The disclosure generally relates to the field of valves. Particular embodiments relate to shut-off valves.
A variety of applications require the ability to rapidly fill a container with a fluid. To accomplish this rapid filling, the fluid is typically pumped (under pressure) into the container. Due to this rapid filling, such applications typically include means for quickly shutting off the flow of fluid when the container reaches a predetermined level of fluid held therein so as to prevent overfilling and/or spillage of the fluid. Such means including, but not limited to, float valves.
Many such containers, for instance locomotive fuel tanks, include internal baffles for preventing fuel from sloshing back and forth due to the motion of the locomotive. The position and orientation of these baffles within a fuel tank can cause great difficulty in the installation and operation of float valves, in that float valves typically have an arm which extends from the valve, a float being located or attached to the arm. If this arm, or the float attached there-to, contacts an internal baffle, the operation of the float valve can be compromised, leading to failure of the float valve to correctly close.
Several exemplary float valves are described herein.
An exemplary float valve comprises a float valve having a body housing and a float. The float for opening and closing the float valve. The float connects with the body housing via a four bar linkage. The float valve has an open position where fluid may flow from a fluid source, through the body housing and into a container. The float valve has a closed position where fluid is prevented from flowing through the body housing. The open and closed positions controlled by the raising and lowering of the float.
Another exemplary float valve comprises a valve assembly for use in a fluid reservoir. The valve assembly comprising a body housing, a first parallel link assembly, a second parallel link assembly and a float arm assembly. The body housing comprising a valve chamber with an inlet and an outlet. The outlet comprising a valve sealing device. The body housing comprising a valve closure element positioned in the valve chamber and normally held in closed relationship to the valve sealing device via a biasing means. The valve closure element movable into and out of fluid sealing engagement with the valve sealing device. The first parallel link assembly comprising a first end and a second end defining a longitudinal axis. The first parallel link assembly first end pivotally connected to the body housing adjacent the outlet at a first pivotal connector. The first parallel link assembly second end pivotally connected to the float arm assembly at a second pivotal connector. The second parallel link assembly comprising a first end and a second end defining a longitudinal axis. The second parallel link assembly first end pivotally connected to the body housing at a third pivotal connector. The second parallel link assembly second end pivotally connected to the float arm assembly at a fourth pivotal connector. The float arm assembly positionable within the fluid reservoir to respond to a fluid level therein. The second parallel link assembly longitudinal axis is parallel to the first parallel link assembly longitudinal axis. The first pivotal connector and the third pivotal connector define a housing connector axis there-between. The second pivotal connector and the fourth pivotal connector define a float connector axis there-between. The housing connector axis is parallel to the float connector axis.
Another exemplary float valve comprises a valve assembly for use in a fluid reservoir. The valve assembly comprising a body housing, a first parallel link assembly, a second parallel link assembly and a float arm assembly. The body housing comprising a valve chamber with an inlet and an outlet. The outlet defining a seat. The body housing comprising a piston positioned in the valve chamber. The piston comprising a sealing means for sealing engagement to the seat. The sealing means normally held in closed relationship to the seat via a spring. The sealing means movable into and out of fluid sealing engagement with the seat. The first parallel link assembly comprising a first end and a second end defining a longitudinal axis. The first parallel link assembly first end pivotally connected to the body housing adjacent the outlet at a first pivotal connector. The first parallel link assembly second end pivotally connected to the float arm assembly at a second pivotal connector. The second parallel link assembly comprising a first end and a second end defining a longitudinal axis. The second parallel link assembly first end pivotally connected to the body housing at a third pivotal connector. The second parallel link assembly second end pivotally connected to the float arm assembly at a fourth pivotal connector. The float arm assembly positionable within the fluid reservoir to respond to a fluid level therein.
Additional understanding of the devices and methods contemplated and/or claimed by the inventor can be gained by reviewing the detailed description of exemplary devices and methods, presented below, and the referenced drawings.
The following description and the referenced drawings provide illustrative examples of that which the inventor regards as his invention. As such, the embodiments discussed herein are merely exemplary in nature and are not intended to limit the scope of the invention, or its protection, in any manner. Rather, the description and illustration of these embodiments serve to enable a person of ordinary skill in the relevant art to practice the invention.
The use of “e.g.,” “etc,” “for instance,” “in example,” and “or” and grammatically related terms indicates non-exclusive alternatives without limitation, unless otherwise noted. The use of “including” and grammatically related terms means “including, but not limited to,” unless otherwise noted. The use of the articles “a,” “an” and “the” are meant to be interpreted as referring to the singular as well as the plural, unless the context clearly dictates otherwise. Thus, for example, reference to “a float” includes two or more such floats, and the like. The use of “exemplary” means “an example of” and is not intended to convey a meaning of an ideal or preferred embodiment.
The exemplary vertical float valve assembly described herein utilizes a four-bar (4-bar) linkage to interconnect the float arm assembly to the body of the float valve assembly. This allows for a much more compact configuration which is less likely to contact an internal baffle of the container on which the vertical float valve assembly is attached.
In the exemplary vertical float valve assembly 10 illustrated in
The vertical float valve assembly 10 can be used with a container for holding a fluid (e.g., fluid reservoir, fuel tank for holding fuel). In one exemplary vertical float valve assembly 10, the container is the fuel tank 6 of a locomotive. Typically, a locomotive's fuel tank 6 will have a National Pipe Thread (NPT) port 5, as illustrated in
In the exemplary vertical float valve assembly 10 illustrated in
As illustrated in
The fitting adapter 30 further comprising a threaded passageway 142 extending from the outside of the fitting adapter 30 to an outlet receiver 40 defined therein. The threaded passageway 142 configured for receiving a set screw 42 therein.
The inlet 34, having an inlet receiver 39 threaded via inlet threads 36, for fluid connection, via a connector (e.g., fitting 7), to a source of fluid. The receiver 39 fluidly connecting with a passageway 33. The passageway 33 extends through the tank fitting adapter 30 from the inlet 34 to an outlet 35.
The outlet 35 opening into an outlet receiver 40 threaded with outlet threads 37 and configured for threaded receipt of a portion of the body housing 50 (e.g., upper end 51) therein. The outlet receiver 40 comprising an outlet receiver upper face 41 adjacent the outlet 35.
The body housing 50 comprising an upper end 51, a lower end 52, and a cylinder 53 defined between an upper opening 54 and a lower opening 55. The cylinder 53 configured for slidably receiving a valve closure element (e.g., shuttle piston 60) therein. In such a configuration, the exemplary vertical float valve assembly has a “valve chamber” defined as the passageway extending from inlet 34 to the lower opening 55.
A portion of the outside surface of the body housing 50 comprising external threads 58 for allowing the body housing 50, as discussed above, to be threaded into the outlet receiver 40 thereby fluidly connecting the inlet 34 to the lower opening 55.
The body housing 50 comprising a valve sealing device (e.g., seat 56). In the exemplary vertical float assembly illustrated in
The body housing 50 further comprising a receiver 57 for pivotally connecting the body housing 50 to an upper parallel link assembly 148 and a lower parallel link assembly 149. The receiver 57 further comprising a pair of upper pin apertures 59, 159 and a pair of lower pin apertures 59′, 159′ for respectively receiving an upper valve pin 43 and a lower valve pin 44 therein, as described below.
The body housing 50 further comprising a valve closure element (e.g., sealing element, O-ring 65). In the exemplary float valve assembly 10 of
The piston 60 having a rear end 61 and a front end 62. The front end 62 of the piston 60 defining an elongated boss (cam follower) 63 configured for engaging a cam member (cam lobe) 73 of a valve cam on the upper parallel link assembly 148. The elongated boss 63 configured for extending through the lower opening 55. The elongated boss 63 configured for manipulation by the cam member 73 of the valve cam 70 of the upper parallel link assembly 148.
The front end 62 further comprising a sealing element (e.g., O-ring 65) configured for sealing engagement with the valve sealing device (e.g., seat 56) adjacent the lower opening 55.
The rear end 61 configured for contacting a biasing means (e.g., resilient member, spring 66) at a first end of the spring 66. The second end of the spring 66 contacting the outlet receiver upper face 41, held compressed there-between. The spring 66 for biasing the shuttle piston 60 towards the valve sealing device (e.g., seat 56) of the body housing 50. The valve closure element (e.g., O-ring 65) normally held in closed relationship to the valve sealing device (e.g., seat 56) via the biasing means (e.g., spring 66).
The illustrated exemplary float valve assembly 10 having an open position (illustrated in
Some exemplary float valve assemblies comprise a housing lock for locking the positing of the body housing 50 relative to the tank fitting adapter 30, thereby preventing rotation of the body housing 50 relative to the tank fitting adapter 30 resulting in contact of components of the float valve assembly with an internal baffle or other structure in the fuel tank. In the exemplary float valve assembly 10 illustrated in
As particularly illustrated in
The first upper parallel link 48 comprising a first end 21, a second end 22, an upper aperture 74, a center aperture 75 and a lower aperture 76. The first end 21 and the second end 22 defining a longitudinal axis there-between. The second upper parallel link 48′ comprising a first end 23, a second end 24, an upper aperture 174, a center aperture 175 and a lower aperture 176.
The first lower parallel link 49 comprising a first end 25, a second end 26, an upper aperture 77, and a lower aperture 78. The first end 25 and the second end 26 defining a longitudinal axis there-between. The second lower parallel link 49′ comprising a first end 27, a second end 28, an upper aperture 177, and a lower aperture 178. The second parallel link assembly longitudinal axis is parallel to the first parallel link assembly longitudinal axis.
The valve cam member 70 comprising a first cam aperture 71, a second cam aperture 72 and the cam member 73.
The upper parallel link assembly 148 configured for pivotally connecting to the body housing 50.
In the exemplary upper parallel link assembly 148 illustrated in
In the exemplary upper parallel link assembly 148 illustrated in
In the exemplary upper parallel link assembly 148 illustrated in
In the exemplary lower parallel link assembly 149 illustrated in
In the exemplary lower parallel link assembly 149 illustrated in
In the exemplary vertical float valve assembly 10 illustrated in
As illustrated in
As illustrated in
The refueling apparatus comprising a fluid flow control valve 2 which, working in concert with the exemplary vertical float valve assembly 10, can be opened or closed, thereby shutting off a flow of fuel from a fuel source through the fluid flow control valve 2 and into the fuel tank 6. The fuel tank 6 comprising an air space above a fluid space, surface of the fluid space defining a fluid level 8 within the fuel tank 6. The fluid flow control valve 2 fluidly connected to the vertical float valve assembly 10 via a conduit 9. The conduit 9 having a first end terminating in a fitting 7 which connects with the vertical float valve assembly 10 at the inlet 34.
The conduit 9 for fluidly interconnecting the vertical float valve assembly 10 to the fluid flow control valve 2 so that when both the vertical float valve assembly 10 and the fluid flow control valve 2 are open, bleed fluid passes from the fluid flow control valve 2, through the conduit 9, and into the inlet 34 of the vertical float valve assembly 10. When a predetermined level of fluid in the fuel tank 6 is reached (for instance, the fluid level 8 illustrated in
When the vertical float valve assembly 10 is closed, bleed flow from the conduit 9 through the inlet 34 and out the lower opening 55 is terminated. Closure of the vertical flow valve assembly 10 results in closure of the fluid flow control valve 2, thereby stopping the refueling of the fuel tank 6 through the fluid flow control valve 2. The exemplary fluid flow control valve 2 illustrated in
The float arm assembly 80 pivotally connects to the body housing 50 via the upper parallel link assembly 148 and the lower parallel link assembly 149 as a four-bar linkage. In such a configuration, vertical movement of the float arm assembly (e.g., as the fluid level 8 in the fuel tank 6 raises) in a first (upwards) direction results in (movement) rotation of the upper parallel link assembly 148 and the lower parallel link assembly 149, both at their connections with the body housing 50 and the float arm assembly. As the upper parallel link assembly 148 is so moved, the cam member 73 variably contacts the boss 63 of the piston 60, allowing the biasing means (e.g., spring 66) to move the valve sealing element (e.g., O-ring 65) into sealing engagement with the valve sealing device (e.g., seat 56), thereby closing the valve.
Whereas, vertical movement of the float arm assembly (e.g., as the fluid level 8 in the fuel tank 6 lowers) in the second (downwards) direction results in (movement) rotation upper parallel link assembly 148 and the lower parallel link assembly 149, both at their connections with the body housing 50 and the float arm assembly. As the upper parallel link assembly 148 is so moved, the cam member 73 variably contacts the boss 63 of the piston 60, pressing the boss 63 upwards (away from the lower opening 55), overcoming the biasing means (e.g., spring 66) and moving the valve sealing element (e.g., O-ring 65) away from sealing engagement with the valve sealing device (e.g., seat 56), thereby opening the valve.
Additional Exemplary Float Valve Assembly. A float valve having a float for opening and closing the valve. The float connects with the valve via a four-bar linkage. The float valve having an open position where fluid may flow from a fluid source, through the float valve, and into a container. The float valve having a closed position where fluid is prevented from flowing through the float valve. The open and closed positions controlled by the raising and lowering of the float.
Additional Exemplary Float Valve Assembly. A valve assembly for use in a fluid reservoir. The valve assembly comprising a body housing, a first parallel link assembly, a second parallel link assembly and a float arm assembly. The body housing comprising a valve chamber with an inlet and an outlet. The outlet comprising a valve sealing device. The body housing comprising a valve closure element positioned in the valve chamber and normally held in closed relationship to the valve sealing device via a biasing means. The valve closure element movable into and out of fluid sealing engagement with the valve sealing device. The first parallel link assembly comprising a first end and a second end defining a longitudinal axis. The first parallel link assembly first end pivotally connected to the body housing adjacent the outlet at a first pivotal connector. The first parallel link assembly second end pivotally connected to the float arm assembly at a second pivotal connector. The second parallel link assembly comprising a first end and a second end defining a longitudinal axis. The second parallel link assembly first end pivotally connected to the body housing at a third pivotal connector. The second parallel link assembly second end pivotally connected to the float arm assembly at a fourth pivotal connector. The float arm assembly positionable within the fluid reservoir to respond to a fluid level therein. The second parallel link assembly longitudinal axis is parallel to the first parallel link assembly longitudinal axis. The first pivotal connector and the third pivotal connector define a housing connector axis there-between. The second pivotal connector and the fourth pivotal connector define a float connector axis there-between. The housing connector axis is parallel to the float connector axis.
The valve closure element comprising a piston having an elongated boss extending therefrom, the elongated boss configured for extending through the outlet and projecting a distance outwardly from the body housing. The first parallel link assembly first end comprising a cam member, the cam member contactingly engageable with the elongated boss. The first parallel link assembly comprising a first upper parallel link, the first upper parallel link comprising: a first end, a second end, an upper aperture extending through the first upper parallel link and a lower aperture extending through the first upper parallel link. The first parallel link assembly comprising a second upper parallel link, the second upper parallel link comprising: a first end, a second end, an upper aperture extending through the second upper parallel link, a center aperture extending through the second upper parallel link, and a lower aperture extending through the second upper parallel link. The first parallel link assembly comprising a valve cam, the valve cam comprising a cam member, a first cam aperture and a second cam aperture. The first parallel link assembly comprising a first center aperture extending through the first upper parallel link, a second cam aperture extending through the valve cam, and a second center aperture extending through the second upper parallel link, and wherein the first parallel link assembly comprising an interconnect pin extending through the first center aperture, the second cam aperture, and the second center aperture.
The body housing comprising a first upper pin aperture defined through the body housing, the first upper pin aperture aligned with a second upper pin aperture defined through the body housing, and a first lower pin aperture defined through the body housing, the first lower pin aperture aligned with a second lower pin aperture defined through the body housing. The first parallel link assembly first end's pivotal connection to the body housing at the first pivotal connector comprising an upper valve pin extending through the first upper pin aperture, the first upper parallel link upper aperture, the first cam aperture, the second upper parallel link upper aperture, and the second upper pin aperture. The float arm assembly comprising a head portion, an arm and a float, wherein the head portion defining there-through an upper float arm aperture and a lower float arm aperture. Movement of the float arm assembly, in response to the fluid level, in an downwards direction causes rotation at the first pivot point and the second pivot point in a first direction, causing the cam member to variably contact the boss of the piston, opening the valve by unseating the valve sealing device; and wherein movement of the float arm assembly, in response to the fluid level, in a upwards direction causes rotation at the first pivot point and the second pivot point in a second direction, causing the cam member to variably contact the elongated boss, closing the valve assembly by allowing the biasing means to reseat the valve sealing device.
The first parallel link assembly comprising a first upper parallel link and a second upper parallel link, wherein the first parallel link assembly second end's pivotal connection to the float arm assembly at the second pivotal connector comprising a lower float pin extending through an upper aperture defined through the first upper parallel link, the lower float arm aperture, and an upper aperture defined through the second upper parallel link. The second parallel link assembly comprising a first lower parallel link and a second lower parallel link; wherein the second parallel link assembly first end's pivotal connection to the body housing at the third pivotal connector comprising a lower valve pin extending through the first lower pin aperture, the first lower parallel link lower aperture, the second lower parallel link lower aperture, and the second lower pin aperture; and wherein the first parallel link assembly first end's pivotal connection to the float arm assembly at the fourth pivotal connector comprising: a lower float pin extending through an upper aperture defined through the first upper parallel link, the lower float arm aperture, and an upper aperture defined through the second upper parallel link. The valve sealing device comprising a seat, wherein the valve closure element comprising an O-ring, and wherein the biasing means comprising a spring. The valve assembly further comprising a tank fitting adapter, the tank fitting adapter for mounting the body housing on a reservoir.
Additional Exemplary Float Valve Assembly. Another exemplary float valve comprising a valve assembly for use in a fluid reservoir. The valve assembly comprising a body housing, a first parallel link assembly, a second parallel link assembly and a float arm assembly. The body housing comprising a valve chamber with an inlet and an outlet. The outlet defining a seat. The body housing comprising a piston positioned in the valve chamber. The piston comprising a sealing means for sealing engagement to the seat. The sealing means normally held in closed relationship to the seat via a spring. The sealing means movable into and out of fluid sealing engagement with the seat. The first parallel link assembly comprising a first end and a second end defining a longitudinal axis. The first parallel link assembly first end pivotally connected to the body housing adjacent the outlet at a first pivotal connector. The first parallel link assembly second end pivotally connected to the float arm assembly at a second pivotal connector. The second parallel link assembly comprising a first end and a second end defining a longitudinal axis. The second parallel link assembly first end pivotally connected to the body housing at a third pivotal connector. The second parallel link assembly second end pivotally connected to the float arm assembly at a fourth pivotal connector. The float arm assembly positionable within the fluid reservoir to respond to a fluid level therein. The second parallel link assembly longitudinal axis is parallel to the first parallel link assembly longitudinal axis. The first pivotal connector and the third pivotal connector define a housing connector axis there-between. The second pivotal connector and the fourth pivotal connector define a float connector axis there-between. The housing connector axis is parallel to the float connector axis. The piston comprising an elongated boss. The elongated boss configured for extending through the outlet and projecting a distance outwardly from the body housing. The first parallel link assembly first end comprising a cam member. The cam member contactingly engageable with the elongated boss. Movement of the float arm assembly, in response to the fluid level, in an downwards direction causes rotation at the first pivot point and the second pivot point in a first direction, causing the cam member to variably contact the boss of the piston, opening the valve by unseating the sealing means. Movement of the float arm assembly, in response to the fluid level, in a upwards direction causes rotation at the first pivot point and the second pivot point in a second direction, causing the cam member to variably contact the elongated boss, closing the valve assembly by allowing the biasing means to reseat the sealing means against the seat.
Any suitable structure and/or material can be used for the vertical float valve assembly, and a skilled artisan will be able to select an appropriate structure and material for the vertical float valve assembly in a particular embodiment based on various considerations, including the intended use of the vertical float valve assembly, the intended arena within which the vertical float valve assembly will be used, and the equipment and/or accessories with which the vertical float valve assembly is intended to be used, among other considerations.
The inventor has determined that conventional polymeric and metal materials are suitable for use in the various components of the vertical float valve assembly. For example, the float, spacers, piston, O-ring, and associated components can be injection-molded from suitable plastics known in the art. The tank fitting adapter, body housing, valve pins, links, float arm/head portion, and associated components can be formed from metal materials, including stainless steel and other suitable metals. Materials hereinafter discovered and/or developed that are determined to be suitable for use in float valve assemblies would also be considered suitable for use in a vertical float valve assembly according to a particular embodiment.
It is noted that all structure and features of the various described and illustrated embodiments can be combined in any suitable configuration for inclusion in a vertical float valve assembly according to a particular embodiment.
The foregoing detailed description provides exemplary embodiments of the invention and includes the best mode for practicing the invention. The description and illustration of these embodiments is intended only to provide examples of the invention, and not to limit the scope of the invention, or its protection, in any manner.
This application is a non-provisional of application Ser. No. 61/502,301, filed 28 Jun. 2011, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
751096 | Nethery | Feb 1904 | A |
927368 | Mauldin | Jul 1909 | A |
993628 | Williams | May 1911 | A |
1153381 | Gudmundsen | Sep 1915 | A |
1193007 | Fuller | Aug 1916 | A |
1302538 | Gulick | May 1919 | A |
1335188 | Peycke | Mar 1920 | A |
1440107 | Rubin | Dec 1922 | A |
1525247 | Leiss | Feb 1925 | A |
1541110 | Buscher | Jun 1925 | A |
1555755 | Pratt | Sep 1925 | A |
1676084 | Flagg | Jul 1928 | A |
1694072 | Manion | Dec 1928 | A |
1736368 | Ricard | Nov 1929 | A |
1788827 | Ferrin | Jan 1931 | A |
1826088 | Ostlind | Oct 1931 | A |
2092670 | Hess et al. | Sep 1937 | A |
2317382 | Hubbell | Apr 1943 | A |
2477186 | Koehler | Jul 1949 | A |
2595166 | Rhodes | Apr 1952 | A |
2825526 | Zuiderhoek | Mar 1958 | A |
3020924 | Davies | Feb 1962 | A |
3055405 | Pase | Sep 1962 | A |
3156271 | Schnurmann | Nov 1964 | A |
3168105 | Cisco et al. | Feb 1965 | A |
3269404 | Lebow | Aug 1966 | A |
3335746 | Lebow | Aug 1967 | A |
3406709 | Elbogen et al. | Oct 1968 | A |
3485262 | Perren | Dec 1969 | A |
3561464 | Sher et al. | Feb 1971 | A |
3587622 | Hardison | Jun 1971 | A |
3599659 | Nuter et al. | Aug 1971 | A |
3618643 | Thomson et al. | Nov 1971 | A |
3662793 | Calisher et al. | May 1972 | A |
3892254 | Hilgert | Jul 1975 | A |
3907248 | Coulbeck | Sep 1975 | A |
3929155 | Garretson | Dec 1975 | A |
3955641 | Smitley | May 1976 | A |
3982557 | Acevedo | Sep 1976 | A |
4006762 | Badger | Feb 1977 | A |
4024887 | McGregor | May 1977 | A |
4064907 | Billington et al. | Dec 1977 | A |
4075912 | Schaefer | Feb 1978 | A |
4161188 | Jorgensen | Jul 1979 | A |
4292996 | Pataki et al. | Oct 1981 | A |
4305422 | Bannink | Dec 1981 | A |
4312373 | Tilling et al. | Jan 1982 | A |
4313459 | Mylander | Feb 1982 | A |
4515178 | Campau | May 1985 | A |
4527593 | Campau | Jul 1985 | A |
4770317 | Podgers et al. | Sep 1988 | A |
5002154 | Chen | Mar 1991 | A |
5027871 | Guenther | Jul 1991 | A |
5279121 | Barber | Jan 1994 | A |
5282496 | Kerger | Feb 1994 | A |
5285812 | Morales | Feb 1994 | A |
5354101 | Anderson, Jr. | Oct 1994 | A |
5454421 | Kerger et al. | Oct 1995 | A |
5460197 | Kerger et al. | Oct 1995 | A |
5487404 | Kerger | Jan 1996 | A |
5642752 | Yokota et al. | Jul 1997 | A |
5649577 | Farkas | Jul 1997 | A |
5787942 | Preston et al. | Aug 1998 | A |
5813432 | Elsdon et al. | Sep 1998 | A |
5829465 | Garretson | Nov 1998 | A |
5832953 | Lattner et al. | Nov 1998 | A |
5842500 | Rockwood et al. | Dec 1998 | A |
5887609 | Garretson | Mar 1999 | A |
5921272 | Cavagna | Jul 1999 | A |
5954101 | Drube et al. | Sep 1999 | A |
5992445 | Pagani | Nov 1999 | A |
6026841 | Kozik | Feb 2000 | A |
D421788 | Kingman et al. | Mar 2000 | S |
6035888 | Gil | Mar 2000 | A |
6076546 | Waters | Jun 2000 | A |
6078850 | Kane et al. | Jun 2000 | A |
6079438 | Cavagna | Jun 2000 | A |
6082392 | Watkins, Jr. | Jul 2000 | A |
6109314 | Christophe et al. | Aug 2000 | A |
6138709 | Home | Oct 2000 | A |
6142175 | Ku | Nov 2000 | A |
6178994 | Park | Jan 2001 | B1 |
6227233 | Kozik | May 2001 | B1 |
6230730 | Garretson | May 2001 | B1 |
6247492 | Stuart | Jun 2001 | B1 |
6257287 | Kippe et al. | Jul 2001 | B1 |
6263905 | Yokota et al. | Jul 2001 | B1 |
6293302 | Waters et al. | Sep 2001 | B1 |
6311723 | Shipp et al. | Nov 2001 | B1 |
6318406 | Conley | Nov 2001 | B1 |
6318421 | Lagache | Nov 2001 | B1 |
6408869 | Bartos et al. | Jun 2002 | B1 |
6415813 | Kraft | Jul 2002 | B1 |
6450196 | Bartos et al. | Sep 2002 | B1 |
6536465 | David et al. | Mar 2003 | B2 |
6557579 | Kozik | May 2003 | B2 |
6640829 | Kerger | Nov 2003 | B1 |
6783330 | Carnes et al. | Aug 2004 | B2 |
6810905 | Watson et al. | Nov 2004 | B1 |
6837262 | Cortez et al. | Jan 2005 | B2 |
6837263 | Kramer | Jan 2005 | B2 |
6874528 | Kozik et al. | Apr 2005 | B2 |
6910499 | Chan | Jun 2005 | B2 |
7089974 | Stuart | Aug 2006 | B2 |
7219686 | Schmitz et al. | May 2007 | B2 |
7240690 | Schmitz et al. | Jul 2007 | B2 |
7258130 | Cortez | Aug 2007 | B2 |
D559358 | Moura de Olieveira | Jan 2008 | S |
7584766 | David et al. | Sep 2009 | B2 |
7589939 | Wakul et al. | Sep 2009 | B2 |
7647163 | Allen | Jan 2010 | B2 |
7757709 | Cortez | Jul 2010 | B2 |
7793682 | Smit | Sep 2010 | B2 |
7891373 | Workman et al. | Feb 2011 | B2 |
8025076 | Smit | Sep 2011 | B2 |
20080178944 | Workman et al. | Jul 2008 | A1 |
20110079320 | Mitrovich et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
4337183 | May 1995 | DE |
144549 | Jun 1985 | EP |
1153381 | May 1969 | GB |
1193007 | May 1970 | GB |
1335188 | Oct 1973 | GB |
1440107 | Jun 1976 | GB |
1541110 | Feb 1979 | GB |
2317382 | Mar 1998 | GB |
2325220 | Nov 1998 | GB |
2333167 | Jul 1999 | GB |
6069839 | Sep 1994 | JP |
2003-506238 | Feb 2003 | JP |
2004-116858 | Apr 2004 | JP |
10-2002-0059682 | Jul 2002 | KR |
492859 | Nov 1975 | SU |
1188706 | Oct 1985 | SU |
1264145 | Oct 1986 | SU |
Entry |
---|
Written Opinion of the International Searching Authority, PCT/US2012/042058, Sep. 21, 2012. |
International Search Report, PCT/US2012/042058, Sep. 21, 2012. |
Office Action dated Feb. 13, 2012, Applicant's copending U.S. Appl. No. 12/485,646. |
Pursuant to MPEP § 2001.6(b) Applicant brings the following co-pending application to the Examiner's attention: U.S. Appl. No. 12/767,310. |
Pursuant to MPEP § 2001.6(b) Applicant brings the following co-pending application to the Examiner's attention: U.S. Appl. No. 12/485,646. |
International Search Report and Written Opinion, PCT/US2011/030445, Dec. 7, 2011, which cites the above four foreign references and indicates the degree of relevance found by the International Searching Authority for said references. |
International Search Report and Written Opinion, PCT/US2012/058783, dated Mar. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
20130000751 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61502301 | Jun 2011 | US |