The present disclosure relates to a vertical joint system for a surface covering panel such as but not limited to a floor panel, wall panel or ceiling panel.
One form of vertical joint system for a surface covering panel may include male and female parts. The male and female parts are formed along the sides of the panel. The male and female parts engage each other to join corresponding panels when moved toward each other in a direction perpendicular to a plane of the panels. When the panels are flooring panels this direction is a vertical direction. The male and female parts have surfaces that contact each other to arrest vertical separation of engaged panels.
One potential problem with vertical joint systems is “lipping”. Lipping occurs when the upper edge of one panel lifts from the upper edge of the adjoining panel. This creates a lip or step at the upper edges of adjacent joined panels. To assist in reducing lipping one practice is to provide the contacting surfaces of the male and female parts at the front end of the joints. The front end of the joint is the end closest to an upper edge of an upper surface of the panels. An example of this is shown in U.S. Pat. No. 7,552,568 in which the front end of a male part has a surface formed with a locking heal that contacts a locking surface formed on the surface at the front end of a female part. An alternate practice is to uses separately manufactured plastic inserts or clips that are fitted into the panels. However this adds to manufacturing costs and the insert/clips at times fall out of the panels during transport and handling.
The above description of the background art does not constitute an admission that the art forms the common general knowledge of a person of ordinary skill in the art. Further, the above description is not intended to limit the application of the vertical joint system.
the male part having a recess that opens onto the lower surface, a portion of the recess forming an inner most male surface; and
wherein the outer most female surface and the inner most male surface arranged so that when the male part of one surface covering panel is engaged with a female part of a second surface covering panel the outer most female surface overlies the inner most male locking surface at a first location and a second location.
In a second aspect there is disclosed a vertical joint system for a surface covering panel having an upper surface which is visible when the surface covering is laid and an opposed lower surface and a plurality of sides located between the upper and lower surfaces, the vertical joint system comprising:
vertically engageable locking parts on at least two opposed sides, the locking parts having proximal mutually receivable components near an edge of the upper surface of a panel in which the vertical joint system is provided, and distal mutually receivable components near an edge of the lower surface of the panel, and wherein the distal components are configured so that when the respective locking parts of two panels with the same vertical locking system are engaged, a surface on a side of one of the distal components nearest the lower surface overlies a surface on a side of the other distal component nearest the lower surface at a first location and a second location.
In a fifth aspect there is disclosed a vertical joint system for a surface covering panel having first and second opposed major surfaces and a plurality of sides located between the major surfaces, the vertical joint system comprising:
In one embodiment the male part has a protrusion and an adjacent recess with a common surface forming a part of both the recess and the protrusion, the common surface being formed with a concavity.
In one embodiment the common surface includes a first portion that lies in a plane substantially perpendicular to a plane of a panel, the first portion being contiguous with the concavity.
In one embodiment the female part is formed with a female recess and an adjacent female protrusion, wherein the female recess has an inner most female surface and the male protrusion has an inner most male surface, the inner most male surface being on a side opposite the common surface; when the inner most female surface overlies the inner most male surface.
In one embodiment the inner most female surface is provided with a series of contiguous recesses and the male surface is provided with a nib; the inner most female surface and the inner most male surface configured so that when fully engaged the nib resides in a lowest one of the recesses; and in response to a relative rotation of the male part and female part the nib can enter respective higher recesses sequentially to provide resistance to the withdrawal of the male protrusion from the female recess.
In one embodiment the female protrusion and the male recess are relatively configured so that the female protrusion overlies the male recess in at least two locations which are spaced apart by a gap.
In a sixth aspect there is disclosed a vertical joint system for a surface covering panel having first and second opposed major surfaces and a plurality of sides located between the first and lower surfaces, the vertical joint system comprising:
In one embodiment the outer most female surface and the outer most male surface are relatively configured so that the outer most female surface overlies the outer most male surface in at least two locations which are spaced apart by a gap when the male part is engaged in the female part.
Notwithstanding any other forms that may fall within the scope of the vertical joint system as set forth in the Summary, specific embodiments will now be described by way of example only with reference to the accompanying drawings in which:
The male part 12 has a protrusion 28 and an adjacent recess 30. The protrusion 28 extends in a direction from the upper surface 16 toward the lower surface 18. The recess 30 is formed or extends from the lower surface 18 toward the upper surface 16.
Starting from the upper surface 16 the male part 12 has an upper edge U from which extends a generally vertical surface 32. This is followed by a generally datum surface 34 and then an outer most (or proximal) male surface 36. In this embodiment the datum surface 34 is a planar and horizontal surface. The outer most male surface 36 is generally inclined away from the recess 30 in a direction from the upper surface 16 toward the lower surface 18. However the outer most/proximal surface 30 does not extend laterally beyond an upper edge U. A lower part of the outer most male surface 36 is formed with a nib 38. The outer most male surface 36 is at a front or proximal end of the joint system 10a as is lies on a surface nearest the upper edge U of the panel P in which the joint system is made.
A bottom surface 37 of the male protrusion is formed with a central concave recess 39 that projects toward the upper surface 16. The recess provides a space for foreign material such as: wax or other lubricant which may be placed on surfaces of the joint system 10a; debris produced during manufacture which has not been fully removed; and debris that exists or is generated on site during installation. A portion of the male protrusion 28 to the left of the recess 39 which includes the outer most male surface 36 and nib 38 may be considered as forming a nose 41 of the protrusion 28. The portions 37 and 47 provide the bottom end of the protrusion 28 with curved or rounded corners.
The male part 12 is also formed with an inner most (or distal) male surface 40. The inner most/distal male surface 40 is at a back or distal end of the joint system 10a as it lies on a surface distant the upper edge U of the panel P in which the joint system 10a is made (or conversely closest to a bottom edge B of the panel P). The inner most male surface 40 is formed as a surface of the recess 30. Located between the outer most male surface 36 and the inner most male surface 40 is a male common surface 42. The male common surface 42 is a surface which is common to both the protrusion 28 and the recess 30.
The male common surface 42 is formed with a concavity 44. This is followed by a contiguous male planar portion 46. The male planar portion 46 lies in a plane perpendicular to that of the surfaces 16 and 18. Additionally the male planar portion 46 is located between the upper surface 16 and the concavity 44. A convexly curved surface 47 extends between the concavity 44 and the recess 39.
The outer most male surface 40 is formed with an undulating profile which forms a first generally convex protuberance 48, a contiguous concave recess 50 and a contiguous second generally convex protuberance 52. After the protuberance 52 the outer most male surface 40 extends to the major surface 18.
The female part 14 is formed with a female protrusion 54 and a female recess 56 which is inboard of the protrusion 54. When the male and female parts of like panels P1 and P2 are fully engaged the male protrusion 28 is located in the female recess 56 and the female protrusion 54 is located in the male recess 30.
The female recess 56 has a surface 58 that depends generally perpendicular from an upper edge U of the upper surface 16 on a side opposite to that of the male part 12. Contiguous with the surface 58 is a concavity 60. The concavity 60 subsequently leads to a datum surface 62 in the recess 56. The datum surface 62 lies parallel to the upper surface 16 and together with the datum surface 34 constitutes a datum plane for the joint system 10a. Thus in an engaged joint system 10 both the datum surfaces 34 and 62 lie in the datum plane. The datum surface acts as a depth control for the insertion of the male part of panel P1 into the female part of panel P2. When the datum surface 34 abuts the datum surface 62 insertion of the male part 12 and in particular the protrusion 28 into the female part 14/recess 56 is halted. This ensures that the upper surfaces 16 of adjacent coupled panels P1, P2 are essentially coplanar.
After the datum 62 the female part 14 is provided with an inner most female surface 64 that extends to a root of the recess 56. The inner most (or proximal) female surface is at a front or proximal end of the joint system 10a as it lies on a surface near an upper edge U of the panel P in which the joint system is made. The inner most female surface 64 is formed with a plurality of recesses 66, 68 and 70. The recess 70 is closest to the root of the recess 56.
The female joint 14 is also formed with an outer most (or distal) female surface 72 on a side of the female protrusion 54 distant the recess 56. The outer most female surface is at a back or distal end of the joint system 10a as it lies on a surface distant the upper edge U of the panel P in which the joint system is made (or conversely closest to a bottom edge Y of the panel P). A female common surface 74 forms part of the surface of both the female recess 56 and the female protrusion 54.
The outer most female surface 72 is formed with a generally undulating profile and includes a first protuberance 76 followed by a concavity 78 followed by a contiguous second protuberance 80. Contiguous with the second protuberance 80 is a further concavity 82. The concavity 82 then leads to the lower surface 18 and edge Y on the female side.
The female common surface 74 includes a female generally planar portion 84 followed by a contiguous convex portion 86. The female planar portion 84 is located between the convex portion 86 and the lower surface 18. The female protrusion 54 has a very slightly curved, indeed almost planar, top surface 87 that is substantially parallel with the upper and lower surfaces 16, 18. The portions 86 and 76 provide curved or rounded corners to the upper end of the protrusion 54.
The inner most (i.e. distal) male surface 40 and the outer most (i.e. distal) female surface 72 can be considered to be a clasping surfaces because when male and female parts 12, 14 of the joint system 10a are engaged these surfaces are able to clasp each other to arrest vertical separation of engaged panels P.
In this embodiment the there is a minimum of about 30% of the thickness of the material of the panel P from the bottom of the recess 56 to the lower surface 18. The location L1 is at a horizontal level marginally below the bottom of the recess 56 and the second location L2 is horizontal level above the bottom of the recess 56.
When the male joint 14 of one panel P1 is fully engaged with the female joint 16 of a second panel P2 with the respective lower surfaces 18 coplanar, the following relationships between respective surfaces in parts of the joints exist:
(a) The surfaces 32 and 58 abut or are closely adjacent so as to form no gap or at least no easily discernable gap between joint panels P1 and P2 when viewed from a normal standing position.
(b) The datum surface 34 abuts the datum surface 62. This forms a depth control mechanism so that the major surfaces 16 of the join panels P1 and P2 are substantially co-planar. Moreover the back end of the joint constituted by the male and female surfaces 40 and 72 when in contact at location L1 generate tension or force in the protrusion 28 pulling the datum 34 onto the datum surface 62, or otherwise pushing or pressing the datum surfaces 43, 62 together. In this way the contacting datum surfaces 34, 62 and the contacting surfaces at L1 act to claps the joint together.
(c) The nib 38 resides in the lower most recess 70. These provide a back-up or secondary vertical arrestment or grab resisting removal of the protrusion 28 from the recess 56. However due to the existence of a gap between the proximal male surface 36 and proximal female surface 64 these surfaces do not provide a vertical locking function when the panels P are in a neutral plane, i.e. when the surfaces 18 of the joined panels P1 and P2 are co-planar.
(d) The male and female planar surfaces 46 and 84 face each other. The surfaces 46 and 84 may be in contact with each other or slightly spaced from each other. This can be dependent on environmental conditions such as temperature, manufacturing tolerances, and the condition of the underlying surface on which the panels are laid. However vertical joint 10a can be designed to ensure the existence of a gap in all expected environmental conditions or to ensure contact of the surfaces 46 and 84 in all expected environmental conditions. The gap when provided between the surfaces 46 and 84 can assist in allowing relative sliding between panels which can assist in the engagement of panels P together. Also the existence of such a gap can allow for the take up of wax or other lubricant.
(e) The outer most female surface 72 overlies the inner most male surface 40 in at least a first location L1 and a second location L2. The first location L1 is a lower of the locations, being closer to the lower surface 16, and coincides with the location of protuberance 80. The second of the locations L2 is a higher of the locations and coincides with the location of the protuberance 76. Thus in general terms the protuberance 76 overlies the protuberance 48 while the protuberance 80 overlies the protuberance 52. The two locations L1 and L2 are spaced by a gap 88. The gap 88 is formed between the concavities 50 and 78. Also the second location L2 overhangs the first location L1. The gap 88 and moreover the concavities/recess 50 and 78 provided relief during the engagement of the male and female parts enabling the parts to fit together without the need for heavy blows with a mallet and/or substantial deflection or distortion of the material in the joint. Such deflection or distortion can damage or break parts of the joint. Also when the panel is made of a plastics material, the material may maintain a degree of the deflection after engagement due to material memory. This results in lipping at the very time of, and due to, installation.
In the present embodiment the outer most (distal) female surface 72 contacts the inner most male surface 40 at least at the first location L1. This forms the primary vertical lock or arrestment for the joint system. The expression “vertical lock or arrestment” means locking or arresting vertical separation between the engaged panels. Also in this embodiment the surfaces 40 and 72 also contact each other at the second location L2 simultaneously with contact at location L1 so as to also form part of the primary vertical lock or arrestment. But in other embodiments this need not be the case. For example the protuberances 76 and 48 may be spaced apart when joined panels P are in the neutral plane but arranged to contact each other when the panels are either (i) under compression in a direction tending to push the surfaces 40 and 72 together, or (ii) relatively rotated as would occur during removal of say panel P1 from panel P2 where panel P1 may be gripped (for example by a suction cup) and pulled upwardly and away from panel P2.
At the first location L1 the inner most (i.e. distal) male surface has a first surface portion with a first tangent plane T1m that is inclined at an angle θm in the range of about 15° to 75° to a plane parallel to the upper surface. The first surface portion is constituted by a surface portion of the generally convex protuberance 52. This surface portion could be either curved or planar. When it is planar (as shown in the embodiment of
At the first location L1 the outer most (distal) female surface 72 also has a first surface portion 81 with a first tangent plane T1f that is inclined at the angle θf. The first surface portion 81 of the outer most female surface is constituted by a surface portion of the generally convex protuberance 80. This surface portion could be either curved or planar. In any event θf°≦θm°, and preferably θf°<θm°. In one example θm=45° and θf=15°.
At the second location L2 the inner most male surface has a first surface portion with a first tangent plane T2m that is inclined at an angle βm in the range of about 15° to 75° to a plane perpendicular to the upper surface. The first surface portion is constituted by a surface portion of the generally convex protuberance 48. This surface portion could be either curved or planar. When it is planar (as shown in the embodiment of
At the second location L2 the outer most female surface also has a first surface portion with a first tangent plane T2f that is inclined at the angle βf. The first surface portion of the outer most female surface is constituted by a surface portion of the generally convex protuberance 76. This surface portion could be either curved or planar. When it is planar (as shown in the embodiment of
The distal male and female surfaces 40 and 72 in effect provide a primary dual or two stage vertical lock at the back end of the joint when in contact with each other at both locations L1 and L2.
(f) In this embodiment there is a continuous gap between the male and female parts 12, 14 from the location where the datum surface 34 contacts the datum 62 to the location L2 where the protuberances 48 and 76 contact each other. However as will be exemplified in later, in other embodiments there may be contact between the planar surfaces 46 and 84 so as to divide the previously mention gap into two parts; one part from the contacting datum 62 and datum surface 34 to the contacting surfaces 46 and 84, and a second part from the other side of the contacting surfaces 46 and 84 to the location L2. In yet another variation the second part can be extended to the location L1 when the protuberances 76 and 48 are spaced apart. Further it is believed that in a further embodiment there may be a continuous gap from between where the datum surface 34 contacts the datum surface 62 all the way to the bottom surface 18.
When the male and female parts are being engaged the male part 12 is first laid on top of a female part 14 so that the protrusion 28 is generally above the recess 56 and the recess 30 is generally above the protrusion 54. The convexly curved surface 47 will rest initially on the convexly curved surface 86. Also the planar surface 46 will be substantially parallel with but slightly aback of the planar surface 84. When applying pressure in a vertical direction on the panel P1 to engage with panel P2 the surface 47 slides along the surface 86. Thus while the protrusion 28 is moving in a generally vertical direction more deeply into the recess 56 it is also being translated in a lateral direction toward the panel P2.
As the downward motion of the male protrusion 28 continues eventually the convex portion 86 on the common female surface 74 enters the recess 44 on the male common surface 42. It will be appreciated that this will result in a lateral translation of the male protrusion 28 away from the panel P2 and the inner most female surface 64. This translation provides a gap or space enabling easier entry of the protrusion 28 into the recess 56 and additionally easier entry of the protrusion 54 into the recess 30.
As the motion of the panels P1 and P2 toward each other continues the recess 44 passes the convex portion 86 so that the male protrusion 28 now commences lateral motion toward the panel P2 bringing the first male and female surfaces 36 and 64 closer together as well as the male and female engagement surfaces 40 and 72 closer together. Eventually the downward motion of the male part 12 into the female part 14 is arrested by the datum surface 34 contacting the datum surface 62. This provides depth control resulting in the surfaces 16 of the panels P1 and P2 being co-planar when the panels P1 and P2 are finally fully joined.
Simultaneous with this at the back end of the joint initially the protuberance 76 sits in the recess 50. Subsequently the protuberance 52 slides over the protuberance 76 and into the recess 78. There after the protuberance 52 engages the protuberance 80 and the protuberance 48 slides under the protuberance 76. This provides the primary vertical locking of the joint system 10a. The male protrusion 28 sits in the female recess 56 but the proximal male surface 36 is spaced from the proximal female surface 64 at the front end of the joint system. Thus ordinarily the when the joined panels are in the neutral plane and generally unstressed the front end of the joint system 10a does not provide a vertical lock.
From the above description it will be appreciated that when the male and female joints 12 and 14 are being joined while the predominant motion is a vertical motion there is also slight lateral movement toward, away and then again toward each other. This greatly assists in the joining or insertion process. This is particularly beneficial when the panels provided with the male and female joints 12 and 14 are made from a plastics or composite material such as luxury vinyl tile (LVT), wood plastic composite material (WPC), or other plastics/PVC materials. However, it is to be understood that embodiments of the vertical joint system 10 are not limited to such materials. For example other materials from which the panels P may be made include natural timber, manufactured wood, wood laminates, and synthetic materials. The male and female parts 12, 14 can be cut, milled, extruded, or molded, or a combination thereof, into the panels P depending on the materials from which they are made and required manufacturing tolerance.
Once a surface covering for example a floor made from panels joined with a vertical joint system is laid it is subjected to contraction and expansion mainly due to temperature variations. Also forces are applied by the action of people walking on the floor and furniture placed or moving on the floor. A common problem with jointed flooring panels particularly made from plastics material is gapping at the joint and self-disengagement due to the a protrusion rotating out of a recess.
In the present embodiment of the vertical joint system 10 gapping and self-disengagement is attempted to be avoided by the interaction between:
The interaction between the inner most male surface 40 and outer most female surface 72 in resisting disengagement arises initially from the contact between the protuberances 52 and 78 at the location L1. This presents the primary vertical disengagement mechanism. Forces which act to vertically separate coupled male and female parts 12, 14 may be initially resisted by the engagement of the surfaces at location L1.
Substantially simultaneously (or shortly thereafter if they are initially spaced apart) the surfaces 40 and 72 increase their contact against each other at the second location L2. This is also believed to causes a re-direction of the separating force in a plane perpendicular to the tangent plane T2 tending to close or at least resist the widening of the recess 56.
Finally depending on the magnitude on the force acting to cause vertical separation the interaction between the outermost male engagement surface 36 and the inner most female engagement surface 64 commences. In particular the nib 38 will engage the lower most recess 70 in response to any upward motion or rotation. This in itself creates fiction to arrest any further displacement. However should this occur then the nib 38 can successively engage in the recess 68 and thereafter the recess 66. Such engagements again add frictional force resisting separation of the engaged male and female parts 12 and 14.
However the joint 10a is designed to be able to be disengaged (for example for the purposes of repair of a floor covering) by application of a force in a direction perpendicular to the upper surface 16 and away from the lower surface 18. This is opposite to the direction of force required for the coupling of the joint system 10a. This is explained later with reference to
The joint system 10a has been described above in terms of a male part 12 with a protrusion 28 and recess 30 and a female part 14 with a protrusion 54 and a recess 56. However the vertical joint system 10a can also be described in terms of vertically engageable locking parts on at least two opposed sides of a panel P, the locking parts having proximal mutually receivable components near an edge of the upper surface of the panel P in which the vertical joint system 10a is provided, and distal mutually receivable components near an edge of the lower surface of the panel P. The proximal mutually receivable components are exemplified by and may have all the features of the male protrusion 28 and the female recess 56 described in relations to all of the presently disclosed embodiments. Both of these components are near the edge of the upper surface 16 of the panel in which the joint system 10a is formed. The distal mutually receivable components are exemplified by and may have all the features of the male recess 30 and the female protrusion 54 described in relations to all of the presently disclosed embodiments. Both of these components are near the edge Y of the lower surface 18 of the panel in which the joint system 10a is formed. The proximal components being the protrusion 28 and the recess 56 are formed on opposite sides of the same panel P. Likewise the distal components being the protrusion 54 and the recess 30 are formed on opposite sides of the same panel P.
When the joint system 10a is viewed as such proximal and distal mutually receivable components then it is also apparent that the components are configured so that when the respective locking parts of two panels with the same vertical locking system are engaged, the surface 72 on a side of one of the distal components 54 nearest the lower surface 18 overlies a surface 40 on a side of the other distal component 30 nearest the lower surface 18 at a first location L1 and a second location L2. All the full functionality and characteristic of the male and female parts 12, 14 apply to the system 10a when described in terms of the proximal and distal mutually receivable components; including for example the angular relationship between parts of the surfaces at the locations L1 and L2.
Broadly some embodiments of the disclosed vertical joint system may be described as follows:
The embodiment for the joint system 10e differs from the above only in relation to the feature at paragraph (b) where instead for the joint system 10e, at the distal end of the engaged joint the female part overlies the male part in at least one location L1 and/or L2; and there is a continuous gap is formed between the male and female part from the datum plane 62 to the lower surface 18 of the panels P1, P2. Thus there is no contact at L1 or L2 with the embodiment of vertical joint 10e.
In the above embodiments of joint systems 10a, 10b, 10c and 10d the male and female parts 12, 14 may be configured so that in the engaged joint a continuous gap is formed between the male part 12 and female part 14 from the datum surfaces 34, 62 to where the male part 12 contacts on overlying portion of the female part 14 such as for example at location L1 or L2. Although as previously described there can be two continuous gaps, one from the datum surfaces 34, 62 to an intermediate location where the common surface portions 42 and 74, and a second from the intermediate location to location L1 or L2.
It should be noted that the above description of replacement of the panel P1 is performed without the need to cut a corner of the panel P1a which is the practice with plastics panels having prior art joints particularly with tongue and groove lay-down joints. This practice is dangerous due to the use of very sharp knives (e.g. a box cutter) and also regularly results in the unintentional cutting of an otherwise undamaged panel. In that event a further panel needs to be replaced. Also the removal process does not cut or damage the vertical joints system 10 on the other panels. This enables the replacement panel P1a to be coupled to all of the surrounding panels P2-P7 by coupling of the respective male and female joints, without the need for adhesives and enabling the full reinstatement of the surface covering.
Whilst specific embodiments of the vertical joint system have been described it should be appreciated that the vertical joint system may be embodied in many other forms. For example while the panels P are describes as being of rectangular shape, they may take other polygonal shapes. Also the panels are not limited in use as floor covering panels. They may be used to cover other surfaces such as walls or ceilings. In one example the panels can be arranged as a wall covering without needing to be adhered to a wall by first fixing a rail along the top of the wall, fixing a first panel or line of end to end joined panels to the rail then using embodiments of the disclosed joint system to coupled subsequent rows of panels to cover the wall. This produces a suspended wall covering. Avoiding the use of adhesives eliminates damage to the underlying wall in the event that the wall covering is to be subsequently removed or replaced.
In other modifications or variations the panels may be provided with adhesive and preferably a re-stickable adhesive on the lower surface. The expression “re-stickable adhesive” throughout the specification and claims is intended to mean adhesive which is capable of being able to be removed and re-adhered, does not set or cure to a solid rigid mass and maintains long term (e.g. many years) characteristics of flexibility, elasticity and stickiness. The characteristic of being re-stickable is intended to mean that the adhesive when applied to a second surface can be subsequently removed by application of a pulling or shearing force and can subsequently be reapplied (for example up to ten times) without substantive reduction in the strength of the subsequent adhesive bond. Thus the adhesive provides a removable or non-permanent fixing. The characteristics of flexibility and elasticity require that the adhesive does not solidify, harden or cure but rather maintains a degree of flexibility, resilience and elasticity. Such adhesives are generally known as fugitive or “booger” glues and pressure sensitive hot melt glues. Examples of commercially available adhesives which may be incorporated in embodiments of the present invention includes, but are not limited to: SCOTCH-WELD™ Low Melt Gummy Glue; and GLUE DOTS™ from Glue Dots International of Wisconsin.
Also panels, particularly those made of plastics or polymer materials, provided with embodiments of the disclosed joint system 10a, 10b may be used as a substrate for another “face” panel such as but not limited to: ceramic tiles; natural stone tiles; metal panels; glass tiles and sheets; fiber cement tiles, boards or panels; and carpet tiles. Specifically such face panels can be permanently fixed to the underlying panels (substrates) to form a laminate product. This enables for example the installation of a floor that has the look and feel of a stone or ceramic tile floor but with the ability to easily replace a damaged tile in the same manner as described above in relation to the floor panels P. The face panels may also bear printed or sprayed on coating. For example a metal or fibre cement face panel may have a printed or sprayed on coating or surface decoration. In such embodiments a layer of reinforcing material such as a fiber reinforced composite material may be sandwiched between the substrate and the face panel to enhance rigidity. This may be beneficial for example where the face panel is made of a brittle material such as stone, ceramic or glass to assist in preventing cracking.
The surfaces 46 and 84 are described in this embodiment as being substantially perpendicular to the upper surface 16. However in other embodiments they may be inclined up to about 20° in the same direction as the angles θ and β, i.e. so that when inclined the surface 46 overlies the surface 86.
Further the ability of the male part 12 to move laterally toward, away from and then again toward an adjoining panel during the insertion process which facilitates ease of insertion may be achieved by in effect reversing the configuration of the male and female common surfaces 42 and 74 so that the convex portion 86 of the female protrusion 54 is replaced by a concave recess similar to the recess 42 while the recess 42 on the male protrusion 28 is in effect filled in so that the concave surface 47 extends continuously to the planar surface 46.
In the claims which follow, and in the preceding description, except where the context requires otherwise due to express language or necessary implication, the word “comprise” and variations such as “comprises” or “comprising” are used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in variations or embodiments of the joint system disclosed herein.
Number | Date | Country | Kind |
---|---|---|---|
2014903452 | Aug 2014 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2015/000531 | 8/31/2015 | WO | 00 |