may include a plurality of emitters wherein placement of an emitter, of the plurality of emitters, in a layout of the unit cell in relation to each of the other emitters, of the plurality of emitters, may be expressed as a combination of a first vector and a second vector. For example,
In some implementations, the user device may determine bounds of a unit cell by identifying a combination of the first vector and the second vector that expresses a difference in placement of emitters that have a same x-coordinate or a same y-coordinate (or some other similar coordinate). For example, as shown in
In some implementations, the user device may determine an emitter pattern of a VCSEL array based on determining a unit cell. For example, the user device may arrange two or more unit cells (e.g., copies of the same unit cell, such that each copy has the same number of emitters, the same layout, the same spacing, and/or the like) to form the emitter pattern so that the unit cells are adjacent to each other (e.g., in rows, columns, and/or the like, such that the copies of the unit cell are placed next to each other, consistently spaced from one another, do not overlap each other, and/or the like). Accordingly, a placement of an emitter in a first unit cell, of the two or more unit cells that form the emitter pattern, in relation to a corresponding emitter of a second unit cell, of the two or more unit cells, may be expressed as a combination of dx and/or dy.
In some implementations an alignment error may be associated with two adjacent unit cells of the emitter pattern. For example, as shown in
In some implementations, the user device may adjust (e.g., in association with determining the unit cell and/or the emitter pattern) the tilt angle of the emitter pattern to minimize the amount of misalignment between adjacent unit cells. For example, the user device may adjust a target tilt angle of 11 degrees (e.g., indicated by the optical requirements obtained by the user device) to a tilt angle of 10.89 degrees to yield a lower amount of misalignment than the amount of misalignment achieved with 11 degrees.
In some implementations, the user device may determine a number of unit cells to arrange along the x-axis and/or the y-axis to form the emitter pattern such that the emitter pattern has an aspect ratio, a number of emitters, and/or the like that satisfy the optical requirements. For example,
In some implementations, the user device selects a number of emitters from the discrete solutions of table 410 based on aspect ratios of the discrete solutions and/or an aspect ratio of an active area size (e.g., a chip size) of the VCSEL array. For example, the optical requirements may indicate an active area size (e.g., a chip size, represented by X×Y) in a range of approximately 500 microns by 500 microns, which corresponds to an aspect ratio (X/Y) of approximately one. Thus, in such an example and as indicated by the oval in FIG. 4C, the user device may select a discrete solution for m=3 and n=5, which yields 210 emitters (e.g., 3×5×14 emitters) and an active area of X=439.9265 microns and Y=423.31948 microns (e.g., such that the aspect ratio X/Y is approximately one). As shown in Table 410, the other shaded solutions yield an active area outside of the range provided by the optical requirements (e.g., X or Y ranges greater than 500 microns). Accordingly, other numbers of emitters and/or active area sizes may lead to vertical and/or horizontal misalignment, gaps of projected dots, and/or overlap of projected dots. In this way, the user device may determine an optimal emitter pattern associated with a target tilt angle that includes a total number of emitters that are within a target range for a number of emitters (e.g., the total number of emitters of the emitter pattern is greater than or equal to a minimum number of emitters and less than or equal to a maximum number of emitters), that conforms to a target aspect ratio, and/or the like, of the structured light device.
In some implementations, the user device may adjust the aspect ratio of the emitter pattern (e.g., an X x Y active area of a VCSEL chip) to address an optical requirement of a lens and/or a DOE of the structured light device. For example, the DOE may have an FOV of 60×78 degrees for a dot projection comprising an aspect ratio of 5×7 tiles and the user device may determine that an optimal chip aspect ratio equals (60/5)/(78/7), or approximately 1.08.
In some implementations, the user device may adjust pitch in the emitter pattern and/or may scale (e.g., stretch or shrink), in the x and/or y direction, the emitter pattern to adjust the emitter pattern to comply with the optimal chip aspect ratio.
As further shown in table 412, this may result in a pitch in the emitter pattern that differs in the x and y directions. (e.g., the pitch in the x direction has one value and the pitch in the y direction has a different value). For example, the length of the a vector may be changed from 28.726 microns to 30.627 microns, and the length of the b vector may be changed from 28.726 microns to 28.941 microns. As additionally shown, the tilt angle associated with the emitter pattern may be adjusted, from 11 degrees to 10.955 degrees, as a result of adjusting the pitch and/or stretching the emitter pattern.
In this way, the user device may iteratively adjust one or more parameters associated with an emitter pattern for a VCSEL array to design an optical emitter pattern for a lens and/or a DOE of a structured light device to emit a dot projection comprising a plurality of tiles, wherein corresponding dots of each tile of the dot projection are aligned and/or consistently spaced.
As indicated above,
Accordingly, each tile of the example dot projection 500 may include a plurality of dots that conforms to a dot pattern (e.g., that corresponds to the emitter pattern 502), wherein each dot of the dot pattern is respectively associated with an emitter of the emitter pattern 502. In some implementations, when a placement of a first emitter in the emitter pattern 502 in relation to a second emitter in the emitter pattern 502 can be expressed as a combination of vectors (e.g., the a and b vectors described herein), a placement of a first dot in the dot pattern (e.g., that corresponds to the first emitter) in relation to a second dot in the dot pattern (e.g., that corresponds to the second emitter) can be expressed as a combination of the same vectors (e.g., the a and b vectors multiplied by respective constants associated with the example dot projection 500).
As further shown in
As indicated above,
As further shown in
As another example, the DOE may perform an optical translation operation of the emitter pattern along a different axis (e.g., they-axis). In such an example, a dot of the first tile 602 may have a same x-coordinate as a corresponding dot in the second tile 604. Additionally, or alternatively, the DOE may perform multiple optical translation operations of the emitter pattern along the x-axis, the y-axis, and/or another axis. For example, the DOE may perform an optical translation operation of the emitter pattern to generate one or more tiles (e.g., wherein each tile conforms to a dot pattern that is an optical projection of the emitter pattern) that are tiled adjacent each other to form a dot projection.
In some implementations, the lens and/or the DOE may be configured to generate a dot projection comprising a plurality of tiles, such that an amount of misalignment between adjacent tiles of the dot projection is minimized. For example, the DOE may cause the plurality of tiles to be arranged to cause a measurement of tile misalignment (e.g., in the x-direction, the y-direction, and/or the like) associated with two adjacent tiles, of the plurality of tiles, to satisfy (e.g., be less than or equal to) a tile misalignment threshold. In some implementations, the tile misalignment threshold may be 1 μm, 3 μm, 10 μm, 20 μm, 50 μm, 100 μm and/or the like. In this way, the DOE may be configured to ensure that dots of the dot projection are aligned and/or consistently spaced. For example, as shown in
As indicated above,
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the implementations to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the implementations. Furthermore, any of the implementations described herein may be combined unless the foregoing disclosure expressly provides a reason that one or more implementations may not be combined.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, etc., depending on the context.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various implementations includes each dependent claim in combination with every other claim in the claim set.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more.” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more.” Furthermore, as used herein, the term “set” is intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, etc.), and may be used interchangeably with “one or more.” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has,” “have,” “having,” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or,” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of”). Further, spatially relative terms, such as “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the apparatus, device, and/or element in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
This application claims priority to U.S. Provisional Patent Application No. 63/041,427, filed on Jun. 19, 2020, and entitled “VERTICAL-CAVITY SURFACE-EMITTING LASER DESIGN FOR DOT PROJECTION,” the content of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63041427 | Jun 2020 | US |