The present disclosure relates to a polymeric container including a vertical displacement container base.
This section provides background information related to the present disclosure, which is not necessarily prior art.
Containers that are blow molded from various thermoplastics, such as polyethylene terephthalate, are used in the packaging industry to distribute food and beverages to consumers. In order to sterilize the internal product and ensure freshness, a process of hot-filling is used, which requires that the product be heated to temperatures from 180° F. to 205° F. prior to filling the container. After filling, the container is capped to integrally seal the container with a closure. After sealing, the container begins to cool resulting in an internal vacuum within the container.
Various methods have been devised to address the internal container vacuum created by the hot-fill process, such as vacuum panels, nitrogen dosing, compressible ribs and the like. One such method of controlling vacuum is by creating container base designs that move inward to reduce the internal container volume thereby lowering internal vacuum. These base designs can be passive or active. A passive base design allows the internal force of the vacuum to create the inward movement of the base panel. Active base designs require the use of an external mechanical force to reposition or displace the base inwardly. Examples of passive and active base designs can be found in the following U.S. patent documents, each of which is assigned to Amcor and is incorporated herein by reference: U.S. Pat. No. 6,942,116 titled “Container Base Structure Responsive to Vacuum Related Forces” (issued on Sep. 13, 2005); U.S. patent application Ser. No. 15/350,558 filed on Nov. 14, 2016 (Publication No. 2017-0096249 published on Apr. 6, 2017) titled “Lightweight Container Base;” and U.S. patent application Ser. No. 15/505,525 filed on Feb. 21, 2017 titled “Container Base Including Hemispherical Actuating Diaphragm.”
Existing active base designs utilize an invertible panel that is substantially horizontal and transversely oriented across the base of the container. This approach allows for internal volume to be displaced through means of a large diameter panel that is inverted a relatively short distance, i.e., a high panel diameter to inversion distance greater than 2:1, such as about 2.3:1. While existing active base designs are suitable for their intended use, they are subject to improvement. The present disclosure advantageously includes a container with an active base having the improvements set forth herein.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present disclosure includes a container including an opening defined by a finish portion. A base is at an end of the container opposite to the opening. The base includes a deep base ring between a standing surface and a truncated cone at a center of the base. The truncated cone is mechanically movable a displacement distance from an as-blown position to a displaced position subsequent to hot-filling and capping of the container to reduce an internal volume of the container. In the displaced position, the truncated cone is closer to the opening than in the as-blown position.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
The container 10 is configured to store any suitable hot-fill material, such as any suitable beverage and/or food product. The container 10 may be of any suitable size, such as, but not limited to, 6, 8, 10, 12, 16, 20 ounces, etc., for example. The container 10 may have any suitable shape, such as, but not limited to, the shape illustrated throughout the figures. The container 10 includes an overall diameter of ØC.
The exemplary container 10 generally has a first end 12 and a second end 14, which is opposite to the first end 12. A longitudinal axis X extends along a length/height of the container 10 along an axial center of the container 10, which is generally cylindrical. At the first end 12 is a finish 20, which defines an opening 22 of the container 10. The finish 20 includes threads 24, or any other suitable configuration suitable for coupling a closure (e.g., cap) to the finish 20 to seal the opening 22 closed. For example, the threads 24 may be external threads as illustrated, or internal threads in some applications.
Below the finish 20 is a flange 26, which is suitable for holding the preform in a blow-molding machine as the container 10 is formed from the preform. The flange 26 is between the finish 20 and a neck 30. A shoulder 32 extends downward from the neck 30, and outward from the longitudinal axis X. The shoulder 32 extends to a body 40 of the container 10. The body 40 includes a cylindrical sidewall 42, which generally extends to a base 60 of the container 10. The sidewall 42 includes a plurality of ribs. The body 40 defines a majority of an internal volume 48 of the container 10 in which the commodity is stored.
With continued reference to
The deep base ring 64 is between the truncated cone 62 and a standing surface 66. The truncated cone 62 is inset from the standing surface 66 (see
The truncated cone 62 is formed in any suitable manner, such as with any suitable blow-mold with a moveable base insert ring, which is used to create the deep based ring 64 surrounding the truncated cone 62. During blow-molding of the container 10 from the preform, a base insert ring component of a blow mold is in a retracted position relative to the rest of the base tooling, which allows plastic material from the preform to flow into the cavity that is created. The base ring component is then moved into the extended position, which stretches and forms the plastic into the final shape of the deep base ring 64 (see the following U.S. patent, which is assigned to Amcor and incorporated herein by reference: U.S. Pat. No. 8,313,686 titled “Flex Ring Base,” issued on Feb. 6, 2009).
After the container 10 is hot-filled and the opening 22 is sealed with any suitable closure, the truncated cone 62 is displaced from the as-blown position A to the retracted position B. The truncated cone 62 is displaced to the retracted position B mechanically using any suitable inversion tool, such as a displacement rod that is actuated with a servomotor, hydraulic cylinder, or pneumatic cylinder. In the displaced, retracted position B, the angle between the inner sidewall 72 and the outer sidewall 74 is any suitable obtuse angle A0 of 143°-184°, such as 163° for example (see
The base 60 advantageously has a low cone diameter Ør to displacement distance d1 of 2:1 or less. For example, the cone diameter Ør to displacement distance d1 can be in the range of 0.2:1 to 2:1, such as about 1:1. The overall container diameter Øc to deep base ring diameter Ør is about 3:1, such as in the range of 2:1-4:1. The container diameter Øc is about three times greater than the displacement distance (or activated depth) d1.
The present disclosure provides numerous advantages over the art. For example, the container 10 having the dimensions and configurations set forth above enables the sidewall 42 and overall material of the container to be made thinner, particularly at the base area 60 (the material of the container 10 has an average material thickness of less than 0.010 inches). This increases the stretch induced crystallinity at the base 60, which is usually an amorphous area due to lower material stretching. The present disclosure allows for more precise control of container volume displacement to create a specific vacuum or pressure level in the container 10, and prevents over pressurization and spilling when the container 10 is opened. Furthermore, the disclosed configuration of the base 60 advantageously increases the force required to revert the truncated cone 62 from the retracted position B to the as-blown position A.
The container 10 advantageously utilizes the centrally located truncated cone 62 that is displaced a relatively long distance d1 compared to the small diameter Ør of the truncated cone 62. Thus the container 10 advantageously accomplishes volume reduction of the internal volume 48 using vertically oriented displacement versus transversely oriented inversion.
An advantage of the small diameter of the truncated cone 62 is that there is a large surface area between the deep base ring 64 and the heal/outer diameter of the container 10. The overall container diameter Øc to the diameter Ør of the deep base ring 64 is about 3:1. This area serves to support the truncated cone 62 when it is in the retracted position (activated/displaced) B so that the truncated cone 62 will not revert if a plurality of the containers are stacked or dropped. The truncated cone is mechanically displaced to the retracted position B after the container has filled and capped. As the container 10 cools, it may be displaced at various points during cooling depending on requirements of the filling line and the amount of pressure or vacuum that is desired in the container 10 at any given point in the process. This repositioning of the base 60 may occur for example in a labeling machine at the same time an external label is applied to the label or at a dedicated station anywhere within the filling and conveying line.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
This application is a continuation of U.S. patent application Ser. No. 17/423,353 filed on Jul. 15, 2021 (U.S. Pat. No. 11,891,227 issued on Feb. 6, 2024), which is the U.S. National Phase Application under 35 U.S.C. 371 of International Application No. PCT/US2019/013646 filed on Jan. 15, 2019. The entire disclosures of the above applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17423353 | Jul 2021 | US |
Child | 18430726 | US |