Field of the Invention
The present invention generally relates to wireless communications. More specifically, the present invention relates to multiple-input multiple-output (MIMO) wireless antennas.
Description of the Prior Art
In wireless communications systems, there is an ever-increasing demand for higher data throughput and a corresponding drive to reduce interference that can disrupt data communications. For example, a wireless link in an Institute of Electrical and Electronic Engineers (IEEE) 802.11 network may be susceptible to interference from other access points and stations, other radio transmitting devices, and changes or disturbances in the wireless link environment between an access point and remote receiving node. In some instances, the interference may degrade the wireless link thereby forcing communication at a lower data rate. The interface may, however, be sufficiently strong as to disrupt the wireless link altogether.
One solution is to utilize a diversity antenna scheme. In such a solution, a data source is coupled to two or more physically separated omnidirectional antennas. An access point may select one of the omnidirectional antennas by which to maintain a wireless link. Because of the separation between the omnidirectional antennas, each antenna experiences a different signal environment and corresponding interference level with respect to the wireless link. A switching network couples the data source to whichever of the omnidirectional antennas experiences the least interference in the wireless link.
Diversity schemes are generally lacking in that typical omnidirectional antennas are vertically polarized. Vertically polarized radio frequency energy does not travel as efficiently as horizontally polarized energy with respect to a typical wireless environment (e.g., a home or office). Omnidirectional antennas also generally include an upright ‘wand’ attached to the access point. These wands are easily susceptible to breakage or damage. Omnidirectional antennas in a diversity scheme, too, may create interference amongst one another or be subject to the same interference source due to their physical proximity. As such, a diversity antenna scheme may fail to effectively reduce interference in a wireless link.
An alternative to a diversity antenna scheme involves beam steering of a controlled phase array antenna. A phased array antenna includes multiple stationary antenna elements that employ variable phase or time-delay control at each element to steer a beam to a given angle in space (i.e., beam steering). Phased array antennas are prohibitively expensive to manufacture. Phased array antennas, too, require a series of complicated phase tuning elements that may easily drift or otherwise become maladjusted over time.
Another attempt to improve the spectral efficiency of a wireless link includes the use of MIMO antenna architecture in an access point and/or receiving node. In a typical MIMO approach, multiple signals (two or more radio waveforms) are generated and transmitted in a single channel between the access point and the remote receiving node.
Data received into the access point 100 from, for example, a router connected to the Internet is encoded by a data encoder 105. Encoder 105 encodes the data into baseband signals for transmission to a MIMO-enabled remote receiving node. The parallel radio chains 110 and 111 generate two radio waveforms by digital-to-analog (D/A) conversion and upconversion. Upconversion may occur through the use of an oscillator driving a mixer and filter.
Each radio chain 110 and 111 in
Prior art MIMO antenna systems tend to use a number of whip antennas for a number of transmission side radios. The large number of whip antennas used in a prior art MIMO antenna system not only increase the probability that one or more of the antennas may be damaged during use but also creates unsightly ‘antenna farms.’ Such ‘farms’ are generally unsuitable for home or business applications where access points are generally desired, if not needed, to be as small and unobtrusive as possible.
There remains a need in the art for wireless communication providing increased data throughput and reduced interference. An access point offering said benefits should do so without sacrificing corresponding benefits related to size or manageability of the access point.
MIMO wireless technology uses multiple antennas at the transmitter and receiver to produce capacity gains over single-input single-output (SISO) systems using the same or approximately equivalent bandwidth and transmit power. The capacity of a MIMO system generally increases linearly with the number of antennas in the presence of a scattering-rich environment. MIMO antenna design reduces correlation between received signals by exploiting various forms of diversity that arise due to the presence of multiple antennas.
Embodiments of the present invention provide for high gain, multi-pattern MIMO antenna systems and antenna apparatus. These systems and apparatus may provide for multiple-polarization and omnidirectional coverage using multiple radios, which may be tuned to the same frequency. A MIMO antenna system or apparatus may be capable of generating a high-gain radiation pattern in a similar direction but having different polarizations. Each polarization may be communicatively coupled to a different radio. The antenna systems and apparatus may further be capable of generating high-gain patterns in different directions and that have different polarizations.
Embodiments may utilize one or more of three orthogonally located dipoles (and any related p-type, intrinsic, n-type (PIN) diodes) along the x-y-z-axes (as appropriate). The dipoles may be printed or fed and, in some embodiments, embedded in multilayer boards. Dipoles may be associated with reflector/director elements and the antenna may offer gain in all directions at differing polarizations. Each of the three dipoles may produce its own high gain pattern. A single antenna may feed a series of RF chains (e.g., 3 chains) utilizing, for example, a pigtail and associated switches like that shown in
Wireless MIMO antenna system 200 may include a communication device for generating a radio frequency (RF) signal (e.g., in the case of transmitting node). Wireless MIMO antenna system 200 may also or alternatively receive data from a router connected to the Internet. Wireless MIMO antenna system 200 may then transmit that data to one or more of the remote receiving nodes. For example, the data may be video data transmitted to a set-top box for display on a television or video display.
The wireless MIMO antenna system 200 may form a part of a wireless local area network (e.g., a mesh network) by enabling communications among several transmission and/or receiving nodes. Although generally described as transmitting to a remote receiving node, the wireless MIMO antenna system 200 of
Wireless MIMO antenna system 200 includes a data encoder 201 for encoding data into a format appropriate for transmission to the remote receiving node via parallel radios 220 and 221. While two radios are illustrated in
Radios 220 and 221 include transmitter or transceiver elements configured to upconvert the baseband data streams from the data encoder 201 to radio signals. Radios 220 and 221 thereby establish and maintain the wireless link. Radios 220 and 221 may include direct-to-RF upconverters or heterodyne upconverters for generating a first RF signal and a second RF signal, respectively. Generally, the first and second RF signals are at the same center frequency and bandwidth but may be offset in time or otherwise space-time coded.
Wireless MIMO antenna system 200 further includes a circuit (e.g., switching network) 230 for selectively coupling the first and second RF signals from the parallel radios 220 and 221 to an antenna apparatus 240 having multiple antenna elements 240A-F. Antenna elements 240A-F may include individually selectable antenna elements such that each antenna element 240A-F may be electrically selected (e.g., switched on or off). By selecting various combinations of the antenna elements 240A-F, the antenna apparatus 240 may form a “pattern agile” or reconfigurable radiation pattern. If certain or substantially all of the antenna elements 240A-F are switched on, for example, the antenna apparatus 240 may form an omnidirectional radiation pattern. Through the use of MIMO antenna architecture, the pattern may include both vertically and horizontally polarized energy, which may also be referred to as diagonally polarized radiation. Alternatively, the antenna apparatus 240 may form various directional radiation patterns, depending upon which of the antenna elements 240A-F are turned on.
Wireless MIMO antenna system 200 may also include a controller 250 coupled to the data encoder 201, the radios 220 and 221, and the circuit 230 via a control bus 255. The controller 250 may include hardware (e.g., a microprocessor and logic) and/or software elements to control the operation of the wireless MIMO antenna system 200.
The controller 250 may select a particular configuration of antenna elements 240A-F that minimizes interference over the wireless link to the remote receiving device. If the wireless link experiences interference, for example due to other radio transmitting devices, or changes or disturbances in the wireless link between the wireless MIMO antenna system 200 and the remote receiving device, the controller 250 may select a different configuration of selected antenna elements 240A-F via the circuit 230 to change the resulting radiation pattern and minimize the interference. For example, the controller 250 may select a configuration of selected antenna elements 240A-F corresponding to a maximum gain between the wireless system 200 and the remote receiving device. Alternatively, the controller 250 may select a configuration of selected antenna elements 240A-F corresponding to less than maximal gain, but corresponding to reduced interference in the wireless link.
Controller 250 may also transmit a data packet using a first subgroup of antenna elements 240A-F coupled to the radio 220 and simultaneously send the data packet using a second group of antenna elements 240A-F coupled to the radio 221. Controller 250 may change the group of antenna elements 240A-F coupled to the radios 220 and 221 on a packet-by-packet basis. Methods performed by the controller 250 with respect to a single radio having access to multiple antenna elements are further described in U.S. patent publication number US 2006-0040707 A1. These methods are also applicable to the controller 250 having control over multiple antenna elements and multiple radios.
A MIMO antenna apparatus may include a number of modified slot antennas and/or modified dipoles configured to transmit and/or receive horizontal polarization. The MIMO antenna apparatus may further include a number of modified dipoles to provide vertical polarization. Examples of such antennas include those disclosed in U.S. patent application Ser. No. 11/413,461. Each dipole and each slot provides gain (with respect to isotropic) and a polarized directional radiation pattern. The slots and the dipoles may be arranged with respect to each other to provide offset radiation patterns.
For example, if two or more of the dipoles are switched on, the antenna apparatus may form a substantially omnidirectional radiation pattern with vertical polarization. Similarly, if two or more of the slots are switched on, the antenna apparatus may form a substantially omnidirectional radiation pattern with horizontal polarization. Diagonally polarized radiation patterns may also be generated.
The antenna apparatus may easily be manufactured from common planar substrates such as an FR4 printed circuit board (PCB). The PCB may be partitioned into portions including one or more elements of the antenna apparatus, which portions may then be arranged and coupled (e.g., by soldering) to form a non-planar antenna apparatus having a number of antenna elements. In some embodiments, the slots may be integrated into or conformally mounted to a housing of the system, to minimize cost and size of the system, and to provide support for the antenna apparatus.
The first side of the substrate 220 includes a portion of a second slot antenna including fingers. The first side of the substrate 230 also includes a portion of a third slot antenna including fingers. As depicted, to minimize or reduce the size of the MIMO antenna apparatus, each of the slots includes fingers. The fingers (sometimes referred to as loading structures) may be configured to slow down electrons, changing the resonance of each slot, thereby making each of the slots electrically shorter. At a given operating frequency, providing the fingers allows the overall dimension of the slot to be reduced, and reduces the overall size of the MIMO antenna apparatus.
The first side of the substrate 240 includes a portion 380 of a third dipole and portion 350 of a fourth dipole. One or more of the dipoles may optionally include passive elements, such as a director 390 (only one director shown for clarity). Directors include passive elements that constrain the directional radiation pattern of the modified dipoles, for example to increase the gain of the dipole. Directors are described in more detail in U.S. Pat. No. 7,292,198.
The radio frequency feed port 340 and the coupling network of the antenna element selector are configured to selectively couple the communication device to one or more of the antenna elements. A person of ordinary skill—in light of the present specification—will appreciate that many configurations of the coupling network may be used to couple the radio frequency feed port 340 to one or more of the antenna elements.
The radio frequency feed port 340 is configured to receive an RF signal from and/or transmit an RF signal to the communication device, for example by an RF coaxial cable coupled to the radio frequency feed port 340. The coupling network is configured with DC blocking capacitors (not shown) and active RF switches 360 to couple the radio frequency feed port 340 to one or more of the antenna elements.
The RF switches 360 are depicted as PIN diodes, but may comprise RF switches such as gallium arsenide field-effect transistors (GaAs FETs) or virtually any RF switching device. The PIN diodes comprise single-pole single-throw switches to switch each antenna element either on or off (i.e., couple or decouple each of the antenna elements to the radio frequency feed port 340). A series of control signals may be applied via a control bus 370 to bias each PIN diode. With the PIN diode forward biased and conducting a DC current, the PIN diode switch is on, and the corresponding antenna element is selected. With the diode reverse biased, the PIN diode switch is off. In some embodiments, one or more light emitting diodes (LEDs) 375 may be included in the coupling network as a visual indicator of which of the antenna elements is on or off. An LED may be placed in circuit with the PIN diode so that the LED is lit when the corresponding antenna element is selected.
On the second side of the substrates 210-240, the antenna apparatus 110 includes ground components configured to ‘complete’ the dipoles and the slots on the first side of the substrates 210-240. For example, the portion of the dipole 320 on the first side of the substrate 210 (
Optionally, the second side of the substrates 210-240 may include passive elements for modifying the radiation pattern of the antenna elements. Such passive elements are described in detail in U.S. Pat. No. 7,292,198. Substrate 240 includes a reflector 390 as part of the ground component. The reflector 390 is configured to broaden the frequency response of the dipoles.
An aperture (slit) 420 of the substrate 220 is approximately the same width as the thickness of the substrate 210. The slit 420 is aligned to and slid over a tab 430 included on the substrate 210. The substrate 220 is affixed to the substrate 210 with electronic solder to the solder pads 440. The solder pads 440 are oriented on the substrate 210 to electrically and/or mechanically bond the slot antenna of the substrate 220 to the coupling network and/or the ground components of the substrate 210.
Alternatively, the substrate 220 may be affixed to the substrate 210 with conductive glue (e.g., epoxy) or a combination of glue and solder at the interface between the substrates 210 and 220. Affixing the substrate 220 to the substrate 210 with electronic solder at the solder pads 440 has the advantage of reducing manufacturing steps, since the electronic solder can provide both a mechanical bond and an electrical coupling between the slot antenna of the substrate 220 and the coupling network of the substrate 210.
To affix the substrate 230 to the substrate 210, an aperture (slit) 425 of the substrate 230 is aligned to and slid over a tab 435 included on the substrate 210. The substrate 230 is affixed to the substrate 210 with electronic solder to solder pads 445, conductive glue, or a combination of glue and solder.
To affix the substrate 240 to the substrate 210, a mechanical slit 450 of the substrate 240 is aligned with and slid over a corresponding slit 455 of the substrate 210. Solder pads (not shown) on the substrate 210 and the substrate 240 electrically and/or mechanically bond the dipoles of the substrate 240 to the coupling network and/or the ground components of the substrate 210.
Alternative embodiments may vary the dimensions of the antenna apparatus for operation at different operating frequencies and/or bandwidths. For example, with two radio frequency feed ports and two communications devices, the antenna apparatus may provide operation at two center frequencies and/or operating bandwidths. Further, to minimize or reduce the size of the antenna apparatus, the dipoles may optionally incorporate one or more fingers/loading structures as described in U.S. patent publication number US-2006-0038735 and that slow down electrons, changing the resonance of the dipole, thereby making the dipole electrically shorter. At a given operating frequency, providing the finger/loading structures allows the dimensions of the dipole to be reduced. To still further reduce the size of the antenna apparatus, the ½-wavelength slots may be “truncated” to create, for example, ¼-wavelength modified slot antennas. The ¼-wavelength slots provide a different radiation pattern than the ½-wavelength slots.
Although the antenna apparatus has been described here as having four dipoles and three slots, more or fewer antenna elements are also contemplated and may depend upon a particular MIMO antenna configuration. One skilled in the art—and in light of the present specification—will appreciate that providing more antenna elements of a particular configuration (more dipoles, for example), yields a more configurable radiation pattern formed by the antenna apparatus. An advantage of the foregoing is that in some embodiments the antenna elements of the antenna apparatus may each be selectable and may be switched on or off to form various combined radiation patterns for the antenna apparatus.
Further, the antenna apparatus may include switching at RF as opposed to switching at baseband. Switching at RF means that the communication device requires only one RF up/downconverter. Switching at RF also requires a significantly simplified interface between the communication device and the antenna apparatus. For example, the antenna apparatus provides an impedance match under all configurations of selected antenna elements, regardless of which antenna elements are selected.
An advantage of the foregoing is that the antenna apparatus or elements thereof may be embodied in a three-dimensional manufactured structure as described with respect to various MIMO antenna configurations. In these MIMO antenna systems, multiple parallel communication devices may be coupled to the antenna apparatus. In such an embodiment, the horizontally polarized slots of the antenna apparatus may be coupled to a first of the communication devices to provide selectable directional radiation patterns with horizontal polarization, and the vertically polarized dipoles may be coupled to the second of the communication devices to provide selectable directional radiation patterns with vertical polarization. The antenna feed port 340 and associated coupling network of
Parasitic elements may be positioned about the dipoles of the antenna apparatus of
The end-fire Yagis of
For vertical polarization, three parallel PCBs may be used with etched elements. The middle vertical PCB may be driven with two switched reflectors. The remaining two PCBs may contain the reflector elements, spaced such that PIN diode switches can go onto the main, horizontal board. High gain switched omnidirectional coverage may be obtained in this manner for all polarizations. Alternatively, high gain patterns may be in the same or differing directions.
The invention has been described herein in terms of several preferred embodiments. Other embodiments of the invention, including alternatives, modifications, permutations and equivalents of the embodiments described herein, will be apparent to those skilled in the art from consideration of the specification, study of the drawings, and practice of the invention. The embodiments and preferred features described above should be considered exemplary, with the invention being defined by the appended claims, which therefore include all such alternatives, modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.
This application is a continuation and claims the priority benefit of U.S. patent application Ser. No. 11/938,240 filed Nov. 9, 2007 now U.S. Pat. No. 7,646,343 and entitled “Multiple-Input Multiple-Output Wireless Antennas,” which claims the priority benefit of U.S. provisional patent application No. 60/865,148 filed Nov. 9, 2006 and entitled “Multiple Input Multiple Output (MIMO) Antenna Configurations”; U.S. patent application Ser. No. 11/938,240 is also a continuation-in-part and claims the priority benefit of U.S. patent application Ser. No. 11/413,461 filed Apr. 28, 2006 now U.S. Pat. No. 7,358,912 and entitled “Coverage Antenna with Selectable Horizontal and Vertical Polarization Elements,” which claims the priority benefit of U.S. provisional patent application No. 60/694,101 filed Jun. 24, 2005. The disclosure of each of the aforementioned applications is incorporated herein by reference. This application is related to U.S. patent application Ser. No. 11/041,145 entitled “System and Method for a Minimized Antenna Apparatus with Selectable Elements”; U.S. patent application Ser. No. 11/022,080 entitled “Circuit Board having a Peripheral Antenna Apparatus with Selectable Antenna Elements”; U.S. patent application Ser. No. 11/010,076 entitled “System and Method for an Omnidirectional Planar Antenna Apparatus with Selectable Elements”; U.S. patent application Ser. No. 11/180,329 entitled “System and Method for Transmission Parameter Control for an Antenna Apparatus with Selectable Elements”; U.S. patent application Ser. No. 11/190,288 entitled “Wireless System Having Multiple Antennas and Multiple Radios”; and U.S. patent application Ser. No. 11/646,136 entitled “Antennas with Polarization Diversity.” The disclosure of each of the aforementioned applications is also incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
723188 | Tesla | Mar 1903 | A |
725605 | Tesla | Apr 1903 | A |
1869659 | Broertjes | Aug 1932 | A |
2292387 | Markey et al. | Aug 1942 | A |
3488445 | Chang | Jan 1970 | A |
3568105 | Felsenheld | Mar 1971 | A |
3918059 | Adrian | Nov 1975 | A |
3922685 | Opas | Nov 1975 | A |
3967067 | Potter | Jun 1976 | A |
3982214 | Burns | Sep 1976 | A |
3991273 | Mathes | Nov 1976 | A |
4001734 | Burns | Jan 1977 | A |
4176356 | Foster et al. | Nov 1979 | A |
4193077 | Greenberg et al. | Mar 1980 | A |
4253193 | Kennard | Feb 1981 | A |
4305052 | Baril et al. | Dec 1981 | A |
4513412 | Cox | Apr 1985 | A |
4554554 | Olesen et al. | Nov 1985 | A |
4733203 | Ayasli | Mar 1988 | A |
4814777 | Monser | Mar 1989 | A |
4845507 | Archer et al. | Jul 1989 | A |
5063574 | Moose | Nov 1991 | A |
5097484 | Akaiwa | Mar 1992 | A |
5173711 | Takeuchi et al. | Dec 1992 | A |
5203010 | Felix | Apr 1993 | A |
5208564 | Burns et al. | May 1993 | A |
5220340 | Shafai | Jun 1993 | A |
5282222 | Fattouche et al. | Jan 1994 | A |
5291289 | Hulyalkar et al. | Mar 1994 | A |
5311550 | Fouche et al. | May 1994 | A |
5373548 | McCarthy | Dec 1994 | A |
5507035 | Bantz | Apr 1996 | A |
5532708 | Krenz et al. | Jul 1996 | A |
5559800 | Mousseau et al. | Sep 1996 | A |
5610617 | Gans et al. | Mar 1997 | A |
5629713 | Mailandt et al. | May 1997 | A |
5754145 | Evans | May 1998 | A |
5767755 | Kim et al. | Jun 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5786793 | Maeda et al. | Jul 1998 | A |
5802312 | Lazaridis et al. | Sep 1998 | A |
5964830 | Durett | Oct 1999 | A |
5990838 | Burns et al. | Nov 1999 | A |
6006075 | Smith et al. | Dec 1999 | A |
6011450 | Miya | Jan 2000 | A |
6018644 | Minarik | Jan 2000 | A |
6031503 | Preiss, II et al. | Feb 2000 | A |
6034638 | Thiel et al. | Mar 2000 | A |
6052093 | Yao et al. | Apr 2000 | A |
6091364 | Murakami et al. | Jul 2000 | A |
6094177 | Yamamoto | Jul 2000 | A |
6097347 | Duan et al. | Aug 2000 | A |
6101397 | Grob et al. | Aug 2000 | A |
6104356 | Hikuma et al. | Aug 2000 | A |
6169523 | Ploussios | Jan 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6292153 | Aiello et al. | Sep 2001 | B1 |
6307524 | Britain | Oct 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6323810 | Poilasne et al. | Nov 2001 | B1 |
6326922 | Hegendoerfer | Dec 2001 | B1 |
6337628 | Campana, Jr. | Jan 2002 | B2 |
6337668 | Ito et al. | Jan 2002 | B1 |
6339404 | Johnson et al. | Jan 2002 | B1 |
6345043 | Hsu | Feb 2002 | B1 |
6356242 | Ploussios | Mar 2002 | B1 |
6356243 | Schneider et al. | Mar 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6377227 | Zhu et al. | Apr 2002 | B1 |
6392610 | Braun et al. | May 2002 | B1 |
6404386 | Proctor, Jr. et al. | Jun 2002 | B1 |
6407719 | Ohira et al. | Jun 2002 | B1 |
RE37802 | Fattouche et al. | Jul 2002 | E |
6414647 | Lee | Jul 2002 | B1 |
6424311 | Tsai et al. | Jul 2002 | B1 |
6442507 | Skidmore et al. | Aug 2002 | B1 |
6445688 | Garces et al. | Sep 2002 | B1 |
6452981 | Raleigh | Sep 2002 | B1 |
6456242 | Crawford | Sep 2002 | B1 |
6493679 | Rappaport et al. | Dec 2002 | B1 |
6496083 | Kushitani et al. | Dec 2002 | B1 |
6498589 | Horii | Dec 2002 | B1 |
6499006 | Rappaport et al. | Dec 2002 | B1 |
6507321 | Oberschmidt et al. | Jan 2003 | B2 |
6531985 | Jones et al. | Mar 2003 | B1 |
6583765 | Schamberger et al. | Jun 2003 | B1 |
6586786 | Kitazawa et al. | Jul 2003 | B2 |
6611230 | Phelan | Aug 2003 | B2 |
6621464 | Fang | Sep 2003 | B1 |
6625454 | Rappaport et al. | Sep 2003 | B1 |
6633206 | Kato | Oct 2003 | B1 |
6642889 | McGrath | Nov 2003 | B1 |
6674459 | Ben-Shachar et al. | Jan 2004 | B2 |
6701522 | Rubin et al. | Mar 2004 | B1 |
6724346 | Le Bolzer | Apr 2004 | B2 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6741219 | Shor | May 2004 | B2 |
6747605 | Lebaric | Jun 2004 | B2 |
6753814 | Killen et al. | Jun 2004 | B2 |
6762723 | Nallo et al. | Jul 2004 | B2 |
6774846 | Fullerton et al. | Aug 2004 | B2 |
6779004 | Zintel | Aug 2004 | B1 |
6801790 | Rudrapatna | Oct 2004 | B2 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6839038 | Weinstein | Jan 2005 | B2 |
6859176 | Choi | Feb 2005 | B2 |
6859182 | Horii | Feb 2005 | B2 |
6876280 | Nakano | Apr 2005 | B2 |
6876836 | Lin et al. | Apr 2005 | B2 |
6888504 | Chiang et al. | May 2005 | B2 |
6888893 | Li et al. | May 2005 | B2 |
6892230 | Gu et al. | May 2005 | B1 |
6903686 | Vance et al. | Jun 2005 | B2 |
6906678 | Chen | Jun 2005 | B2 |
6910068 | Zintel et al. | Jun 2005 | B2 |
6914581 | Popek | Jul 2005 | B1 |
6924768 | Wu et al. | Aug 2005 | B2 |
6931429 | Gouge et al. | Aug 2005 | B2 |
6941143 | Mathur | Sep 2005 | B2 |
6943749 | Paun | Sep 2005 | B2 |
6950019 | Bellone et al. | Sep 2005 | B2 |
6950069 | Gaucher et al. | Sep 2005 | B2 |
6961026 | Toda | Nov 2005 | B2 |
6961028 | Joy et al. | Nov 2005 | B2 |
6965353 | Shirosaka et al. | Nov 2005 | B2 |
6973622 | Rappaport et al. | Dec 2005 | B1 |
6975834 | Forster | Dec 2005 | B1 |
6980782 | Braun et al. | Dec 2005 | B1 |
7023909 | Adams et al. | Apr 2006 | B1 |
7034769 | Surducan et al. | Apr 2006 | B2 |
7034770 | Yang et al. | Apr 2006 | B2 |
7039363 | Kasapi et al. | May 2006 | B1 |
7043277 | Pfister | May 2006 | B1 |
7050809 | Lim | May 2006 | B2 |
7053844 | Gaucher et al. | May 2006 | B2 |
7064717 | Kaluzni et al. | Jun 2006 | B2 |
7075485 | Song et al. | Jul 2006 | B2 |
7084823 | Caimi et al. | Aug 2006 | B2 |
7085814 | Ghandi et al. | Aug 2006 | B1 |
7088299 | Siegler et al. | Aug 2006 | B2 |
7089307 | Zintel et al. | Aug 2006 | B2 |
7130895 | Zintel et al. | Oct 2006 | B2 |
7171475 | Weisman et al. | Jan 2007 | B2 |
7193562 | Shtrom et al. | Mar 2007 | B2 |
7277063 | Shirosaka et al. | Oct 2007 | B2 |
7308047 | Sadowsky | Dec 2007 | B2 |
7312762 | Puente Ballarda et al. | Dec 2007 | B2 |
7319432 | Andersson | Jan 2008 | B2 |
7362280 | Shtrom et al. | Apr 2008 | B2 |
7424298 | Lastinger et al. | Sep 2008 | B2 |
7493143 | Jalali | Feb 2009 | B2 |
7498996 | Shtrom et al. | Mar 2009 | B2 |
7525486 | Shtrom et al. | Apr 2009 | B2 |
7603141 | Dravida | Oct 2009 | B2 |
7646343 | Shtrom et al. | Jan 2010 | B2 |
7675474 | Shtrom et al. | Mar 2010 | B2 |
7696943 | Chiang | Apr 2010 | B2 |
7880683 | Shtrom et al. | Feb 2011 | B2 |
7899497 | Kish et al. | Mar 2011 | B2 |
7965252 | Shtrom et al. | Jun 2011 | B2 |
8031129 | Shtrom et al. | Oct 2011 | B2 |
20010046848 | Kenkel | Nov 2001 | A1 |
20020031130 | Tsuchiya et al. | Mar 2002 | A1 |
20020047800 | Proctor, Jr. et al. | Apr 2002 | A1 |
20020054580 | Strich et al. | May 2002 | A1 |
20020080767 | Lee | Jun 2002 | A1 |
20020084942 | Tsai et al. | Jul 2002 | A1 |
20020084943 | Tsai et al. | Jul 2002 | A1 |
20020101377 | Crawford | Aug 2002 | A1 |
20020105471 | Kojima et al. | Aug 2002 | A1 |
20020112058 | Weisman et al. | Aug 2002 | A1 |
20020158798 | Chiang et al. | Oct 2002 | A1 |
20020170064 | Monroe et al. | Nov 2002 | A1 |
20030026240 | Eyuboglu et al. | Feb 2003 | A1 |
20030030588 | Kalis et al. | Feb 2003 | A1 |
20030063591 | Leung et al. | Apr 2003 | A1 |
20030122714 | Wannagot et al. | Jul 2003 | A1 |
20030169330 | Ben-Shachar et al. | Sep 2003 | A1 |
20030184490 | Raiman et al. | Oct 2003 | A1 |
20030189514 | Miyano et al. | Oct 2003 | A1 |
20030189521 | Yamamoto et al. | Oct 2003 | A1 |
20030189523 | Ojantakanen et al. | Oct 2003 | A1 |
20030210207 | Suh et al. | Nov 2003 | A1 |
20030227414 | Saliga et al. | Dec 2003 | A1 |
20040014432 | Boyle | Jan 2004 | A1 |
20040017310 | Runkle et al. | Jan 2004 | A1 |
20040017860 | Liu | Jan 2004 | A1 |
20040027291 | Zhang et al. | Feb 2004 | A1 |
20040027304 | Chiang et al. | Feb 2004 | A1 |
20040032378 | Volman et al. | Feb 2004 | A1 |
20040036651 | Toda | Feb 2004 | A1 |
20040036654 | Hsieh | Feb 2004 | A1 |
20040041732 | Aikawa et al. | Mar 2004 | A1 |
20040048593 | Sano | Mar 2004 | A1 |
20040058690 | Ratzel et al. | Mar 2004 | A1 |
20040061653 | Webb et al. | Apr 2004 | A1 |
20040070543 | Masaki | Apr 2004 | A1 |
20040080455 | Lee | Apr 2004 | A1 |
20040080456 | Tran | Apr 2004 | A1 |
20040095278 | Kanemoto et al. | May 2004 | A1 |
20040114535 | Hoffmann et al. | Jun 2004 | A1 |
20040125777 | Doyle et al. | Jul 2004 | A1 |
20040137864 | Hwang | Jul 2004 | A1 |
20040145528 | Mukai et al. | Jul 2004 | A1 |
20040160376 | Hornsby et al. | Aug 2004 | A1 |
20040190477 | Olson et al. | Sep 2004 | A1 |
20040203347 | Nguyen | Oct 2004 | A1 |
20040227669 | Okado | Nov 2004 | A1 |
20040260800 | Gu et al. | Dec 2004 | A1 |
20050003865 | Lastinger et al. | Jan 2005 | A1 |
20050022210 | Zintel et al. | Jan 2005 | A1 |
20050041739 | Li et al. | Feb 2005 | A1 |
20050042988 | Hoek et al. | Feb 2005 | A1 |
20050048934 | Rawnick et al. | Mar 2005 | A1 |
20050074018 | Zintel et al. | Apr 2005 | A1 |
20050097503 | Zintel et al. | May 2005 | A1 |
20050104777 | Smith | May 2005 | A1 |
20050105632 | Catreux-Erces et al. | May 2005 | A1 |
20050128983 | Kim et al. | Jun 2005 | A1 |
20050135480 | Li et al. | Jun 2005 | A1 |
20050138137 | Encarnacion et al. | Jun 2005 | A1 |
20050138193 | Encarnacion et al. | Jun 2005 | A1 |
20050146475 | Bettner et al. | Jul 2005 | A1 |
20050180381 | Retzer et al. | Aug 2005 | A1 |
20050188193 | Kuehnel et al. | Aug 2005 | A1 |
20050226277 | Li et al. | Oct 2005 | A1 |
20050240665 | Gu et al. | Oct 2005 | A1 |
20050266902 | Khatri | Dec 2005 | A1 |
20050267935 | Gandhi et al. | Dec 2005 | A1 |
20060007891 | Aoki et al. | Jan 2006 | A1 |
20060038734 | Shtrom et al. | Feb 2006 | A1 |
20060050005 | Shirosaka et al. | Mar 2006 | A1 |
20060078066 | Yun | Apr 2006 | A1 |
20060094371 | Nguyen | May 2006 | A1 |
20060098607 | Zeng et al. | May 2006 | A1 |
20060105730 | Modonesi et al. | May 2006 | A1 |
20060120311 | Berkovich | Jun 2006 | A1 |
20060123124 | Weisman et al. | Jun 2006 | A1 |
20060123125 | Weisman et al. | Jun 2006 | A1 |
20060123455 | Pai et al. | Jun 2006 | A1 |
20060160495 | Strong | Jul 2006 | A1 |
20060168159 | Weisman et al. | Jul 2006 | A1 |
20060184660 | Rao et al. | Aug 2006 | A1 |
20060184661 | Weisman et al. | Aug 2006 | A1 |
20060184693 | Rao et al. | Aug 2006 | A1 |
20060224690 | Falkenburg et al. | Oct 2006 | A1 |
20060225107 | Seetharaman et al. | Oct 2006 | A1 |
20060227761 | Scott, III et al. | Oct 2006 | A1 |
20060239369 | Lee | Oct 2006 | A1 |
20060262015 | Thornell-Pers et al. | Nov 2006 | A1 |
20060291434 | Gu et al. | Dec 2006 | A1 |
20070027622 | Cleron et al. | Feb 2007 | A1 |
20070135167 | Liu | Jun 2007 | A1 |
20070162819 | Kawamoto | Jul 2007 | A1 |
20110205137 | Shtrom et al. | Aug 2011 | A1 |
20150311599 | Shtrom et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
103268980 | Aug 2013 | CN |
352787 | Jan 1990 | EP |
0 534 612 | Mar 1993 | EP |
0756381 | Jan 1997 | EP |
1152542 | Nov 2001 | EP |
1 376 920 | Jun 2002 | EP |
1 220 461 | Jul 2002 | EP |
1 315 311 | May 2003 | EP |
1 450 521 | Aug 2004 | EP |
1 608 108 | Dec 2005 | EP |
1 152 453 | Nov 2011 | EP |
1 964 209 | Feb 2015 | EP |
03038933 | Feb 1991 | JP |
2008088633 | Feb 1996 | JP |
11215040 | Aug 1999 | JP |
200105760 | Jan 2001 | JP |
2001057560 | Feb 2002 | JP |
2005354249 | Dec 2005 | JP |
2006060408 | Mar 2006 | JP |
WO 9004893 | May 1990 | WO |
WO9837590 | Aug 1998 | WO |
WO 0225967 | Mar 2002 | WO |
WO 03079484 | Sep 2003 | WO |
WO 2006023247 | Mar 2006 | WO |
WO 2007076105 | May 2007 | WO |
Entry |
---|
Ken Tang, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks,” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548. |
Ken Tang, et al., “MAC Reliable Broadcast in Ad Hoc Networks,” Computer Science Department, University of California, Los Angeles, 2001 IEEE, pp. 1008-1013. |
Vincent D. Park, et al., “A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598. |
Ian F. Akyildiz, et al., “A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks,” Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology. |
Dell Inc., “How Much Broadcast and Multicast Traffic Should I Allow in My Network,” PowerConnect Application Note #5, Nov. 2003. |
Toskala, Antti, “Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN,” Nokia Networks, Palm Springs, California, Mar. 13-16, 2001. |
Microsoft Corporation, “IEEE 802.11 Networks and Windows XP,” Windows Hardware Developer Central, Dec. 4, 2001. |
Festag, Andreas, “What is Mombasa?” Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002. |
Hewlett Packard, “HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions,” 2003. |
Dutta, Ashutosh et al., “MarconiNet Supporting Streaming Media Over Localized Wireless Multicast,” Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002. |
Dunkels, Adam et al., “Making TCP/IP Viable for Wireless Sensor Networks,” Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004. |
Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004. |
Cisco Systems, “Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service,” Aug. 2003. |
Hirayama, Koji et al., “Next-Generation Mobile-Access IP Network,” Hitachi Review vol. 49, No. 4, 2000. |
Pat Calhoun et al., “802.11r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005, http://www.networkworld.com/news/tech/2005/082208techupdate.html. |
Areg Alimian et al., “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004. |
Information Society Technologies Ultrawaves, “System Concept / Architecture Design and Communication Stack Requirement Document,” Feb. 23, 2004. |
Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands,” Cambridge University Press, 2006. |
Mawa, Rakesh, “Power Control in 3G Systems,” Hughes Systique Corporation, Jun. 28, 2006. |
Wennstrom, Mattias et al., “Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference,” 2001. |
“Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations,” Rules and Regulations Federal Communications Commission, 47 CFR Part 2, 15, and 90, Jun. 18, 1985. |
“Authorization of spread spectrum and other wideband emissions not presently provided for in the FCC Rules and Regulations,” Before the Federal Communications Commission, FCC 81-289, 87 F.C.C.2d 876, Jun. 30, 1981. |
RL Miller, “4.3 Project X-A True Secrecy System for Speech,” Engineering and Science in the Bell System, A History of Engineering and Science in the Bell System National Service in War and Peace (1925-1975), pp. 296-317, 1978, Bell Telephone Laboratories, Inc. |
Chang, Robert W., “Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission,” The Bell System Technical Journal, Dec. 1966, pp. 1775-1796. |
Cimini, Jr., Leonard J, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. Com-33, No. 7, Jul. 1985, pp. 665-675. |
Saltzberg, Burton R., “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology, vol. Com-15, No. 6, Dec. 1967, pp. 805-811. |
Weinstein, S. B., et al., “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communication Technology, vol. Com-19, No. 5, Oct. 1971, pp. 628-634. |
Moose, Paul H., “Differential Modulation and Demodulation of Multi-Frequency Digital Communications Signals,” 1990 IEEE,CH2831-6/90/0000-0273. |
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels-Part I: Analysis and Experimental Results,” IEEE Transactions on Communications, vol. 39, No. 5, May 1991, pp. 783-793. |
Casas, Eduardo F., et al., “OFDM for Data Communication over Mobile Radio FM Channels; Part II: Performance Improvement,” Department of Electrical Engineering, University of British Columbia. |
Chang, Robert W., et al., “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme,” IEEE Transactions on Communication Technology, vol. Com-16, No. 4, Aug. 1968, pp. 529-540. |
Gledhill, J. J., et al., “The Transmission of Digital Television in the UHF Band Using Orthogonal Frequency Division Multiplexing,” Sixth International Conference on Digital Processing of Signals in Communications, Sep. 2-6, 1991, pp. 175-180. |
Alard, M., et al., “Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers,” 8301 EBU Review Technical, Aug. 1987, No. 224, Brussels, Belgium. |
Berenguer, Inaki, et al., “Adaptive MIMO Antenna Selection,” Nov. 2003. |
Gaur, Sudhanshu, et al., “Transmit/Receive Antenna Selection for MIMO Systems to Improve Error Performance of Linear Receivers,” School of ECE, Georgia Institute of Technology, Apr. 4, 2005. |
Sadek, Mirette, et al., “Active Antenna Selection in Multiuser MIMO Communications,” IEEE Transactions on Signal Processing, vol. 55, No. 4, Apr. 2007, pp. 1498-1510. |
Molisch, Andreas F., et al., “MIMO Systems with Antenna Selection—an Overview,” Draft, Dec. 31, 2003. |
Steger, Christopher et al., “Performance of IEEE 802.11b Wireless LAN in an Emulated Mobile Channel,” 2003. |
Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access,” Sep. 2007. |
Tsunekawa, Kouichi, “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology Conference, pp. 50-56, vol. I, Gateway to New Concepts in Vehicular Technology, May 1-3, 1989, San Francisco, CA. |
Ando et al., “Study of Dual-Polarized Omni-Directional Antennas for 5.2 GHz-Band 2x2 MIMO-OFDM Systems,” Antennas and Propogation Society International Symposium, 2004, IEEE, pp. 1740-1743 vol. 2. |
Bedell, Paul, “Wireless Crash Course,” 2005, p. 84, The McGraw-Hill Companies, Inc., USA. |
Petition Decision Denying Request to Order Additional Claims for U.S. Pat. No. 7,193,562 (U.S. Appl. No. 95/001,078) mailed on Jul. 10, 2009. |
Right of Appeal Notice for U.S. Pat. No. 7,193,562 (Control No. 95/001078) mailed on Jul. 10, 2009. |
Tsunekawa, Kouichi “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology, May 1-3, 1989, San Francisco, CA. |
U.S. Appl. No. 95/001,078, filed Sep. 4, 2008. |
U.S. Appl. No. 95/001,079, filed Sep. 4, 2008. |
U.S. Appl. No. 12/018,894, Office Action mailed Sep. 9, 2009. |
Antenna Polarization, Jul. 2010, pp. 55-56. |
Antenna Polarization Vertical Horizontal Circular Polarization, Aston Wireless, No Date, pp. 1-3. |
Polarization (waves), Wikipedia, No Date, pp. 1-20. |
U.S. Appl. No. 13/019,214, Final Office Action mailed Mar. 17, 2014. |
U.S. Appl. No. 13/019,214, Office Action mailed Sep. 9, 2013. |
U.S. Appl. No. 13/019,214, Office Action mailed May 8, 2013. |
Chinese Patent Application No. 200680048001.7 Second Office Action dated Jun. 20, 2012. |
Chinese Patent Application No. 200680048001.7 First Office Action dated May 25, 2011. |
European Patent Application No. 06848122.5 European Supplementary Search Report Mar. 12, 2010. |
European Patent Application No. 06848122.5 Extended European Search Report Feb. 23, 2010. |
PCT Application No. PCT/US2006/049211 International Search Report and Written Opinion dated Aug. 29, 2008. |
U.S. Appl. No. 13/019,214, Office Action mailed Jul. 11, 2014. |
Chinese Patent Application No. 201310130004.7 First Office Action dated Sep. 19, 2014. |
U.S. Appl. No. 13/019,214, Final Office Action mailed Jan. 8, 2015. |
Chinese Patent Application No. 201310130004.7 Second Office Action dated Jul. 29, 2015. |
Supplementary European Search Report for foreign application No. EP07755519 dated Mar. 11, 2009. |
Chuang et al., A 2.4 GHz Polarization-diversity Planar Printed Dipole Antenna for WLAN and Wireless Communication Applications, Microwave Journal, vol. 45, No. 6, pp. 50-62 (Jun. 2002). |
Frederick et al., Smart Antennas Based on Spatial Multiplexing of Local Elements (SMILE) for Mutual Coupling Reduction, IEEE Transactions of Antennas and Propogation, vol. 52., No. 1, pp. 106-114 (Jan. 2004). |
W.E. Doherty, Jr. et al., The Pin Diode Circuit Designer's Handbook (1998). |
Varnes et al., A Switched Radial Divider for an L-Band Mobile Satellite Antenna, European Microwave Conference (Oct. 1995), pp. 1037-1041. |
English Translation of PCT Pub. No. WO2004/051798 (as filed U.S. Appl. No. 10/536,547). |
Behdad et al., Slot Antenna Miniaturization Using Distributed Inductive Loading, Antenna and Propagation Society International Symposium, 2003 IEEE, vol. 1, pp. 308-311 (Jun. 2003). |
Press Release, NETGEAR RangeMax(TM) Wireless Networking Solutions Incorporate Smart MIMO Technology to Eliminate Wireless Dead Spots and Take Consumers Farther, Ruckus Wireles Inc. (Mar. 7, 2005), available at http://ruckuswireless.com/press/releases/20050307.php. |
Number | Date | Country | |
---|---|---|---|
20090075606 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60865148 | Nov 2006 | US | |
60694101 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11938240 | Nov 2007 | US |
Child | 12212855 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11413461 | Apr 2006 | US |
Child | 11938240 | US |