This invention relates to growing plants in vertical stacks of pairs of plant platforms and light sources which when suspended provide space to receive seeds for germination and/or seedlings and plants to be grown.
The invention provides a method for growing plants in vertical stacks which includes the steps of: (i) providing vertically stacked horizontal pairs P of plant platforms with inverted light trays resting thereon, each light tray carrying growth promoting light sources; (ii) vertically raising the uppermost light tray a desired growing distance S above the uppermost plant platform; (iii) vertically raising the uppermost plant platform with the next-below light tray suspended thereunder a desired growing distance S above the next upper platform; (iv) repeating step (iii) in succession whereby a series of platforms with light trays suspended thereunder are vertically suspended and spaced a desired growing distance S from each other; and (v) adjusting the growing distance S to accommodate plant growth without re-suspending plant platforms by adjustably suspending the uppermost light tray and adjustably suspending the lower light trays from the plant platforms.
The invention also provides vertical apparatus for growing plants which includes: (i) a plurality of vertically stacked pairs P of plant platforms with inverted light trays resting thereon, each light tray carrying a growth promoting light source; (ii) means to vertically raise the uppermost light tray a desired growing distance S above the uppermost plant platform; (iii) means to vertically raise, in succession, the uppermost plant platform and each next below plant platform, each with the next-below light tray suspended thereunder, a desired growing distance S whereby a series of plant platforms with light trays suspended thereunder are vertically suspended and spaced a desired growing distance S from each other; and (iv) means to adjust the growing distance S to accommodate plant growth without re-suspending plant platforms by adjustably suspending the uppermost light tray from the means to vertically raise the uppermost light tray and adjustably suspending successively lower light trays from the plant platforms.
In a preferred embodiment plants to be grown are carried on plant trays which rest on watering tray and are watered aeroponically.
The following drawings show preferred embodiments and are not intended to restrict or otherwise limit the invention in any way. All known functional equivalents of components or elements disclosed or shown herein are within the intent and scope of the invention.
As shown in
Each light tray 14 carries downwardly facing growth promoting light sources such as banks of fluorescent tubes 50 (
Each pair P of platform 10 and light tray 14 are suspended from each other a desired growing distance S by chain 20 which engages bifurcated member 24 mounted on bracket 22 at the ends of each platform 10. The growing distance S can be adjusted by raising or lowering light tray 14 via brackets 16 to engage any of slots 18 without having to re-suspend platforms 10. In other words, once an initial space S is chosen and chain 20 is engaged by member 24 to define that spacing, the growing distance can be adjusted by moving light tray 14 up or down via bracket 16 and slots 18 without changing the chain distance between plant platforms 10.
Motors M via cable spools 36, pulleys 103 and cables 101 vertically raise the pairs P in succession thus creating space S which can accommodate watering trays 12 below each light tray 14.
Pulleys 103 are suspended from a frame comprising vertical supports 52 and horizontal support members 54 and 113. Pulleys 103 are mounted on cross member 105 via braces 107 (
Looking at
Thus plants can be grown hydroponically using perforated plant trays sitting on watering trays 12. In this case, water is fed to each tray 12 and contacts plant roots held in each plant tray. The top of the plants can also be misted in this embodiment. In a preferred embodiment, plants carried by lids 201 are watered aeroponically, with or without misting the tops of plants, by intermittently spraying water under each lid as is more full described herein.
Plant lids 201 comprise a top 151 with resilient plant holding apertures 155 and side walls 153.
Power lines 80 (
Looking at
Looking at
It is preferred to use a series of stages for growing crops according to the invention. Stage one involves seed germination in peat pucks under conditions of high humidity using humidity domes, for example. Sprouted seedlings are then grown to juvenile stage after removing humidity domes. Juvenile plants in peat pucks are inserted in holding apertures 155 in lids 201 (
Alternately, plant lid 201 can have a single distribution of plant apertures 155 with appropriate spacing to grow plants from insertion into the vertical farm through harvest without changing the number of plants in each lid.
Once pairs P are suspended as described herein, in a preferred embodiment, a hydraulic man-lift, or similar device, is used to place lids 201 with young plants on trays 12, adjust space S during the growing cycle and to remove lids 201 with mature plants from cropping. Watering trays 12 can be removed after cropping for washing or other maintenance and then replaced on suspended platforms 10.
When pairs P require maintenance after several growing cycles, motor M is reversed to lower platforms 10 in succession. Pairs of light trays 14 and platforms 10 and then are re-stacked to the position shown in
Alternatively, platforms 10 can be raised and lowered in sequence at a work station in which plant are inserted and removed. The location of the work station will normally at a comfortable height for workers to handle plant trays.
In operation, a preferred method for growing plants includes:
Of particular advantage is the ability to accommodate plant grown during the growing cycle without re-suspending pairs P. This is done using brackets 16 and slots 18 to move the light trays up and down to change the growing distance S without changing the chain distance between plant platforms 10.
Light trays 14 delivers growth promoting UV light during selected intervals to the plants growing in watering trays 12. The light source can be a fluorescent tube or tubes, a light emitting diode (LED), a high pressure sodium lamp, other metal halide lamps or an ordinary light bulb or bulbs.
LEDs allow remote control of the spectrum of light to accommodate and control specific stages of plant growth and development. LEDs draw approximately 25% less power than fluorescent lamps. This makes the use of solar power feasible which is especially beneficial in remote regions.
Basil grown from seed and safflower seeds grown from seedlings are examples of plants that can be grown in high yields according to the invention. The invention is especially suited for growing leafy green vegetables, tomatoes, fruits and berries such as strawberries and cutting flowers. The following is a representative list of crops that can be grown according to the invention:
The plants listed below express biocompounds native to them as secondary metabolites; genetic engineering of the plants is not involved.
Artemisia
Vincristine is used to treat leukemia, non-Hodgkin's lymphoma (becoming more common as AIDS patients live longer), Kaposi's Sarcoma, breast and lung cancers and certain other cancers. Vinblastine has been used for tumor treatment, and is recommended for generalized Hodgkin's disease and resistant choricarcinoma. See Jordan, M. A. and Wilson, L., Microtubules as a Target for Anticancer Drugs, Nature Reviews, 4 (April 2004) 253.
Vinblastine and vincristine used in combination chemotherapy has resulted in 80% remission in Hodgkin's disease, 99% remission in acute lymphocitic leukemia, 80% remission in Wilm's tumor, 70% remission in gestational choricarcinoma, and 50% remission in Burkitt's lymphoma. (See O'Reilly et al, National Tropical Botanical Garden website, Kalaheo, Hi. (www.ntbg.org)).
Transgenic or recombinant biopharmaceuticals, i.e., therapeutic biocompounds from foreign DNA inserted in a plant host such as tobacco, safflower and alfalfa can also be produced using the invention.
Recombinant biopharmaceuticals encompass a wide range of therapeutic proteins and subunit vaccines, and include biogeneric or biosimilar compounds such as insulin, erythropoietin (EPO), human growth hormone (somatropin) (hGH) and granulocyte colony-stimulating factor (G-CSF).
Natural biocompound producing plants such as medical marijuana can be grown and cultivated to advantage using the invention. Growing such plants under controlled conditions possible with the invention can result in an increase in compound expression with better consistency of expression. Moreover, purer compounds can be extracted from the plants when using the invention due to the absence of contaminants such as pesticide residues and toxins from disease and insect, bird and animal excretia found in plants grown in the field, and often in greenhouse plants.
Upon harvesting the plants cultivated using the invention, the compounds of interest can be extracted and purified using various separation technologies such as steam distillation, solvent extraction, filtration and chromatography. Examples of extraction of natural product compounds are contained in King, M. B. & Boft, T. R., eds., Extraction of Natural Products Using Near Critical Solvents, Glasgow: Blackie Academic & Professional (1993). An example of a chromatography process for purifying proteins from transgenic tobacco is described by Holler, Vaughan and Zhang, Polyethyleneimine Precipitation Versus Anion Exchange Chromatography in Fractionating Recombinant Glucuronidase from Transgenic Tobacco Extract, Journal of Chromatography A, 1142 (2007) 98-105.
The ability to confine the entire system allows for minimal or no product loss from rodents or insects. Plants are less likely to contract viruses than on the ground. A controlled environment allows the plants to grow in a sterile atmosphere reducing bacterial and pest infestation without the use of poisons or other insecticides or fungicides.
The invention is especially useful is providing a local source of fresh vegetables and fruit with low capital investment. Shipping costs are minimized and use of the arrays is not restricted by region or growing season: any location with a supply of water and power is suitable. Plants can be grown in accelerated growing cycles to meet everyday food needs as well as specialized requirements for specific needs such as by nutraceutical companies. World hunger needs can be addressed locally and high quality seedlings can be grown locally or on site for reforestation purposes. The demand for organically grown products is also met not only for foods but also for nonfood products like cosmetics and like products.
The invention also offers environmental advantages such as reduced fossil fuel use in transporting product to market, energy efficiency, reduced and negligible nutrient pollution, elimination of the use of toxic pesticides and fertilizers, controlled and reduced water usage and the reuse of abandoned or idle facilities.
The following examples are not intended to limit or restrict the invention in any way. In each example, plants were grown using the vertical apparatus shown in the drawings and described herein.
Fertilizers
For seed germination “Thrivealive B1 Green” manufactured by Technaflora Plant Products LTD. 1533 Broadway Street. #125 Port Couuitlam BC. Canada. V3C 6P3 ph (604) 468 4769.
TAB1-G 1-1-1 was mixed at a rate of 2 ml/L water.
For Growing a two-part fertilizer. “Poura Vida” manufactured by Technaflora Plant Products.
Grow 6-4-3 and Bloom 2-6-6 were mixed at a rate of 4 parts Grow to 1 part Bloom. 25 ppm soluble iron was added to the final mixture.
Conditions for Seed Germination.
Light Cycle 16 hrON and 8/hr OFF; 12 T96 fluorescent tubes per light tray.
Carbon dioxide levels were set to 650 ppm.
Ambient air temperature was 16 C during lights ON and 14.5 C during lights OFF.
Humidity was kept at 65%.
Reverse Osmosis water was used for germinating the seedlings and watering.
Filtered city water was used for mixed fertilizer spraying.
Germination
Day 1. Seventy trays were planted. Seeds were planted into 1.25 in. by 2 in. peat pucks hydrated in R/O water with the pH adjusted to 6.3. The seeded pucks were then watered, covered with humidity lids. The plant trays were placed on a watering tray with the lights set to the highest level.
Day 2-4. Humidity lids were changed daily and removed on day 4.
Day 5-7. The plants were sprayed once a day with TAB1-G at a pH of 6.3.
Day 8-16. The plants were sprayed two times a day with Poura Vida fertilizer mix at 450 ppm at a ph of 6.5.
Vertical Planting
Day 17. The plants were placed in neoprene collars and transplanted into the 96 plant lids. The lids were place in watering trays in the vertical the farm. Four lids were placed on each of 11 levels.
Day 18-38. The plants were watered aeroponically by spraying under the lids for 5 seconds every 6 minutes with the Poura Vida fertilizer mixed at 700 ppm with a pH of 6.3.
Harvest
Seven cases of spinach were harvested per level. Each case contained six 150 g clamshell packages or about 13.8 lbs of spinach in total.
Fertilizer
For seed germination “Thrivealive B1 Green” manufactured by Technaflora Plant Products. TAB1-G 1-1-1 mixed at a rate of 2 ml/L water. For Growing a two-part fertilizer. “Poura Vida” manufactured by Technaflora Plant products. Grow 6-4-3 and Bloom 2-6-6 mixed at a rate of 4 parts Grow to 1 part Bloom.
Conditions
Germination
Light Cycle16 hr ON and 8/hr OFF; 12 T96 fluorescent tubes per light tray.
No Carbon dioxide was used
Humidity 80%
In the Vertical Farm
Light Cycle 16 hr ON and 8/hr OFF
Carbon dioxide levels were set to 650 ppm.
Ambient air temperature was 1.6 C during lights ON and 14.5 C during lights OFF.
Humidity was kept at 65%.
Reverse Osmosis water was used for germinating the seedlings and watering.
Filtered city water was used for mixed fertilizer spraying.
Germination
Day 1. Thirty-two trays were planted. Seeds were planted into 1.25 in. by 2 in. peat pucks hydrated in R/O water with the pH adjusted to 5.8 the seeded pucks were then watered, covered with a humidity lid. The plant trays were placed on the watering tray with the lights set to the highest level.
Day 2-5. Humidity lids were changed daily and removed on day 5
Day 6-7. The plants were sprayed once a day with TAB1-G at a pH of 5.8
Day 8-16. The plants were sprayed two times a day with Poura Vida at 350 ppm at a ph of 5.8.
Vertical Planting
Day 17. The plants were placed in neoprene collars and transplanted into the 25 plant lids which were placed into the vertical farm with 4 lids on each of 11 levels.
Day 18-45. The plants were watered aeroponically by spraying under the lids for 5 seconds every 6 minutes with the Poura Vida fertilizer mixed at 700 ppm with a pH of 5.8.
Harvest
Twenty-five pounds of romaine lettuce were harvested from each level.
While this invention has been described as having preferred sequences, ranges, steps, materials, structures, features, and/or designs, it is understood that it is capable of further modifications, uses and/or adaptations of the invention following in general the principle of the invention, and including such departures from the present disclosure as those come within the known or customary practice in the art to which the invention pertains, and as may be applied to the central features hereinbefore set forth, and fall within the scope of the invention and of the limits of the appended claims.
The present application claims priority on prior U.S. Provisional Application Ser. No. 61/344,673, filed Sep. 9, 2010, which is hereby incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
3254448 | Ruthner | Jun 1966 | A |
3314192 | Park | Apr 1967 | A |
3339308 | Clare | Sep 1967 | A |
3664063 | Ware | May 1972 | A |
3906667 | Williams | Sep 1975 | A |
3909978 | Fleming | Oct 1975 | A |
D237898 | Austin | Dec 1975 | S |
4068405 | Campbell et al. | Jan 1978 | A |
4085544 | Blake | Apr 1978 | A |
4163342 | Fogg et al. | Aug 1979 | A |
4170844 | Steele | Oct 1979 | A |
4216617 | Schmidt | Aug 1980 | A |
4276720 | Lyon | Jul 1981 | A |
4317308 | Derrick et al. | Mar 1982 | A |
4332105 | Nir | Jun 1982 | A |
4514929 | Lestraden | May 1985 | A |
4521989 | Meyer | Jun 1985 | A |
4713909 | Roper et al. | Dec 1987 | A |
4813176 | Takayasu | Mar 1989 | A |
5042196 | Lukawski | Aug 1991 | A |
5555676 | Lund | Sep 1996 | A |
5673511 | Holtkamp, Jr. | Oct 1997 | A |
5826375 | Black | Oct 1998 | A |
5943818 | Fruehwirth | Aug 1999 | A |
5987812 | Knell | Nov 1999 | A |
6243985 | Miller | Jun 2001 | B1 |
6279263 | Lai | Aug 2001 | B1 |
6598339 | Bish et al. | Jul 2003 | B1 |
6612073 | Powell et al. | Sep 2003 | B1 |
6854209 | Van Horssen et al. | Feb 2005 | B2 |
7055282 | Bryan, III | Jun 2006 | B2 |
7415796 | Brusatore | Aug 2008 | B2 |
7516574 | Gottlieb et al. | Apr 2009 | B2 |
7533493 | Brusatore | May 2009 | B2 |
7559173 | Brusatore | Jul 2009 | B2 |
7818917 | Brusatore | Oct 2010 | B2 |
8151517 | Emoto | Apr 2012 | B2 |
8151518 | Adams et al. | Apr 2012 | B2 |
8533993 | Pettibone | Sep 2013 | B2 |
20060196118 | Brusatore | Sep 2006 | A1 |
20060230674 | Marchildon | Oct 2006 | A1 |
20070144069 | Gottlieb et al. | Jun 2007 | A1 |
20070251145 | Brusatore | Nov 2007 | A1 |
20080000152 | Shouse et al. | Jan 2008 | A1 |
20080110088 | Brusatore | May 2008 | A1 |
20080216403 | Schmidt et al. | Sep 2008 | A1 |
20080263949 | Early | Oct 2008 | A1 |
20090000189 | Black | Jan 2009 | A1 |
20090119987 | Ingrassia | May 2009 | A1 |
20090301979 | Tanaka et al. | Dec 2009 | A1 |
20090307973 | Adams et al. | Dec 2009 | A1 |
20100236147 | Brusatore | Sep 2010 | A1 |
20110120002 | Pettibone | May 2011 | A1 |
Number | Date | Country |
---|---|---|
11-289872 | Oct 1999 | JP |
WO2006096650 | Sep 2006 | WO |
WO2008156538 | Dec 2008 | WO |
WO2010110844 | Sep 2010 | WO |
Entry |
---|
PCT International Search Report and the Written Opinion in International App. No. PCT/US11/01507 dated Dec. 22, 2011 (8 pp.). |
http://www.hg-hydroponics.co.uk/vertical-growing-systems-85-c.asp (2 pp.). Accessed Jun. 12, 2009. |
easyhydroponics.net article 2007-2008 (Google) (2 pp.). |
Number | Date | Country | |
---|---|---|---|
20120060416 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61344673 | Sep 2010 | US |