The present disclosure relates generally to a vertical form, fill and seal (VFFS) machine, and in particular to a VFFS machine having an ultrasonic vertical seal and reclosable fastener attachment device, together with a method of forming packages on the VFFS machine.
Vertical form, fill and seal bag machines are configured to form packages of different shapes and sizes. Typically, the machine, in sequence, forms a tube from a roll of film and fills the tube with a product, for example a food product. A cross seal mechanism sequentially makes a cross seal, which simultaneously forms a top seal of one bag and a bottom seal of an immediately adjacent bag, such that the latter bag may be filled with the product. The cross seal is then cut to separate the bags.
Typically, form, fill and seal machines may run intermittently, wherein the formed bag is momentarily stopped for sealing and/or cutting, or continuously, wherein the sealing jaws and cutting knife travel with the formed bag to form the seal and separate the bags. In some applications, reclosable fasteners are applied to the bag. The reclosable fasteners may be applied in the machine or transverse directions, typically on intermittent machines.
The present invention is defined by the following claims, and nothing in this section should be considered to be a limitation on those claims.
In one aspect, one embodiment of a vertical form, fill and seal machine for making a reclosable package includes a vertically oriented forming tube configured to receive a film and form a film tube and a rotary ultrasonic horn disposed adjacent the forming tube, wherein the rotary ultrasonic horn is rotatable about a first horizontal axis and has a first circumferential surface. A rotary ultrasonic anvil is disposed adjacent the forming tube, wherein the rotary ultrasonic anvil is rotatable about a second horizontal axis. The rotary ultrasonic anvil has a second circumferential surface spaced apart from the first circumferential surface and forms a gap dimensioned to receive opposite edge portions of the film tube. An actuator applies a force to the rotary ultrasonic anvil, or to both the rotary ultrasonic horn and rotary ultrasonic anvil (and/or the horn), to move the rotary ultrasonic anvil toward the rotary ultrasonic horn and/or to apply a pinching force therebetween, for example to a reclosable fastener and opposite edges of a film tube. A reclosable fastener feed device is disposed upstream of the forming tube. The reclosable fastener feed device is configured to move a reclosable fastener material into the gap between opposite edges of the film tube and between the rotary ultrasonic horn and the first rotary ultrasonic anvil.
In another aspect, one embodiment of a vertical form, fill and seal machine for making a reclosable package includes a second rotary ultrasonic anvil disposed adjacent the forming tube, wherein the second rotary ultrasonic anvil is rotatable about a third horizontal axis, which may be the same as the second horizontal axis. The second rotary ultrasonic anvil has a third circumferential surface spaced apart from the first circumferential surface and forming a second gap therebetween. A second actuator applies a force to the second rotary ultrasonic anvil, or to both of rotary ultrasonic horn and second rotary ultrasonic anvil (and/or horn), to move the second rotary ultrasonic anvil toward the rotary ultrasonic horn and/or to apply a pinching force therebetween, for example to opposite edges of a film tube.
In another aspect, one embodiment of a method of forming a package with a reclosable fastener includes moving a reclosable fastener material continuously in a machine direction with a feed device, forming a film tube on a forming tube, rotating a ultrasonic horn about a first horizontal axis, rotating an ultrasonic anvil about a second horizontal axis, and sealing the reclosable fastener material to portions of opposite edges of the film tube with the rotating ultrasonic horn and ultrasonic anvil.
In yet another aspect, one embodiment of the method of forming the package with a reclosable fastener includes rotating a second ultrasonic anvil about a third horizontal axis, and sealing an outer portion of the opposite edges of the film tube with the rotating ultrasonic horn and second ultrasonic anvil.
In yet another aspect, one embodiment of a method of reconfiguring a vertical form, fill and seal machine includes providing a vertical forming tube and a sealing assembly adjacent the vertical forming tube, wherein the sealing assembly includes an ultrasonic horn rotatable about a first horizontal axis, a first ultrasonic anvil rotatable about a second horizontal axis and spaced apart from the ultrasonic horn so as to form a first gap therewith, and a second ultrasonic anvil rotatable about a second horizontal axis and spaced apart from the ultrasonic horn so as to form a second gap therewith. The method further includes removing the second ultrasonic anvil from the sealing assembly. In other embodiments, the method may further include removing and replacing the horn and first ultrasonic anvil, or reinstalling the same or different second ultrasonic anvil.
The various embodiments of the vertical form, fill and seal machines, and methods for the use thereof, provide significant advantages over other form, fill and seal machines, and components used therein. For example and without limitation, the disclosed vertical form, fill and seal machine provides for a continuous bag forming operation incorporating a reclosable fastener. Running a continuous operation provides a substantially higher output of bags, while allowing the film to travel at a lower speed. The lower film speed in turn eliminates dynamic loading of the film, and avoids skipping and other disruptions. The dual rotary ultrasonic sealer further enhances the ability to run at higher speeds. At the same time, the machine may be quickly and easily reconfigured to form bags without a reclosable fastener, or with other embodiments or types of reclosable fasteners, or bags made of different film materials.
The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The various preferred embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
It should be understood that the term “plurality,” as used herein, means two or more. The terms “longitudinal” and “machine” as used herein means of or relating to length or the lengthwise direction 30, and refers to the direction of film 4, film tube 12 or reclosable fastener material 40 movement through a vertical form, fill and seal machine. In this way, it should be understood that portions of the reclosable fastener material may be positioned at different angles and/or orientations relative to other portions of the reclosable fastener material upstream or downstream therefrom at any one time during the bag forming process, but with the various portions all travelling in the longitudinal or machine direction. Likewise, the film 4 and reclosable fastener material 40 may travel along separate “machine” direction paths before being joined at the vertical seal assembly. The terms “downstream” and “upstream” refer to the relative position of the film and/or reclosable fastener material as they travel from a supply roll to the final bag formation, with a component lying “upstream” from a reference point being closer to the supply roll in the process and a component lying “downstream” from the reference point being closer to the final bag formation. The terms “lateral” and “transverse” as used herein, means situated on, directed toward or running from side to side, and refers to a direction transverse to the machine direction movement of the film and reclosable fastener material through a form, fill and seal machine.
The term “coupled” means connected to or engaged with whether directly or indirectly, for example with an intervening member, and does not require the engagement to be fixed or permanent, although it may be fixed or permanent (or integral), and includes both mechanical and electrical connection. The terms “first,” “second,” and so on, as used herein are not meant to be assigned to a particular component so designated, but rather are simply referring to such components in the numerical order as addressed, meaning that a component designated as “first” may later be a “second” such component, depending on the order in which it is referred. For example, a “first” anvil may be later referred to as a “second” anvil depending on the order in which they are referred. It should also be understood that designation of “first” and “second” does not necessarily mean that the two components or values so designated are different, meaning for example a first anvil may be the same as a second anvil, with each simply being applicable to separate but identical components.
U.S. Pat. Nos. 5,715,656, 5,752,370 and 8,539,741, and U.S. Pub. No. 2017/0113,823, assigned to Triangle Package Machinery Company, the same Assignee as the present application, disclose various components of form, fill and seal machines, the entirety of which patents and publication are hereby incorporated herein by reference.
Form, Fill and Seal Machine:
Referring to
Reclosable Fastener Material Handling Assembly
Referring to
In one embodiment, shown in
The roll 102 of reclosable fastener material is mounted on a shaft connected to a variable frequency drive VFD unwind motor 108. The reclosable fastener material moves past a detection sensor 110, which confirms that the reclosable fastener material is present, and passes over a fixed pulley roller 112. The reclosable fastener material then passes through an assembly of dancing rollers 114, which can move up and down on a slide 118. The dancing rollers 114 apply a constant tension to the reclosable fastener material 40 as determined and set by the weight of the assembly. An unwind roller sensor 116 is configured as a distance or proximity sensor that detects the position of the moveable dancing rollers 114, or target portion 120 coupled thereto, as shown in
Referring to
An encoder 140 positioned downstream of the flattening device 124 monitors the speed and position of the reclosable fastener material 40. Using feedback from the encoder 140, a controller, e.g. a programmable logic controller (PLC), matches the speed of the flattening device 124 with the speed of the reclosable fastener material, with the flattening device 124 clamping to the moving reclosable fastener material by actuating the cylinder 130, flattening (e.g., welds or crushes) the reclosable fastener material, un-clamping from the moving reclosable fastener material, and returning in an upstream direction for the next cycle. This motion profile is similar to the motion profile used by the jaw assembly to seal and cut each bag as the film moves continuously down the forming tube as disclosed below. After the reclosable fastener material is flattened or crushed at spaced apart locations, the control system identifies and controls the locations of the flattened portions 150 so that the flattened portions eventually align with the bag cutoff downstream in the machine and process as shown in
After passing by or through the encoder 140, the reclosable fastener material travels by or through a reclosable fastener feed device 160, which is configured to move the reclosable fastener material in the machine direction 30. In one embodiment, the reclosable fastener feed device includes a pair of spaced apart pinch belts 162 (continuous loops) driven by a servo motor 165, with the belts 162 engaging opposite sides of the reclosable fastener material 40, maintaining positive control of the reclosable fastener material, and propelling the reclosable fastener material 40 forward in the machine direction 30. In other embodiments, the reclosable fastener material feed device may include spaced apart rollers, spaced apart vacuum belts, or combinations thereof.
Downstream of the feed device, a feedback sensor 164 measures a characteristic of the reclosable fastener material, including for example and without limitation the slack, position, force and/or tension of the reclosable fastener material. In one embodiment, the feedback sensor 164 is configured as a slack sensor that measures the slack of the reclosable fastener material. In other embodiments, the feedback sensor may be configured as, or may include, the encoder 140, or may be configured as a tension sensor or other sensor, or combinations of the aforementioned sensors. In one embodiment, the reclosable fastener material 40 travels below and is engaged by a dancer plate 166 coupled to and supported by two pairs of links 168, 170. The dancer plate 166 moves up or down in response to the tension (or slack) of the reclosable fastener material 40, with the sensor 164 measuring the distance (D2) between the sensor 164 and the dancer plate 166, which defines a target portion for the sensor 164. The position of the target portion, or plate 166, provides an input to the slack sensor 164, which in turn provides an output communicated to the reclosable fastener feed device 160, or controller (PLC) associated therewith, as a sensor input. In response, the controller and the servo motor driving the reclosable fastener feed device 160 makes small corrections to maintain a consistent slack in the reclosable fastener material. For example, the reclosable fastener feed device adjusts the speed of the movement, or length/feed amount, of the reclosable fastener material in response to the input from the feedback sensor. This has the effect of maintaining the reclosable fastener material 40 at a consistent tension as it passes through the remaining downstream systems.
Vertical Seal Assembly
Referring to
The sealing of the reclosable fastener material 40 to the film tube 12 and of the film tube edge seal 172 are done continuously, with the film 4 passing through a dual rotary ultrasonic seal assembly 10. It should be understood that the term “dual” rotary ultrasonic seal assembly refers to an assembly having a rotary horn and at least one rotary anvil, although a “dual” assembly may include more than one rotary anvil. The assembly includes a frame 400 that is pivotable secured to a bracket 402 about a pivot pin 404. An opposite side of the frame 400 is coupled to a second bracket with a latch, or release mechanism 410. The brackets 402, 408 are attached to the frame 2. As shown in
The ultrasonic seal assembly includes a rotary ultrasonic horn 320, or sonotrode, which is rotatable about a first horizontal axis 322. The horn has an outer circumferential/peripheral surface 324. The horn may have a substantially circular, generally disk-shape, with the peripheral surface being substantially continuous.
A first rotary ultrasonic anvil 326 is rotatable about a second horizontal axis 328 spaced apart from the first axis 322. The first rotary anvil 326, referred to as a zipper anvil, has an outer circumferential surface 330, which is disposed adjacent to the circumferential surface 324 and forms a first nip therebetween. The surface 330 may be spaced apart from the first surface 324 and form a gap G1 therebetween at the nip. G1 and G2 are equal to the total thickness of the material being sealed or attached at each respective location. The force of contact is controlled by the actuators, rather than controlling the gap in one embodiment. The first anvil may have a substantially circular, generally disk-shape, with the peripheral surface being substantially continuous. Alternatively, the first anvil may have a non-circular shape, or may have a discontinuous outer peripheral surface. The first anvil may be configured with one or more spokes or lobe members, which may have the same or different sizes and/or shapes.
A second rotary ultrasonic anvil 332 is rotatable about a third horizontal axis 334 spaced apart from the first axis 322. The third axis 334 may be coaxial with and defined by the second axis 328. The second rotary anvil, referred to as a vertical seal anvil, has an outer circumferential surface 336, which is disposed adjacent the circumferential surface 324 and forms a second nip therebetween. The surface 336 may be spaced apart from the first surface 324 and form a gap G2 therebetween at the second nip. The second anvil may have a substantially circular, generally disk-shape, with the peripheral surface being substantially continuous. Alternatively, the second anvil may have a non-circular shape, or may have a discontinuous outer peripheral surface. The second anvil may be configured with one or more spokes or lobe members, which may have the same or different sizes and/or shapes. It should be understood that the vertical seal anvil, or the shape of the second rotary anvil 332, may be configured such that there is a hermetic seal 325 and an adjacent cosmetic/structural seal 327 as shown in
In various embodiments, the gaps G1 and G2 may be the same or different, for example with the gap G1 being greater than the gap G2 to accommodate the reclosable fastener as shown in
It should be understood that the anvils may be rotatable about different axes that are spaced apart and parallel, or may be coaxial. For example, one of the anvils may “float” in one embodiment, allowing lateral movement when an applied force is determined. In this embodiment, the forces (F1, F2) applied to the rotary ultrasonic anvils 326, 332 are an “input,” with corresponding forces being applied to the film tube and reclosable fastener at the nips. The gaps at the respective nips may or may not vary in response to the relative forces applied to the anvils. For example, one of the anvils 332 may be shifted laterally with an actuator 492 as further explained below. Moreover, the diameters of the anvils 326, 332 may be the same or different. For example, the anvils may have the same diameter, but with the axes spaced apart such that G1 is greater than G2. In summary, the system may include an input of forces (F1, F2), which may be the same or different, with F1>F2, or vice versa, F2>F1, or an input of gaps (G1, G2), which may be the same or different, with the understanding that forces and gaps are not necessarily correlated.
There are a variety of embodiments allowing the rotary ultrasonic anvils 326, 332 to rotate about different axes. For example, as shown in
Other systems may be designed with both anvils being driven. For instance, the two anvils may be connected loosely with an elastomeric coupling as shown in
As shown in
In yet another embodiment, a single anvil, having a stepped circumferential surface, with one circumferential surface 330 defined at a first diameter and a second circumferential surface 336 defined at a second diameter, with the first diameter being less than the second diameter, may be used to make the vertical seal (second surface 336) and the reclosable fastener seal (first surface 330). The first surface 330 may have a groove/relief 450 to accommodate the interlocking fastener elements.
Referring to
In yet another embodiment, shown in
In one embodiment, the actuator 492 acts only on the anvil 332, applying force F492. In contrast, the force applied to the anvil 326 is equal to the force of the actuator 490 minus the force of the actuator 492 (F326=F490−F492), while the force applied to the anvil 332 is F492. As mentioned, the second (vertical seal) anvil 332 is loosely coupled to the drive shaft, for example with an elastomeric or magnetic coupling, such that it may be shifted to alter the gap G2 and/or force F2 in response to the force/pressure applied by the actuator 492. Alternatively, as disclosed herein, the anvil 326 is loosely coupled to the anvil 332.
As shown in
The sealing assembly 10, including the horn 320 and anvils 326, 332, is positionally fixed in the machine direction. The phrase “positionally fixed” means the component is not moveable in the indicated direction (e.g., machine, vertical, lateral, transverse, etc.) during the normal operation of the machine, but may or may not be adjusted in such a direction when the machine is not operating. The horn 320 and second anvil 332 are configured to seal the outer portions of the overlapping edges 174 of the film tube and form the edge seal 172, while the horn 320 and first anvil 326 are configured to seal the reclosable fastener material 40, and in particular the mounting flanges 308, to inner portions of the edges 174 and film tube 12 as shown in
Advantageously, the dual rotary ultrasonic sealing assembly does not require that a guide blade be positioned between the horn and anvil and between the two mounting flanges 308 of the reclosable fastener material so as to prevent those flanges from being sealed to each other. Rather, an outer surface of one of the mounting flanges 308 is sealed to an inner surface of one of the film tube edges 174 to form a seal 260, and an outer surface of the other mounting flange is sealed to an inner surface of the other edge 174 of the film tube to form another seal 260. The energy and pressure applied by the ultrasonic sealer is controlled such that the interlocking portions 304, 306 of the reclosable fastener material are not heat sealed one to the other.
In one embodiment, shown in
Tear Notch Applicator
After the film tube 12, with the reclosable fastener material 40 attached thereto so as to define a composite film tube, exits the vertical seal assembly 10, the composite film tube passes a tear notch applicator 250. The tear notch applicator is optional, meaning it does not have to be deployed when manufacturing certain kinds of bags. The tear notch applicator 250 includes a knife 266 that makes a small slit 262 in the composite film tube in the longitudinal machine direction. The slits 262 is positioned between the reclosable fastener material seal 260 and the edge seal 172. The knife 266 is mounted on a slide assembly 268 that moves in the transverse lateral direction 32. The tear notch applicator 250 is positionally fixed in the machine direction, meaning the tear notch applicator is not moveable in the machine/longitudinal direction during the normal operation of the machine, but may or may not be adjusted in such a direction when the machine is not operating. A controller times the actuation of the knife 266 such that the slit 262 is made in the composite film tube at a location where the slit 262 is intersected by a knife 280 making a transverse cut to separate the bags, with a portion of the slit 262 defining a tear notch 264 at each end of the bag as shown in
The tear notch applicator includes a linear servo motor, which momentarily positions the knife 266 in the film path at a time coordinated with the sealing jaw motion, such that the tear notch 264 is located at the bag cutoff line. In one embodiment, the knife 266 moves in and out in about 66 milliseconds, which is the total time from when the knife starts moving toward the film until it returns to the starting position. The knife is in the film path for about 20 milliseconds in one embodiment, wherein a 0.25 inch slide is made with the film moving at 12 inches per second. Depending on the film speed and desired length of the tear notch, the knife may be in the film path for 10 to 100 milliseconds.
Below the tear notch applicator, a driven pulley system, or vertical seal pull assembly 290, pinches the film tube and reclosable fastener material, pulling the film tube and reclosable fastener material in the machine direction, e.g., downwardly in the vertical machine. The pulling action provides tension within the vertical seal assembly 10, which helps the reclosable fastener material attach consistently to the film tube. Without tension, the reclosable fastener material, or film edges, may drag against the vertical seal bars or guide blade, causing the film or reclosable fastener material to bunch up and perhaps require a machine reset. Alternatively, the sonotrode and anvils may maintain sufficient tension such that the driven pulley system may be omitted.
Sealing Jaw Assembly:
Downstream of the ultrasonic sealing assembly, the attached reclosable fastener material and film tube travel together as a composite film tube. The composite film tube travels through a sealing jaw assembly between a pair of sealing jaws, which match speed with the composite film tube traveling downstream in the machine direction, clamp the composite film tube to form a transverse seal across the composite film tube as the sealing jaws travel with the composite film tube, cut the film tube and reclosable fastener material at a specified repeat location, open and release the composite film tube, and return in the upstream direction for the next cycle.
Referring to
The jaws 20 are configured with a sealing device and a film separation device. The sealing device is mounted to one of the jaws between upper and lower grippers. The sealing device, in one embodiment, has a length equal to or greater than the width of the composite film tube 12. The sealing device may be configured as a heat seal bar, an ultrasonic sealing device or other suitable sealing device. In one embodiment, the sealing device is configured as an insert, which is secured to the carriage with a quick-release mechanism, including for example and without limitation removable pins. The film separation device is mounted to at least one of the jaws between the upper and lower grippers. The film separation device, in one embodiment, has a length equal to or greater than the width of the composite film tube 12. The film separation device is configured in one embodiment as a cutting device, such as a knife, secured to one of the opposing carriages. It should be understood that the film separation device can include other types of cutting devices including without limitation air and water jets, hot wire, die, shear, ultrasonic devices, and/or combinations thereof, positioned between the upper and lower grippers. In one embodiment, the film separation device is secured to the jaw with a quick-release mechanism, including for example and without limitation removable pins. The film separation device is laterally moveable relative to the jaw with an actuation cylinder from a cutting position to a retracted position.
In operation, and with reference to
In one embodiment, the jaws 20 have top and bottom sealing surfaces, with a film separation device, configured as a knife in one embodiment, located between the top and bottom surfaces. The film separation device fires through the film after the seal is made. The grippers may maintain a grip on the film as the film separation device is actuated in one embodiment. In an alternative embodiment, the jaws 20 may open a slight distance, for example about 10-15 mm, and move at a different velocity relative to the film tube 12 until the film separation device is aligned with the seal and the sealing device is moved out of alignment with the seal, whereinafter the the jaws 20 are then closed again. With the upper and lower grippers again gripping the film tube 12, the film separation device is actuated, for example by moving the cutting device laterally to thereby cut the film tube across the seal. Alternatively, the jaws can be closed with an extended knife so as to make the cut while moving with the film, preferably proximate the longitudinal centerline of the seal.
The film tube is filled with product 14 after a first lower seal is made and before a next upper seal is formed as shown in
For the entire system to operate in a continuous manner, the servo motion, including the reclosable fastener feed VFD unwind system, the flattening device, the reclosable fastener feed device, the tear notch applicator, and the sealing jaw position, are coordinated by one or more PLC (programmable logic controller) as shown for example in
Although the present invention has been described with reference to preferred embodiments, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As such, it is intended that the foregoing detailed description be regarded as illustrative rather than limiting and that it is the appended claims, including all equivalents thereof, which are intended to define the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 62/560,942, field Sep. 20, 2017, the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4517790 | Kreager | May 1985 | A |
4757668 | Klinkel et al. | Jul 1988 | A |
5400568 | Kanemitsu | Mar 1995 | A |
6047521 | Terminella et al. | Apr 2000 | A |
6537403 | Blenke et al. | Mar 2003 | B1 |
6896950 | Forman et al. | May 2005 | B2 |
8539741 | Lubezny | Sep 2013 | B2 |
8720168 | Kamigaito et al. | May 2014 | B2 |
9090021 | Cham et al. | Jul 2015 | B2 |
9662829 | Hull | May 2017 | B2 |
20020189206 | Capodieci | Dec 2002 | A1 |
20030093971 | Terminella | May 2003 | A1 |
20070028564 | Ausnit | Feb 2007 | A1 |
20110005172 | Miyahara | Jan 2011 | A1 |
20150274337 | Beauvy et al. | Oct 2015 | A1 |
20160288407 | Ehlert et al. | Oct 2016 | A1 |
20180093444 | Begrow et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
WO2017093488 | Jun 2017 | WO |
Entry |
---|
Basic Components of a Rotary Ultrasonic System | Aurizon Ultrasonics: https://aurizonultrasonics.com/basic-components-of-a-rotary-ultrasonic-system/ dated Sep. 5, 2017; 4 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/050867 dated Dec. 6, 2018 (9 pgs). |
Number | Date | Country | |
---|---|---|---|
20190084710 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62560942 | Sep 2017 | US |