The subject matter disclosed herein relates generally to vertical columns. More particularly, the subject matter relates to vertical columns usable for solar array support structures, and methods of installation and manufacture thereof.
Renewable energy sources are becoming more popular with the rising cost of oil and other non-renewable energy resources. Solar energy is one of the renewable energy sources and has proven desirable to harness. One method of harnessing solar energy is to install a ground-mount structural array of solar panels, or a solar array, such that the solar panels each face the sun to achieve sunlight absorption. Many solar arrays include a combination of columns that extend from the ground, horizontal rails that extend between the columns, and mounting rails or bars that are attachable above the horizontal rails. Solar panels are then attached to the mounting rails with clamps or other fastening methods, such as direct bolting.
With ground-mount solar arrays, vertical piles or columns, for example, ground screws, are often installed into the ground as supports for various structures including but not limited to solar arrays. These vertical columns may need to be installed at precise locations in the ground in order to properly construct the solar array foundations. These vertical columns are typically installed with machinery which drives the vertical columns into the ground. Depending on the location of installation of a solar array structure, the vertical columns may need to be installed where the ground has hard soil, rock, or other qualities that make inserting the vertical columns difficult. These hard materials may need to be broken through or into by vertical columns in order to secure the vertical columns in the ground.
Thus, an improved vertical column that is usable for, for example, solar array support structures, and methods of installation and manufacture thereof, would be well received in the art.
A first aspect relates to a vertical column comprising a column body extending between a first end and a second end and including a main body, a conical portion extending from the main body, and a tip portion extending from the conical portion, a first helical structure extending around at least a portion of the main body, and a second helical structure extending around at least a portion of the tip portion.
A second aspect relates to a method of making a vertical column comprising providing a vertical column comprising a column body extending between a first end and a second end and including a main body, a conical portion extending from the main body, and a tip portion extending from the conical portion, forming a first helical structure around at least a portion of the main body, and attaching a second helical structure around at least a portion of the tip portion.
A third aspect relates to a method of installing a vertical column for a solar array support structure comprising providing a vertical column comprising a column body extending between a first end and a second end and including a main body, a conical portion extending from the main body, and a tip portion extending from the conical portion, and rotating the pile such that the vertical column is inserted into the ground.
A fourth aspect relates to a method of installing a solar array support structure comprising providing at least one vertical column comprising a column body extending between a first end and a second end and including a main body, a conical portion extending from the main body, and a tip portion extending from the conical portion; and securing a solar array support structure on the at least one vertical column.
The subject matter disclosed herein is distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
A detailed description of the hereinafter described embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
With reference to
A portion of the first length 51 of the vertical column 20 is shown including threads located at the first end 21. These threads may be configured to allow for extension of the vertical column 20 after installation into the ground. The extension of the vertical column 20 may be provided by an extender column having internal threads rotated about the first end 21. The threads at the first end 21 may provide for extending the height of the vertical column 20 in an efficient manner after the vertical column 20 has been installed into the ground. The threads at the first end 21 are not required, and the vertical column 21 may not require an extension after installation in other embodiments. For example, the front vertical columns of a solar array (shown in
The vertical column 20 also has a conical portion 27 having a third length 53 extending from the first transition location 28 to a second transition location 22 along the first length. The third length 53 may be, for example, greater than six inches. The third length 53 may be, for example, 11.5 inches, or may be a foot or greater in length. In other embodiments, the third length 53 may be greater than three inches.
The vertical column 20 has a tip portion 23 extending from the conical section. The tip portion 23 has a fourth length 54 extending from the second transition location 22 to the second end 24. The fourth length 54 may be three inches. The fourth length 54 may be more or less than three inches. For example, the fourth length may be three inches to nine inches. The second end 24 may also be referred to as the tip, toe or pile toe. The first end 21 may also be referred to as the head, or pile head.
A first helical structure 30 extends around at least a portion of the main body 29. In the embodiment shown, the first helical structure 30 is a continuous helical coil that extends around a portion of the main body 29. In the embodiment shown, the first helical structure 30 extends from the first transition location 28. In another embodiment, the first helical structure 30 may extend from another location along the main body 29. In yet another embodiment, the first helical structure may extend around the entirety of the main body 29. Still further, the first helical structure 30 may extend from the main body 29 past the first transition location 28 and be located around at least a portion of, or the entire, conical portion 27.
A second helical structure 31 extends around a portion of the tip portion 23. In the embodiment shown, the second helical structure 31 extends towards the second end 24 from the second transition location 22. In another embodiment, the second helical structure 31 may extend from the second end 24 towards the second transition location 22. In yet another embodiment, the second helical structure 31 may extend along the entirety of the tip portion 23. Still further, the second helical structure 31 may extend along the entirety of the tip portion 23 and into at least a portion of the conical portion 27. In the embodiment shown, the second helical structure 31 is a single helicoid flight section. In another embodiment, the second helical structure may have two or more helical flight sections, or may be a continuous helical coil. The vertical column 20 may be manufactured from aluminum, steel, stainless steel, carbon steel, or other like materials that are robust enough to support a solar array support structure 10 (hereinafter described in
With reference to
The second helical structure 31 is located proximate to the second end 24. The second helical structure 31 may be formed from a single circular plate, and may be an individual turn or wrap that is formed into a helix. A front edge 33 of the second helical structure 31 closest to the second end 24 may be three-quarters of an inch from the second end 24. As another example, the front edge 33 of the second helical structure 31 closest to the second end 24 may be an inch from the tip. The front edge 33 of the second helical structure 31 closest to the second end 24 may be more or less than three quarters of an inch to an inch from the second end 24. For example, the front edge 33 may be a half inch to six inches from the second end 24. The front edge 33 may be blunt, or may have an angled cutting edge, similar to the edge of a knife. The front edge 33 may be perpendicular to the axis of the tip portion 23, or may be angled relative to the axis of the tip portion 23. The second helical structure 31 may be a thicker flight relative to the material utilized for the first helical structure 30, as the second helical structure 31 is the leading tip of the insertion of the vertical column 20 into the ground during installation thereof. For example, the second helical structure 31 may be ¼ inches thick, while the first helical structure may be ⅛ inches thick.
The location of the second helical structure 31 proximate to the tip 24 facilitates the insertion and installation of the vertical column 20 into the ground by facilitating insertion into and through the ground and hard materials in the ground such as hard soil, stones, and rocks. The second helical structure 31 has a diameter D1. The diameter D1 of the second helical structure 31 may be equal to the diameter D2 of the main body 29 such that a hole in the ground 200 made by the insertion of the tip portion 23 into the ground is made wide enough by the second helical structure 31 to more easily receive the main body 29 of the vertical column 20. The diameter D1 of the second helical structure 31 is not limited to being equal to the diameter D2 of the main body 29, and could be less or greater than the diameter D2 of the main body 29.
In the embodiment shown, the conical portion 27 does not have a helical structure such as the second helical structure 31 or first helical structure 30, extending around the conical portion 27. The conical portion 27 is tapered such that a first diameter D4 of the conical portion 27 that abuts the second transition location 22 is less than a second diameter D5 of the conical portion 27 abutting the first transition location 28. As shown in
The first helical structure 30 may be formed from a single piece of material, for example, a steel ribbon such as a hardened steel ribbon that is wrapped around the main body 29. The first helical structure 30 may be formed from a hardened steel ribbon that is formed into a helical coil before being attached around the main body 29. The first helical structure 30 has a pitch 60. The pitch is the height of one complete helix turn measured parallel to the axis of the helix. The pitch 60 of the first helical structure 30 may be equal to a pitch 61 of the second helical structure 31. For example, the pitch 60 of the first helical structure 30 and the pitch 61 of the second helical structure 31 may be a half an inch. As another example, the pitch 60 of the first helical structure 30 and the pitch 61 second helical structure 31 may be an inch. In still another exemplary embodiment, the pitches 60, 61 may each be 1.75 inches. As yet another example, the pitch 60 of the first helical structure 30 and the pitch 61 of the second helical structure 31 may be between one inch and three inches. The first helical structure 30 may have a different pitch than the second helical structure 31. For example, the pitch 60 may be less than the pitch 61. For example, the pitch 60 may be half the pitch 61. As another example, the pitch 60 may be 0.75 inches while the pitch 61 may be 1.75 inches. As yet another example, the pitch 60 may be a quarter of the pitch 61. A thickness of the piece of the material from which the first helical structure 30 is made may be equal to a thickness of the circular plate or piece of the material from which the second helical structure 31 is formed.
A method of making a vertical column such as vertical column 20, for a solar support structure may include providing a vertical column comprising a column body extending between a first end, such as first end 21, and a second end, such as second end 24, and including a main body, such as main body 29, a conical portion, such as conical portion 27 extending from the main body, and a tip portion, such as tip portion 23 extending from the conical portion. The method may further include forming a first helical structure, such as continuous helical coil 30, around a portion of the main body, and attaching a second helical structure, such as second helical structure 31 around at least a portion of the tip portion. In one embodiment, the forming a first helical structure around a portion of the main body comprises welding at least one ribbon of material around at least a portion of the main body. The ribbon of the continuous helical coil 30 may be formed around the main body and welded simultaneous to forming the helical structure. Alternatively, the continuous helical coil 30 may be formed into the helical structure prior to welding, the vertical column 20 inserted therein, and the continuous helical coil welded thereto.
In a further embodiment of the method, the forming a first helical structure around at least a portion of the main body and attaching a second helical structure around at least a portion of the tip portion are performed such that a first pitch of the first helical structure is equal to a second pitch of the second helical structure. Alternatively, the method may include forming the first pitch of the first helical pile to be different than the second pitch of the second helical pile. In another embodiment, the method may include providing a circular plate, cutting the circular plate from a location on the outer edge of circular plate to a hole in the center of the circular plate, and bending the cut circular plate into a single helical flight. In another embodiment, the circular plate may be bent into the second helical structure on the tip portion, and welded to the tip portion as the circular plate is being bent into the second helical structure. The method may further include providing a ribbon of material, forming the ribbon of material into the first helical structure, and then attaching the first helical structure to the main body, for example, by welding.
With reference to
The method of installing the vertical column may include providing a vertical column comprising a column body extending between a first end, such as first end 21, and a second end, such as second end 24, and including a main body, such as main body 29, a conical portion, such as conical portion 27 extending from the main body, and a tip portion, such as tip portion 23 extending from the conical portion. The method may further include rotating the vertical column such that the vertical column is inserted into the ground. The method may also include applying a constant downward pressure on the vertical column during the rotating of the vertical column. In one embodiment, the method may include attaching the vertical column to a vertical loader such as vertical loader 100 and applying a constant downward pressure on the vertical column by the vertical loader during the rotating the pile. In other embodiments, the method may include providing a vertical loader vehicle or attachment for a vertical loader vehicle, attaching a vertical column to the end of a boom of the vertical loader vehicle, such as boom arm 103, and rotating the boom arm with hydraulic cylinders, such as hydraulic cylinders 106, 107.
With reference to
In the embodiment shown, a plurality of front vertical columns 20a extend substantially vertically from the ground to a bottom horizontal rail 11b, while a plurality of rear support columns 20b extend substantially vertically from the ground to a top horizontal rail 11a. The top and bottom horizontal rails 11a, 11b may be at respective heights such that when several of the mounting rails 12 are attached thereto, they extend above the ground at a predetermined angle α. The solar array support structure 10 is not limited to the embodiment shown in
A method of installing a solar array support structure may include providing at least one vertical column, such as vertical column 20, wherein the at least one vertical column comprising a column body extending between a first end, such as first end 21, and a second end, such as second end 24, and including a main body, such as main body 29, a conical portion, such as conical portion 27 extending from the main body, and a tip portion, such as tip portion 23 extending from the conical portion, and securing a solar array structure, such as solar array structure 10, on the at least one vertical column.
Elements of the embodiments have been introduced with either the articles “a” or “an.” The articles are intended to mean that there are one or more of the elements. The terms “including” and “having” and their derivatives are intended to be inclusive such that there may be additional elements other than the elements listed. The conjunction “or” when used with a list of at least two terms is intended to mean any term or combination of terms. The terms “first” and “second” are used to distinguish elements and are not used to denote a particular order.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2441109 | Carlson | May 1948 | A |
3011597 | Galloway | Dec 1961 | A |
3011598 | Galloway | Dec 1961 | A |
4061197 | Skidmore, Jr. | Dec 1977 | A |
4803812 | Alexander, Sr. | Feb 1989 | A |
4832304 | Morgulis | May 1989 | A |
5396916 | Boissonnault | Mar 1995 | A |
5906077 | Andiarena | May 1999 | A |
6032880 | Verrills | Mar 2000 | A |
6412235 | Pylant | Jul 2002 | B1 |
6494643 | Thurner | Dec 2002 | B1 |
6702239 | Boucher | Mar 2004 | B2 |
6722821 | Perko | Apr 2004 | B1 |
6814525 | Whitsett | Nov 2004 | B1 |
7007910 | Krinner | Mar 2006 | B1 |
7314335 | Whitsett | Jan 2008 | B2 |
7338232 | Nasr | Mar 2008 | B2 |
7494299 | Whitsett | Feb 2009 | B1 |
7635240 | Gantt, Jr. | Dec 2009 | B2 |
7731454 | Watson, III et al. | Jun 2010 | B1 |
7854451 | Davis, II | Dec 2010 | B2 |
8407949 | Kellner | Apr 2013 | B2 |
9068409 | Mohamed | Jun 2015 | B2 |
10190280 | Fallon | Jan 2019 | B2 |
20010009204 | Stansfield | Jul 2001 | A1 |
20030159839 | Perko | Aug 2003 | A1 |
20040076479 | Camilleri | Apr 2004 | A1 |
20040103599 | Keck | Jun 2004 | A1 |
20040173385 | Carta | Sep 2004 | A1 |
20060086884 | Santos | Apr 2006 | A1 |
20080083172 | Tropiano | Apr 2008 | A1 |
20080157521 | Davis | Jul 2008 | A1 |
20080164451 | Liefke | Jul 2008 | A1 |
20080217599 | Scruggs | Sep 2008 | A1 |
20100054864 | Stroyer | Mar 2010 | A1 |
20100319272 | Kellner | Dec 2010 | A1 |
20110067749 | Zuritis | Mar 2011 | A1 |
20110229272 | Lindsay | Sep 2011 | A1 |
20120073219 | Zuritis | Mar 2012 | A1 |
20120073563 | Zuritis | Mar 2012 | A1 |
20120087740 | Stroyer | Apr 2012 | A1 |
20120090665 | Zuritis | Apr 2012 | A1 |
20120117893 | Thurner | May 2012 | A1 |
20140190093 | Bushore | Jul 2014 | A1 |
20150132068 | Meline | May 2015 | A1 |
20150233075 | Maggio | Aug 2015 | A1 |
20160186403 | Tomchesson | Jun 2016 | A1 |
20170138080 | Cote | May 2017 | A1 |
20170241154 | Faries | Aug 2017 | A1 |
20170247899 | Faries | Aug 2017 | A1 |
20170292289 | Hoye | Oct 2017 | A1 |
20180030681 | Stroyer | Feb 2018 | A1 |
20180258602 | Kemp | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
2007036263 | Apr 2007 | WO |
2018111144 | Jun 2018 | WO |
Entry |
---|
Extended European Search Report in corresponding European Patent Application No. 20173239.3 dated Sep. 29, 2020. 7 pages. |
Number | Date | Country | |
---|---|---|---|
20200358391 A1 | Nov 2020 | US |