1. Field of the Invention
The present invention pertains to the art of refrigerators and, more particularly, to ice makers for producing clear ice pieces.
2. Description of the Related Art
In general, ice pieces produced with standard ice makers tend to include air bubbles or other imperfections that lend a cloudy or impure appearance to the ice. Therefore, there has been an interest in constructing ice makers which produce clear ice pieces. One approach to preventing the formation of cloudy ice is to agitate or move water in an ice tray during the freezing process. For example, U.S. Pat. No. 4,199,956 teaches an ice making method wherein a plurality of freezing elements are immersed in a pan of water which is agitated by a plurality of paddles during a freezing process. This type of ice maker requires water to be added to the pan every new freezing cycle, and may lead to minerals or other impurities concentrating or collecting in the pan over time. Another approach utilizes the continuous flow of water over a vertical ice-forming plate in a refrigerator compartment to produce ice having a higher purity then that of the original tap water. Specifically, multiple spaced points located on the vertical ice-forming plate are in contact with an evaporator line such that water flowing over the spaced points freezes in layers over time, gradually forming a plurality of ice pieces. In order to harvest the ice pieces, hot refrigerant gas flows into the evaporator line, the warming effect detaches the ice pieces from the ice-forming plate, and the ice pieces fall into an ice bin within the refrigerator compartment. However, large spaces must be left between the contact points of the evaporator in order to prevent ice bridges from developing between ice pieces, thus requiring either relatively large quantities of water to flow over the multiple spaced points, or fewer spaced points. Additionally, this system utilizes the refrigerator's own evaporator, thus requiring specific structure in both the refrigerator and ice maker system. Further, ice pieces collected in the ice bin melt over time, which results in diminished ice quality.
Therefore, there is seen to be a need in the art for improved ice makers for domestic refrigerators that can be utilized with various refrigerator configurations and produce high quality clear ice pieces utilizing minimal amounts of water.
The present invention is directed to a clear ice making assembly and method for a refrigerator which utilizes a vertical ice maker. A housing of the ice maker defines an upper fluid chamber which supplies fluid to a plurality of distinct, substantially vertical, fluid channels each of which is exposed to a portion of an ice forming evaporator enclosed within the housing. Cooled refrigerant flows through microchannels in the ice forming evaporator, thereby cooling the ice forming evaporator. During an ice making cycle, fluid is continuously supplied to the upper fluid chamber, resulting in streams or sheets of fluid flowing through each of the substantially vertical fluid channels and cascading over the exposed portions of the ice forming evaporator therein. Fluid contacting the exposed portions freezes in thin layers over time to form clear ice pieces based on the shape of the exposed portion of the ice forming evaporator. The remaining cascades of fluid drain through fluid outlet apertures defined by the housing, and into a bottom fluid chamber. A pump is utilized to recirculate fluid from the bottom fluid chamber to the upper fluid chamber.
During an ice harvesting cycle, the ice forming evaporator is heated to release ice pieces formed within the vertical fluid channels, and the ice pieces are transferred from a fresh food compartment of the refrigerator to an ice storage bucket located in a freezer compartment of the refrigerator. After a predetermined period of time or after a predetermined number of ice making cycles, fluid from within the fluid reservoir is drained and a fresh supply of fluid is added to the ice maker.
Additional objects, features and advantages of the present invention will become more readily apparent from the following detailed description of preferred embodiments when taken in conjunction with the drawings wherein like reference numerals refer to corresponding parts in the several views.
With initial reference to
In a manner known in the art, fresh food compartment 8 is provided with a plurality of vertically, height adjustable shelves 20-22 supported by a pair of shelf support rails, one of which is indicated at 25. At a lowermost portion of fresh food compartment 8 is illustrated various vertically spaced bins 28-30. At this point, it should be recognized that the above described refrigerator structure is known in the art and presented only for the sake of completeness. The present invention is not limited for use with a side-by-side style refrigerator shown, but may be utilized with other known refrigerator styles including top-mount or bottom-mount freezer styles. Instead, the present invention is particularly directed to a clear ice making assembly which is generally indicated at 50.
An ice maker 52 utilized in clear ice making assembly 50 will now be discussed with reference to
Additional details of ice maker 52 will now be discussed with reference to
Various methods of initiating an ice making cycle are known in the art, including providing a controller for initiating an ice making cycle based on the amount of ice stored within an ice bucket. In accordance with the present invention, a known method of initiating an ice making cycle may be utilized, and such details are not considered to be part of the present invention. Instead, the invention is particularly directed to the structure of clear ice making assembly 50 and the manner in which ice pieces are produced and dispensed, which will now be discussed with reference to
As depicted in
In accordance with the present invention, microchannel member 67 is chilled through direct contact with refrigerant. More specifically, with reference to
After a predetermined amount of time, or based on another known method for determining the end of an ice production cycle, microchannel member 67 is heated to melt the portions of the ice pieces in direct contact with exposed portions 93 in order to release the ice pieces from the ice maker 52. Heating of microchannel member 67 may be accomplished through the use of a heating element, such as an electric resistive heating element in heating relationship with microchannel member 67, or through the use of gaseous refrigerant, which is circulated through ice forming evaporator 58. Preferably, one or more valves indicated at 123 and 124 in
As depicted in
Based on the above, it can be seen that a multi-piece housing 54 fits together about an ice forming evaporator 58, and defines spaced, distinct, and substantially vertical fluid channels 84. An upper fluid chamber 98, also defined by housing 54, feeds fluid into each of the fluid channels 84, causing thin layers of ice to form on exposed portions 93 of the ice forming evaporator 58 and build up over time to form clear ice pieces having a desired size and shape. As discussed above, ice maker 52 includes its own dedicated ice forming evaporator 58 which is adapted to connect to the refrigerator circulation system of any type of refrigerator unit. With this modular configuration, ice maker 52 can be placed anywhere within a refrigerator. The result is an ice making system 50 that has wide range of applications and utilizes minimal amounts of fluid to form clear ice pieces, which are stored in a freezer compartment to prevent wasteful melting of the ice pieces over time.
Although described with reference to preferred embodiments of the invention, it should be readily understood that various changes and/or modifications can be made to the invention without departing from the spirit thereof. For instance, although shown in the form of slots defined by the two separate housing parts (i.e., fluid channeling portion 60 and fluid recycling portion 62), fluid outlet apertures 106 could be in the form of drain holes, or may be any other type of aperture allowing fluid to drain into bottom fluid supply channel 104. In addition, although multiple, horizontally arranged ice-forming apertures are shown, it should be understood that multiple, vertically arranged ice-forming apertures or regions could also be employed. Furthermore, although the preferred embodiment described forms the ice pieces directly on exposed portions of an ice forming evaporator that is part of the main refrigeration cooling system, other arrangement could be employed. For instance, a secondary coolant loop of a refrigerant recirculation system could be utilized to run coolant through the microchannels. Also, it is contemplated to utilize a Peltier arrangement wherein thermoelectric (TE) chips are positioned in the ice forming regions, with the ice pieces forming on a first or cold side of the TE chips and a second or hotter side of the TE chips being exposed to the microchannels such that the tubes defining the microchannels acting as heat sinks and the flow of refrigerant through the microchannels functioning to draw heat from the TE chips. Finally, although the invention has been described with reference to the depicted domestic refrigerator, the invention can also be employed in dedicated ice making machines, whether self-contained, under counter or countertop units. In general, the invention is only intended to be limited by the scope of the following claims.