The present invention relates to wireless base station antennas systems and, more particularly, relates to an antenna using a beam steering circuit including a variable power divider and a multi-beam beam forming network to implement vertical electrical downtilt and sidelobe reduction. The antenna, which may be a dual-polarization antenna, may also include a power distribution network that implements beam tilt bias and further sidelobe reduction.
The market for wireless base station antennas is highly price and performance competitive. For this reason, it is advantageous to develop antennas having functions that are suitable for use as wireless base station antennas, and that exhibit desirable initial and lifetime cost characteristics. At the same time, it is also desirable to outfit the antennas with a significant range of operational flexibility, so that a standard antenna design may be used for a wide range of potential antenna sites and feature preferences. Meeting these often conflicting design objectives is a continuing challenge for the designers of wireless base station antennas.
In particular, adjustable downtilt and sidelobe minimization are desirable characteristics for a wireless base station antenna. Conventional methods for implementing adjustable downtilt have included mechanical downtilt systems that rely on manual or motorized bracket adjustment. Alternatively, conventional electrical downtilt systems typically rely on multiple beam steering phase shifters. These techniques are relatively expensive to implement. In addition, sidelobe minimization has conventionally been accomplished through relatively complicated antenna element spacing, power distribution, and phase control schemes. These techniques are also relatively expensive to implement.
Accordingly, there is an ongoing need for more cost effective systems for implementing beam tilt and sidelobe minimization for wireless base station antennas.
The present invention meets the needs described above in an antenna suitable for use as a wireless base station antenna that implements vertical electrical downtilt and sidelobe minimization. The antenna includes a multiple element array and a beam steering circuit including a variable power divider and a multi-beam beam forming network. The antenna also includes a power distribution network connecting the outputs of the beam steering circuit to the individual elements of the antenna array. The variable power divider may employ a single adjustable control element to divide an input voltage signal into a pair of complimentary amplitude voltage drive signals over a range of voltage amplitude division. In addition, the voltage drive signals may exhibit matched phase and constant phase delay through the variable power divider over the range of voltage amplitude division. This configuration produces voltage drive signals for controlling the electrical tilt without the need for multiple phase shifters or mechanical bracket adjustment systems.
The voltage drive signals are used as input signals for the multi-beam beam forming network, which produces a number of beam driving signals that each typically include a beam component associated with each voltage drive signal. Each beam driving signal, in turn, drives a sub-array including one or more antenna elements. As a result, the beam emitted from the antenna is a composite beam that exhibits a directional tilt that varies within a range of tilt in response to changes of the voltage amplitude division within the range of voltage amplitude division. This type of composite beam, which varies in direction in response to changing weighting of multiple component beams, exhibits lower sidelobes than a single-component beam steered though conventional phase control having the same number of adjustable control elements.
The antenna includes an array of antenna elements, which are typically spaced apart in a vertical column and organized into one or more inner sub-arrays located between outer sub-arrays. In addition, the number of antenna elements in the outer sub-arrays may be greater than the number of antenna elements in the inner sub-arrays for the purpose of reducing sidelobe emission. The power distribution network may also be configured to implement coordinated phase shifting of the beam driving signals delivered to the elements of one or more sub-arrays to cause a desired blurring of the phase matching of the signals emitted by antenna elements of the sub-array for the purpose of reducing sidelobe emission.
In addition, the beam forming networks may be implemented as double-sided, edge-connected modules mounted to a main panel, which carries the variable power divider, the power distribution network, and the antenna elements. This configuration produces a number cost and flexibility advantages associated with the modular double-sided, edge-connected construction technique. The various features described above may be included in different combinations and permutations to provide antennas with features and advantages that are suitable for a range of applications and feature preferences.
Generally described, the present invention may be implemented as an antenna system including an array of antenna elements defining a boresight direction. The antenna may include a variable power divider using a single adjustable control element to divide an input voltage signal into a pair of complimentary amplitude voltage drive signals over a range of voltage amplitude division. The voltage drive signals, which may exhibit matched phase and constant phase delay through the variable power divider over the range of voltage amplitude division, feed a beam forming network that produces a number of beam driving signals that typically include a beam component associated with each voltage drive signal. A power distribution network delivers each beam driving signal to one or more associated antenna elements, such that the beam driving signals drive the antenna elements to emit a beam exhibiting a directional tilt with respect to the boresight direction that varies within a range of tilt in response to changes of the voltage amplitude division.
The antenna may also include a number of additional features, such as a field adjustable tilt direction actuator for adjusting the voltage amplitude division and thereby adjusting the directional tilt of the beam. The antenna may also include a power distribution network that implements coordinated phase shifting of the beam driving signals delivered to the antenna elements to cause a desired tilt bias for the range of tilt. The antenna may also include a field adjustable tilt bias actuator for adjusting the tilt bias, and a remote controller for controlling the field adjustable tilt direction actuator and/or the field adjustable tilt bias actuator.
The antenna elements are typically organized into one or more inner sub-arrays located between outer sub-arrays, and each beam driving signal drives an associated antenna sub-array. The number of antenna elements in the outer sub-arrays may be greater than the number of antenna elements in the inner sub-arrays for the purpose of reducing sidelobe emission. In a particular configuration, the number of outer sub-arrays may be two, the number of inner sub-arrays may be two, the number of antenna elements in each outer sub-array may be four, and the number of antenna elements in each inner sub-array may be two. In another particular configuration, the number of outer sub-arrays may be two, the number of inner sub-arrays may be two, the number of antenna elements in each outer sub-array may be five, and the number of antenna elements in each inner sub-array may be three.
In yet another particular configuration, the power distribution network implements coordinated phase shifting of the beam driving signals delivered to the elements of one or more sub-arrays to cause a desired blurring of the phase matching of the signals emitted by the sub-array for the purpose of reducing sidelobe emission. In this alternative, the number of outer sub-arrays may be two, the number of inner sub-arrays may be two, the number of antenna elements in each outer sub-array may be four, and the number of antenna elements in each inner sub-array may be four. Alternatively, the number of antenna elements in each outer sub-array may be three, and the number of antenna elements in each inner sub-array may be three.
The beam forming network is typically implemented as a two-by-four orthogonal beam forming network or as a four-by-four Butler matrix. In addition, each antenna element may be a dual-polarization antenna element, and the antenna system may include a similar variable power divider, beam forming network, and power distribution network for each polarization. In this case, the field adjustable tilt direction actuators may be mechanically linked to each other to adjust the beam tilt for both polarities in a coordinated manner. In addition, the power distribution network may implement coordinated phase shifting of the beam driving signals delivered to the sub-arrays to cause a desired tilt bias of the range of tilt for each polarization. In this case, the antenna system may also include a field adjustable tilt bias actuator for adjusting the tilt bias for both polarizations in a coordinated manner.
The antenna typically includes a substantially flat panel defining a longitudinal axis substantially perpendicular to the boresight direction. In addition, the panel supports the array of antenna elements in a spacing configuration having a substantially vertical distribution, and the array is divided into one or more inner sub-arrays located vertically between outer sub-arrays. The beam forming network may also be configured as a double-sided, edge-connected module mounted to the main panel.
The preceding design components may combined to create a number of different of vertical electrical downtilt antennas with different features suitable for a range of wireless base station applications and feature preferences. It should be understood that the features described above may be implemented in different combinations and permutations suitable for particular applications. That is, the present invention contemplates providing a number of antenna features that may be mixed and matched on as as-needed basis to provide cost effective alternatives for a wide range of applications and feature preferences. Therefore, the invention is not limited to any particular combination of features.
In view of the foregoing, it will be appreciated that the present invention avoids the drawbacks of prior methods for implementing antenna downtilt and sidelobe reduction. The specific techniques and structures for implementing antenna downtilt and sidelobe reduction, and thereby accomplishing the advantages described above, will become apparent from the following detailed description of the embodiments and the appended drawings and claims.
The present invention may be embodied in a number of antenna features for implementing vertical electrical downtilt and sidelobe reduction for wireless base station antenna systems. Although these antenna systems are specifically designed for deployment as wireless base station antennas, the various features of the invention may be used in other applications, such as satellite communication systems, military radar, military communication systems, and any other beam steering application. However, these applications may exhibit different cost and performance considerations that may militate in favor of different, and potentially more sophisticated, beam steering and sidelobe reduction approaches. In addition, many additional antenna features may be implemented in connection with the antenna features described below. However, each of these modifications might add cost and complexity to the system. Therefore, it should also be appreciated that the preferred embodiments described below are presently believed to embody the most technically and economically feasible vertical electrical downtilt antennas for many wireless base station applications.
In particular, the specific antenna embodiments descried below are dual-polarization panel antennas having a single vertical column of antenna elements. For this configuration, the beam tilting equipment effects variable beam downtilt with a downward tilt bias, which is desirable for most wireless base station applications. However, the tilt orientation could be readily modified to azimuth or any other desired tilt plane. In addition, the antenna elements need not be dual-polarization, and need not be organized into a single vertical column. For example, the antenna element spacing configuration could include multiple vertical columns, one or more rows, or any other spacing desired alternative. Again, however, a panel antenna having a single vertical column of dual-polarization antenna elements is presently considered to be the most technically and economically feasible alternative for vertical electrical downtilt antennas for wireless base station applications.
The specific antenna embodiments descried below also include advantageous design features implemented within the variable power divider, the beam forming network, and the power distribution network. These design features may be provided in various combinations and permutations to suit particular applications and feature preferences. Therefore, the invention should not be limited to any particular combination of features except as stated in the claims.
Turning now to the figures, in which like numerals refer to similar elements throughout the several figures,
From the horizontal boresight direction 15, some mechanism is typically provided to direct the beam 12 downward toward the horizon. It is also desirable to have adjustable beam downtilt so that the beam can be pointed toward a desired geographical coverage area where the beam will be received with appropriate strength and to discriminate against the transmission of signals to areas generally beyond the geographical coverage area. The antenna 10 is reciprocal and the properties of the antenna in a reception mode of operation are the same as for a transmission mode at each frequency in the operational band of frequencies. The antenna 10 is configured to implement adjustable beam downtilt within a range ⊖r that extends between two boundary beam pointing directions, ⊖1 and ⊖2. The tilt range range ⊖r is also typically biased downward from the boresight direction. For example, the upper tilt boundary is typically set toward or just below horizontal, and the tilt range ⊖r typically extends to about five degrees downward. For example, tilt ranges from one to five degrees from horizontal, and from two to seven degrees from horizontal are typical for antenna arrays having twelve or more radiating elements. However, the selection of the tilt bias and tilt range is a design choice that may be changed from application to application.
In addition, the tilt bias may be fixed or adjustable.
Referring again to
The variable power divider 30 receives and divides a voltage signal 32 into two voltage drive signals V1 and V2. The voltage signal 32 typically contains encoded mobile communications data and is provided through a coaxial cable that attaches to a connector on the antenna 10, as is well known in the art.
More specifically, the amplitudes of sum of V1 and V2 sum to the amplitude input voltage signal 32, and vary inversely with each other as the power is divided between them. In particular, the power division ranges from 100% to V1 and zero to V2 when the adjustable control element 34 is in the position labeled “B” on
In addition to having complimentary amplitude, the voltage drive signals V1 and V2 exhibit matched phase (i.e., they continuously have substantially the same phase) and substantially constant phase delay through the variable power divider 30. In other words, the phase characteristics of the voltage drive signals V1 and V2 with respect to each other, and with respect to the input voltage signal 32, remains substantially constant as the power division varies through the range of power division. An actuator 36, such as a control knob or motor, is used to move the adjustable control element 34, which in turn causes adjustment of the beam tilt. This is illustrated in
Referring again to
It should be appreciated that the number of outputs of the beam forming network 40 typically corresponds to the number of antenna sub-arrays, and may therefore be altered in accordance with the needs of a particular application. Although antennas with four and eight sub-arrays are common, other configurations, such as three, five and six sub-arrays are also typical. Of course, any desired number of sub-arrays and a wide variety of beam forming networks may be accommodated.
It is presently believed that a seven-layer modular PC board construction works best for the beam forming network modules 40. This configuration includes a multi-layer, double-sided stripline module having a first outer ground plane layer, followed by a dielectric layer, followed by a first stripline circuit layer, followed by a dielectric layer, followed by a center ground plane layer, followed by a dielectric layer, followed by a second stripline circuit layer, followed by a dielectric layer, followed by a second outer ground plane layer. That is, the preferred board configuration includes the structure illustrated in
The beam forming network 40 of this particular antenna 10 outputs four beam driving signals 42 that each include a component from each of the voltage drive signals V1 and V2. Each beam driving signal, in turn, feeds one sub-array of the antenna array 50. The power distribution network 60 connects the output ports of the beam forming network 40 to the antenna elements of the antenna array 50.
The antenna array 50 includes a vertical column of dual-polarization antenna elements, as shown in
The power distribution network 60 is typically configured as microstrip transmission media segments etched onto a dielectric PC board substrate. The beam forming network 40 drives two component beams “B” and “C” which vary in power with the voltage power division. That is, the component beam “B” corresponds to the voltage drive signal V1 and the component beam “C” corresponds to the voltage drive signal V2. Therefore, beam “B” is emitted when the voltage drive signal V1 receives 100% of the power (i.e., corresponding to wiper arm position “B” shown on
In view of the preceding, it should be understood that increasing the number of antenna sub-arrays and increasing the spacing between the antenna elements and/or the sub-arrays are generally effective at producing further sidelobe reduction. However, the cost associated with these design changes must be weighed against the additional benefit to be obtained. It should also be appreciated that providing a relatively small antenna array emitting a composite beam, as taught in this specification, is generally a more cost effective method of implementing side lobe reduction than conventional methods applied to single-component beams, such as increasing the antenna element spacing and deploying multiple columns of antenna elements, which results in a larger antenna array. It should also be appreciated that providing a range of downtilt that spans an extent that is approximately equal to one half-power beam width of the antenna using one control device is advantageous in simplicity and cost.
Still referring to
A common actuator 46 may be used to drive the adjustable tilt bias phase shifters 44 in a coordinated manner. For example, a toothed rack may drive common pinion gears that, in turn, drive similar extension arms of trombone-type or wiper-type microstrip or other suitable phase shifters. The actuator may be manual, such as a knob, or motorized, and may be controlled locally or remotely, as shown on
In addition, one or more of the sub-arrays may include one or more antenna element phase shifters 45 to slightly alter the phase signal delivered to the elements of the sub-array. That is, an individual phase shifter is typically located within the transmission media trace feeding an associated antenna element. These phase shifters are designed to slightly mismatch or “blur” the phase matching of the signals emitted by antenna elements of the associated sub-arrays for the purpose of reducing sidelobe emission. In particular, the phase matching of the signals emitted by outer sub-arrays may be blurred a bit more severely than the signals emitted by the inner sub-arrays for the purpose of further reducing sidelobe emission.
The antenna element phase shifters 45 are typically implemented through transmission segment length adjustment. However, other types of phase shifters may be used. In particular, phase shifters implemented through transmission segment length adjustment impose fixed phase shifts. Alternatively, adjustable antenna element phase shifters may be used, which may be locally or remotely controlled. However, cost considerations may favor implementing the antenna element phase shifters 45 through fixed length transmission segment adjustments.
The antenna 80 includes two mounting brackets 88A-B, two coaxial cable antenna interface connectors 90A-B, and an actuator knob assembly 92 that connect to the rear side of the backplane 84. The coaxial cable connectors 90A-B receive coaxial cables supplying two input voltage signals 32 (shown on
The dielectric material of the main panel 96 may be PTFE Teflon®, a laminate impregnated with glass fibers, having a dielectric constant equal to 2.2 (∈r=2.2). This material can be used to construct PC boards that will exhibit an effective dielectric constant of 1.85 (∈reff=1.85) for microstrip transmission media segments exposed to the PC board on one side and exposed to air on the other side. For this type of PC board circuit, the wavelength in the guide (λg) (i.e., the wavelength as propagating in the microstrip transmission media as laid out on the PC board with one side exposed to the dielectric substrate and the other side exposed to air) is approximately 4.52 inches [11.48 cm].
Referring to
In addition, for embodiments including variable tilt bias, a rack and pinion drive system with a separate motor is typically attached to the rear side of the backplane 84. As noted previously, the tilt bias phase shifters may be implemented as gear-driven, trombone-type or wiper-type phase shifters, which are distributed in two rows (one for each polarization) along the main panel 96. In addition, a single toothed rack moved by a single knob or motor driven gear can typically be used to turn all of the tilt bias phase shifters in a coordinated manner so that all of the antenna elements for both polarizations are tilt biased in a coordinated manner.
Although this particular antenna does not include the variable tilt bias feature, it is configured to implement a downtilt bias of approximately 4.5 degrees with a tilt range from two to seven degrees. This is accomplished by varying the lengths of the transmission media trace legs to the antenna element of the sub-arrays using a center pivot method. Specifically, the trace length adjustments from the nominal in-phase length can be expressed in terms the wavelength in the guide λg (in this particular embodiment about 4.52 inches [11.48 cm]) as follows:
First (top) sub-array trace length adjustment=108.337 degrees;
Second sub-array trace length adjustment=36.112 degrees;
Third sub-array trace length adjustment=−36.112 degrees; and
Fourth (bottom) sub-array trace length adjustment=−108.337 degrees.
In addition, this particular antenna is configured to implement phase blurring as described with reference to FIG.3 as follows:
first (top) sub-array, first (top) element trace length adjustment=30 degrees
first sub-array, second element trace length adjustment=0 degrees
first sub-array, third element trace length adjustment=−30 degrees
second sub-array, first element trace length adjustment=15 degrees
second sub-array, second element trace length adjustment=0 degrees
second sub-array, third element trace length adjustment=−15 degrees
third sub-array, first element trace length adjustment=15 degrees
third sub-array, second element trace length adjustment=0 degrees
third sub-array, third element trace length adjustment=−15 degrees
fourth (bottom) sub-array, first element trace length adjustment=30 degrees
fourth sub-array, second element trace length adjustment=0 degrees
fourth sub-array, third element trace length adjustment=−30 degrees
An alternative tilt bias and element phase shift for this antenna is as follows:
First (top) sub-array trace length adjustment=101.25 degrees;
Second sub-array trace length adjustment=33.75 degrees;
Third sub-array trace length adjustment=−33.75 degrees; and
Fourth sub-array trace length adjustment=−101.25 degrees.
first (top) sub-array, first (top) element trace length adjustment=33.75 degrees
first sub-array, second element trace length adjustment=0 degrees
first sub-array, third (bottom) element trace length adjustment=−33.75 degrees
second sub-array, first element trace length adjustment=16.875 degrees
second sub-array, second element trace length adjustment=0 degrees
second sub-array, third element trace length adjustment=−16.875 degrees
third sub-array, first element trace length adjustment=16.875 degrees
third sub-array, second element trace length adjustment=0 degrees
third sub-array, third element trace length adjustment=−16.875 degrees
fourth sub-array, first element trace length adjustment=33.75 degrees
fourth sub-array, second element trace length adjustment=0 degrees
fourth sub-array, third element trace length adjustment=−33.75 degrees
For a sixteen element array with similar element spacing, a 3 degree tilt bias with phase blurring can be implemented is as follows:
First (top) sub-array trace length adjustment=122.062 degrees;
Second sub-array trace length adjustment=34.87 degrees;
Third sub-array trace length adjustment=−34.87 degrees; and
Fourth (bottom) sub-array trace length adjustment=−122.062 degrees.
first (top) sub-array, first (top) element trace length adjustment=67.5 degrees
first sub-array, second element trace length adjustment=22.5 degrees
first sub-array, third element trace length adjustment=−22.5 degrees
first sub-array, fourth (bottom) element trace length adjustment=−67.5 degrees
second sub-array, first element trace length adjustment=16.875 degrees
second sub-array, second element trace length adjustment=5.635 degrees
second sub-array, third element trace length adjustment=−5.625 degrees
second sub-array, fourth element trace length adjustment=−16.875 degrees
third sub-array, first element trace length adjustment=16.875 degrees
third sub-array, second element trace length adjustment=5.625 degrees
third sub-array, third element trace length adjustment=−5.625 degrees
third sub-array, fourth element trace length adjustment=−16.875 degrees
fourth (bottom) sub-array, first element trace length adjustment=67.5 degrees
fourth sub-array, second element trace length adjustment=22.5 degrees
fourth sub-array, third element trace length adjustment=−22.5 degrees
fourth sub-array, fourth element trace length adjustment=−67.5 degrees
In view of the foregoing, it will be appreciated that present invention provides significant improvements for implementing vertical electrical downtilt and sidelobe reduction for wireless base station antennas. It should be understood that the foregoing relates only to the exemplary embodiments of the present invention, and that numerous changes may be made therein without departing from the spirit and scope of the invention as defined by the following claims.
This application incorporated by reference the disclosures of commonly owned U.S. patent application Ser. No. 10/290,838 entitled “Variable Power Divider” filed on Nov. 8, 2002; U.S. patent application Ser. No. 10/226,641 entitled “Microstrip Phase Shifter” filed on Aug. 23, 2002; and U.S. patent application Ser. No. ______ entitled “Double-Sided, Edge-Mounted Stripline Signal Processing Modules And Modular Network” filed on Jul. 18, 2003.