The present invention relates to a vertical die casting press of the type disclosed in U.S. Pat. Nos. 5,332,026 and 5,660,223 which issued to the assignee of the present invention, and to other forms of vertical die casting presses or apparatus, such as disclosed in U.S. Pat. Nos. 3,866,666 and 4,799,534. In such a press or apparatus, a frame supports one or more vertical shot cylinders or sleeves, and each sleeve receives a shot piston mounted on a shot piston rod connected to a hydraulic cylinder. The shot sleeve receives a molten die casting metal which is forced upwardly by the shot piston into a die cavity defined between a vertically moveable upper die member and a lower plate or die member. The lower die member defines a gate opening through which the metal within the shot sleeve is forced upwardly into the die cavity to form a die cast part. As shown in the above '026 Patent, after the molten metal has cooled within the die cavity, the upper die member is unclamped and elevated, and the lower die member is shifted laterally or horizontally to a station where the part is removed from the lower die member. The remaining solidified metal or biscuit within the shot sleeve is removed by elevating the shot piston and pressing the biscuit laterally from the shot piston. When multiple shot sleeves are used in the press, the shot sleeves are indexed between a metal receiving station and a metal injection or transfer station, for example, as disclosed in above '223 Patent.
It has been determined that a vertical die casting press may be constructed and used for efficiently and effectively producing an elongated metal part or a high quality fiber reinforced metal part, such as an aluminum or magnesium part having high strength and stiffness where desired, and also a high strength/weight ratio. For example, a C-shaped brake caliper housing for a motor vehicle is commonly produced from cast iron in order to obtain the necessary strength. However, with a die casting press constructed and used in accordance with the present invention, a high quality die cast fiber reinforced aluminum brake caliper housing may be efficiently produced with the necessary strength and stiffness and with the important advantage of a significant reduction in weight. Other high quality fiber reinforced aluminum and magnesium parts and elongated parts may also be efficiently produced with the apparatus and method of the invention.
The present invention is directed to an improved vertical die casting apparatus or press and a method of die casting light weight metal parts, and which is ideally suited for die casting fiber reinforced aluminum and magnesium parts having a high strength/weight ratio and a high stiffness. The press and method of the invention is also effective to produce elongated metal parts and light weight metal parts without the inclusion of solid metal particles and with effective infiltration of porous and fibrous reinforcing preforms within the part.
In accordance with one embodiment of the invention, a vertical die casting press includes a water cooled shot sleeve which receives a vertically moveable water cooled shot piston connected by a piston rod to a hydraulic cylinder. The shot sleeve and shot piston define a shot chamber under a lower gate plate or die member which cooperates with a vertically moveable upper die member to define a die cavity corresponding to the part to be die cast. In one embodiment, the lower gate plate or die member defines a gate opening within a center portion of the shot chamber, and the diameter of the shot sleeve is at least three times the width or diameter of the gate opening, and preferably greater. The lower die member also defines an annular metal entrapment cavity or recess aligned with the inner surface of the shot sleeve, and relatively deep air vent slots extend laterally outwardly from the entrapment recess within the lower mold die member. In another embodiment, the shot sleeve and piston are non-cylindrical or oval, and the lower die member defines a plurality of longitudinally spaced gate openings within a center portion of the shot chamber.
A vertical die casting press of the invention is ideally suited for die casting elongated parts or fiber reinforced aluminum and magnesium parts, and the reinforcing fibers are positioned within the die cavity by a porous preform located within the die cavity where high tensile strength and stiffness is required in the die cast part. After molten metal, such as aluminum or magnesium, is poured or inserted into the shot chamber, and the upper and lower die members are positioned and clamped above the shot sleeve, the molten metal is forced upwardly by the shot piston through the center gate opening and into the die cavity. As the shot piston moves upwardly within the shot sleeve, the pre-solidified metal shell adjacent the shot sleeve collapses, and the upper portion of the shell is forced into the entrapment recess. The displaced air above the molten metal within the shot sleeve flows outwardly through the radial vent slots which are then closed by the collapsing shell of pre-solidified metal. Thus only the highest quality molten metal from the center portion of the shot chamber flows upwardly through the gate opening or openings into the die cavity to infiltrate a porous preform with the reinforcing fibers.
Other features and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.
In accordance with the present invention, a die set 45 is positioned above the shot sleeve 15 and shot piston 18 and includes an upper die member 48 which is supported for vertical movement by the piston rod of a double acting hydraulic clamping cylinder (not shown), as disclosed in the above '026 and '223 Patents. The die set 45 also includes a lower gate plate or die member 52 which may be supported for lateral or horizontal movement by a double acting fluid or air cylinder between a metal injecting position, shown in
The lower die member 52 defines a gate opening 62 which connects the cavity 55 to the shot chamber, and the opening tapers outwardly towards the cavity 55. The inlet of the gate opening 62 is located in the center portion of the shot chamber and has a width or diameter A which is substantially smaller than the diameter B of the inside surface of the shot sleeve 15. Preferably, the area of the gate opening 62 is no greater than 15% of the area of the shot sleeve 15 and shot piston 18. Also, the width or diameter A of the gate opening is preferably less than one third the diameter B. The gate plate or lower die member 52 also defines an annular metal entrapment cavity or recess 65 which extends upwardly into the lower die member from the inner cylindrical surface of the the shot sleeve 15. A series of eight circumferentially spaced and radially extending vent passages or slots 68 are formed within the bottom surface of the lower die member 52 and extend radially outwardly in a spoke-like manner from the metal entrapment recess 65. Each of the vent slots 68 has a depth of about 0.015 inch which is about three times the normal depth of a conventional vent passage commonly located at the parting line or interface between the upper and lower die members.
Referring to
In operation of the vertical die casting press shown in
Due to the water cooled shot sleeve 15 and the water cooled shot piston 18, a “can” of pre-solidified metal forms adjacent the shot sleeve and the shot piston as generally indicated by the dotted line 80. The can includes a cylindrical shell 82 of pre-solidified metal which collapses along the inner cylindrical surface of the shot sleeve 15, and the upper end portion of the collapsing shell 82 is captured in the annular entrapment recess 65 so that the pre-solidified metal does not flow radially inwardly into the gate opening 62 and into the cavity 55. Thus only the highest quality molten metal within the center portion of the shot chamber fills the die cavity 55 and infiltrates the fiber reinforcing preform 58. The small area of the gate opening 62 relative to the area of the shot sleeve 15 with the spacing C being at least equal to the width A of the gate opening 62, also cooperates to prevent pre-solidified metal from entering the gate opening 62.
By eliminating any pre-solidified metal particles within the molten metal flowing into the die cavity 55, the preform 58 and preform inserts 75 are uniformly and effectively infiltrated by the molten metal so that the cast aluminum part or brake caliper housing 60 has a high strength/weight ratio with the infiltrated preform 58 providing the high tensile strength and high stiffness where required in the caliper housing 60. As mentioned above, when the molten metal is moving upwardly with the shot piston 18 within the shot sleeve 15, the air displaced within the shot chamber is free to flow outwardly through the vent slots 68. These vent slots are then closed by the upper end portion of the pre-solidified metal cylindrical shell 82 so that none of the molten metal enters the vent slots 68.
While the use of a press structure as shown in
Referring to
As shown in
The elongated non-circular shot sleeve and piston are ideally suited for producing a die-cast part having a length to width ratio greater than two in order to minimize the weight and volume of solidified metal forming the residue biscuit. The non-circular or elongated shot sleeve and piston also provide for a maximum liquid metal pressure for a given upward shot force on the shot piston from the hydraulic piston rod 24. Thus the non-circular or elongated shot sleeve and piston provide for producing elongated parts more efficiently or more practically.
While the methods and forms of press apparatus herein described constitute a preferred embodiment of the invention, it is to be understood that the invention is not limited to the precise methods and forms of apparatus described, and that changes may be made therein without departing from the scope and spirit of the invention as defined in the appended claims.
This application is a div of Ser. No. 10/274,688 filed on Oct. 21, 2002 and now issued as U.S. Pat. No. 6,745,819 which is a CON of Ser. No. 09/860,088, filed on May 17, 2001 and now issued as U.S. Pat. No. 6,467,528.
Number | Name | Date | Kind |
---|---|---|---|
3866666 | Wunder | Feb 1975 | A |
4799534 | Ueno et al. | Jan 1989 | A |
5332026 | Thieman et al. | Jul 1994 | A |
5660223 | Thieman et al. | Aug 1997 | A |
5730201 | Rollin et al. | Mar 1998 | A |
6745819 | Kamm et al. | Jun 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040216858 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10274688 | Oct 2002 | US |
Child | 10858266 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09860088 | May 2001 | US |
Child | 10274688 | US |