Vertical motion compensation for a crane's load

Information

  • Patent Grant
  • 6505574
  • Patent Number
    6,505,574
  • Date Filed
    Wednesday, September 5, 2001
    23 years ago
  • Date Issued
    Tuesday, January 14, 2003
    22 years ago
Abstract
A method and system are provided for reducing sea state induced vertical motion of a shipboard crane's load. Sea state induced vertical velocity of the crane's suspended load is determined as a function of: i) the horizontal radial distance the load extends from the crane's axis of rotation, and ii) motion of the ship at the crane's axis of rotation. The load is then moved vertically at a speed that is defined as being equal to the vertical velocity in a direction that is opposite that of the vertical velocity.
Description




FIELD OF THE INVENTION




The invention relates generally to control systems for cranes, and more particularly to a method and system that compensates for vertical motion of a shipboard crane's load due to sea state conditions.




BACKGROUND OF THE INVENTION




Sea transportation of cargo is carried on throughout the world. In many applications, cargo transfer between ships, or from ships to piers, is supported by means of pedestal cranes mounted aboard a ship. Typically, these cranes hoist a load, pivot about a centerline of rotation, and then lower the load onto an awaiting deck or other platform. Such cargo transfer must be controlled by trained and experienced operators since the loads being manipulated are substantial. However, if cargo transfer is to be carried out in elevated sea states, i.e., in excess of sea state


1


, even the experienced crane operator may not be able to cope with vertical motion imparted to the load as the ship rolls, pitches and heaves.




SUMMARY OF THE INVENTION




Accordingly, it is an object of the present invention to provide a-method and system for reducing sea state induced vertical motion of a shipboard crane's load.




Another object of the present invention is to provide a method and system for use in combination with a crane operator's control inputs to reduce sea state induced vertical motion of a shipboard crane's load.




Other objects and advantages of the present invention will become more obvious hereinafter in the specification and drawings.




In accordance with the present invention, a method of and system are provided for reducing sea state induced vertical motion of a shipboard crane's load. The crane is mounted on a ship and is pivotable about an axis of rotation. The crane is capable of suspending a load at a horizontal radial distance from the crane's axis of rotation. Sea state induced vertical velocity of the load is determined as a function of the horizontal radial distance and motion of the ship at the crane's axis of rotation. Provisions are then made to move the load vertically at a speed that is defined as being equal to the vertical velocity in a direction that is opposite that of the vertical velocity.




The sea state induced vertical velocity of the load can be determined from the equation








y


(


dφ/dt


)−


x


(


dθ/dt


)+(


dz/dt


)






where y is a first vector component of the radial distance along a horizontal longitudinal axis of the ship passing through the crane's axis of rotation, x is a second vector component of the radial distance along a horizontal athwartship axis of the ship passing through the crane's axis of rotation, dφ/dt is a pitch rate of the ship about the horizontal athwartship axis, dθ/dt is a roll rate of the ship about the crane's horizontal longitudinal axis, and dz/dt is a heave rate of the ship at the crane's axis of rotation.











BRIEF DESCRIPTION OF THE DRAWINGS




Other objects, features and advantages of the present invention will become apparent upon reference to the following description of the preferred embodiments and to the drawings, wherein corresponding reference characters indicate corresponding parts throughout the several views of the drawings and wherein:





FIG. 1

is a perspective schematic view of a ship and a shipboard crane; and





FIG. 2

is a functional block diagram of a system in accordance with the present invention for reducing sea state induced vertical motion experienced by a shipboard crane's suspended load.











DETAILED DESCRIPTION OF THE INVENTION




Referring now to the drawings, and more particularly to

FIG. 1

, a ship


10


having a pedestal crane


12


mounted thereon is illustrated. Crane


12


is pivotally mounted to ship


10


such that it can pivot about an axis of rotation which, in

FIG. 1

, is represented by the z-axis. Crane


12


includes a main support


120


and a boom


121


hingedly coupled thereto at hinge point


122


. A hoisting system includes, for example, a hoist winch


123


for paying out or winding a cable


124


that is led over pulleys


125


and


126


, passes through a rider bock


127


, and terminates at a load


100


. Load


100


is suspended only by cable


124


. Such cranes are well known in the art.




An important geometric relationship utilized by the present invention is the radial distance r from the axis of rotation or z-axis to load


100


measured in the horizontal plane that is perpendicular to the z-axis. In

FIG. 1

, this horizontal plane is defined by the x and y axes where the x-axis is an athwartship axis passing through the axis of rotation or z-axis of crane


12


. The y-axis is parallel with the ship's longitudinal axis and is perpendicular to the x and z axes. The positive x-axis will be considered to extend to the starboard of ship


10


, the positive y-axis will be considered to extend to the bow of ship


10


, and the positive z-axis is considered to extend upward. Thus, the (x,y) components of radial distance r are








x=r


cos(α)










y=r


sin(α)






where α is the slew angle that boom


121


makes with the x-axis. By way of cenvention, slew angle a can be measured clockwise with respect to the positive x-axis.




In general, the present invention requires calculation of the vertical velocity of load


100


due to the motion of ship


10


/crane


12


which is induced by sea state conditions. This vertical velocity is calculated from measurements of the configuration of crane


12


and the motion of ship


10


. More specifically, crane configuration parameters include radial distance r and slew angle α. Ship motion parameters include the pitch rate of ship


10


about the x-axis, the roll rate of ship


10


about the y-axis, and the heave rate of ship


10


at the axis of rotation of crane


12


or the z-axis in FIG.


1


.




Once the vertical velocity of load


100


due to ship motion is determined, the present invention essentially commands crane


12


to move load.


100


vertically at a speed equal to the determined vertical velocity but in a (vertical) direction that is opposite that of the determined vertical velocity. In other words, the present invention nulls out the effects of the load's vertical velocity due to ship motion.




A system for carrying out the method of the present invention is illustrated in

FIG. 2

where like reference numerals are used for crane


12


. A slew angle sensor


20


can be coupled to the crane's swing gear (not shown) located in the base of crane


12


. Determination of radial distance r can be made by, for example, using winch encoders


22


and a boom angle sensor


24


. More specifically, winch encoders


22


are coupled to the crane's winches (e.g., hoist winch


123


) to provide a reading indicative of the amount of cable


124


paid out therefrom. The cable length(s) and boom angle are used to determine radial distance r in accordance with standard geometric principles as would be well understood in the art.




Ship motion sensors


26


provide the pitch, roll and heave rates of ship


10


at crane


12


described above. These rate measurements can be measured, for example, in the rotating base or turntable (not shown) of crane


12


and then correlated to the axis of rotation or z-axis of crane


12


.




Sensors


20


-


126


provide their various measurements to a processor


30


that determines the vertical velocity of load


100


due to the motion of ship


10


brought on by sea state conditions. In the x,y,z coordinate system described above, the vertical velocity of load


100


can be written as








v=y


(


dφ/dt


)−


x


(


dθ/dt


)+(


dz/dt


)






where v represents the vertical velocity of load


100


, dθ/dt is the pitch rate of ship


10


about the x-axis, dθ/dt is the roll rate of ship


10


about the y-axis, and dz/dt is the heave rate of ship


10


at the z-axis.




The speed value represented by vertical velocity v is subtracted from any crane operator inputs


32


to essentially null out the effects of sea state induced vertical motion (represented in

FIG. 2

by two-headed arrow


36


) on load


100


. A switch


34


can be included to allow an operator to selectively include the present invention in the control of hoist winch


123


. With switch


34


open vertical motion of load


100


is governed solely by crane operator inputs


32


and sea state induced vertical motion


36


. However, when switch


34


is closed, processor's


30


calculated vertical motion is subtracted from crane operator inputs


32


to null the effects of sea state included vertical motion


36


. That is, a control signal indicative of vertical speed of load


100


that is equal to and opposite of vertical motion


36


is combined with crane operator inputs


32


.




In practical sense, it is impossible to completely null out the effects of sea state induced vertical motion


36


. For this to occur, both the amplitude and phase of the response of the mechanism (e.g., hoist winch


123


) implementing the speed control (output by processor


30


) would have to match that of the control signal output by processor


30


. Since no physical system can be built without some error in amplitude and/or phase, it is expected that some portion of induced vertical motion


36


will always be present. However, tests of the present invention have achieved approximately an 80% reduction in induced vertical motion


36


.




The advantages of the present invention are numerous. Sea stated induced motion experienced by the suspended load of a shipboard crane can be substantially reduced by use of the present invention thereby allowing cargo transfer to take place safely. This will reduce the impact that weather currently has on cargo transfer operations.




Although the invention has been described relative to a specific embodiment thereof, there are numerous variations and modifications that will be readily apparent to those skilled in the art in light of the above teachings. For example, the various parameters in the calculation of vertical velocity v could be measured in manners other than described herein without departing from the scope of the present invention. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described.



Claims
  • 1. A method of reducing sea state induced vertical motion of a shipboard crane's load, comprising the steps of:providing a crane mounted on a ship and pivotable about an axis of rotation, said crane suspending a load at a horizontal radial distance from said axis of rotation; determining sea state induced vertical velocity of said load as a function of vector components of said horizontal radial distance and motion of said ship at said axis of rotation wherein said motion includes pitch, roll and heave rates of said ship at said axis of rotation; and moving said load vertically at a speed that is defined as being equal to said vertical velocity in a direction that is opposite that of said vertical velocity.
  • 2. A method according to claim 1 wherein said crane has a hoist for adjusting said load vertically, and wherein said step of moving comprises the step of driving said hoist at said speed.
  • 3. A method according to claim 1 wherein said step of moving includes the step of combining said speed with control inputs supplied to said crane by an operator thereof.
  • 4. A method of reducing sea state induced vertical motion of a shipboard crane's load, comprising the steps of:providing a crane mounted on a ship and pivotable about an axis of rotation, said crane suspending a load at a radial distance r from said axis of rotation; determining sea state induced vertical velocity v of said load where v=y(dφ/dt)−x(dθ/dt)+(dz/dt) where y is a first vector component of said radial distance r along a horizontal longitudinal axis of said ship passing through said axis of rotation, x is a second vector component of said radial distance r along a horizontal athwartship axis of said ship passing through said axis of rotation, dφ/dt is a pitch rate of said ship about said horizontal athwartship axis, dθ/dt is a roll rate of said ship about said horizontal longitudinal axis, and dz/dt is a heave rate of said ship at said axis of rotation; andmoving said load vertically at a speed that is defined as being equal to said vertical velocity in a direction that is opposite that of said vertical velocity.
  • 5. A method according to claim 4 wherein said step of moving includes the step of combining said speed with control inputs supplied to said crane by an operator thereof.
  • 6. A system for reducing sea state induced vertical motion of a load suspended a radial distance from an axis of rotation of a pivotable crane mounted on a ship, said system comprising:means for determining sea state induced vertical velocity of said load as a function of vector components of said radial distance and motion of said ship at said axis of rotation wherein said motion includes pitch, roll and heave rates of said ship at said axis of rotation; and means for moving said load vertically at a speed that is defined as being equal to said vertical velocity in a direction that is opposite that of said vertical velocity.
  • 7. A system as in claim 6 wherein said means for determining said vertical velocity comprises:means for determining a first vector component of said radial distance along a horizontal longitudinal axis of said ship passing through said axis of rotation; means for determining a second vector component of said radial distance along a horizontal athwartship axis of said ship passing through said axis of rotation; means for determining said pitch rate of said ship about said horizontal athwartship axis; means for determining said roll rate of said ship about said horizontal longitudinal axis; means for determining said heave rate of said ship at said axis of rotation; and processing means for calculating said vertical velocity of said load as v=y(dφ/dt)−x(dθ/dt)+(dz/dt)  where v is said vertical velocity, y is said first vector component, x is said second vector component, dφ/dt is said pitch rate, dθ/dt is said roll rate and dz/dt is said heave rate.
  • 8. A system as in claim 6 wherein said crane includes a hoist for raising and lowering said load predicated upon a hoist control input, and wherein said means for moving comprises means for adjusting said hoist control input to incorporate said speed.
ORIGIN OF THE INVENTION

The invention described herein was made in the performance of official duties by a employees of the Department of the Navy and may be manufactured, used, licensed by or for the Government for any governmental purpose without payment of any royalties thereon.

US Referenced Citations (6)
Number Name Date Kind
4147330 Eik Apr 1979 A
4238037 Azovtsev et al. Dec 1980 A
4327784 Denniston May 1982 A
4666357 Babbi May 1987 A
4932541 Belsterling Jun 1990 A
6082947 Adamson Jul 2000 A