This application is a U.S. National Stage Entry of International Patent Application Serial Number PCT/EP2013/051134, filed Jan. 22, 2013, which claims priority to German patent application no. DE 102012101489.2, filed Feb. 24, 2012.
This invention relates to a vertical roller mill and method for operating a vertical roller mill.
Vertical roller mills which, in relation to other grinding systems, such as, for example, tube mills, make possible a significant saving in energy, are increasingly employed for producing powder-type materials for the binding-agent industry.
DE 10 2007 033 256 A1 discloses a vertical roller mill having a driven grinding plate, wherein the grinding plate drives the grinding rollers via the grinding bed. However, this leads to high variations in performance and thus to high loads on the drive train, requiring correspondingly high safety factors in the drive train. On the other hand, input power and also comminution are also subject to high variation and can be only conditionally controlled via the material bed.
DE 35 20 937 A1 furthermore discloses a roller mill having a table which is rotatably mounted about a vertical axle and which, on its upper side, is provided with an annular groove and which interacts with spherically configured grinding rollers, wherein a gap in which material to be ground is crushed and ground is configured between the spherical circumferential part of the grinding rollers and the annular groove.
It has, therefore, already been proposed in DE 197 02 854 A1 that the grinding rollers be driven. It has also been pointed out there that the individual grinding rollers are coupled to one another in the manner of a rotary drive via the grinding plate and the material to be ground located thereon, or the bed of material to be ground, respectively, on the one hand, and, on the other hand, may have greatly differing input powers which may be caused for example by differing rolling diameters on the grinding plate (rolling point/diameter), differing effective diameters of the individual grinding rollers (e.g. on account of wear) and by differing behavior during draw-in of the material to be ground when interacting on the grinding plate and the grinding roller.
Even slight changes in revolutions between individual grinding rollers have the effect of comparatively high performance variations in the individual drives. This may lead to the grinding rollers in part being accelerated and decelerated, such that the individually driven grinding rollers work against one another, leading to a significantly higher force and/or energy requirement during the comminuting operation.
It has, therefore, been proposed in DE 197 02 854 A1 that the variations during operation between the individual rotational drives of all driven grinding rollers are balanced by way of a common performance-balancing regulator.
The fines content of the material to be ground which can be achieved with vertical mills, however, is lower than in other grinding systems, such as, for example, tube mills, which, in the production of binding agents, may have a negative effect on the binding-agent properties.
The present invention is thus based on the object of improving the vertical roller mill and the method for operating the vertical roller mill such that the fines content per contact of the grinding tool (comminution progress during exposure in the grinding bed between grinding roller and grinding plate) is increased.
Disclosed herein is a vertical roller mill and a method for operating a vertical roller mill. In an aspect of the present disclosure, grinding assemblies comprising a grinding plate and at least one grinding roller interact in such a manner that material to be ground is comminuted between the grinding plate and the at least one grinding roller, wherein at least one grinding assembly is driven and at least one grinding assembly is trailed.
The present disclosure is described in detail below with reference to the attached drawing figures, wherein:
In the method for operating a vertical roller mill, according to the invention, the grinding assemblies thereof, which are composed of a grinding plate and at least one grinding roller, interact in such a manner that material to be ground is comminuted in the grinding bed between the grinding plate and the at least one grinding roller, wherein at least one grinding assembly is driven and at least one grinding assembly is trailed and, for increasing the flow of energy through the grinding bed between the grinding plate and the at least one grinding roller, the trailed grinding assembly is braked.
The vertical roller mill according to the invention displays at least one driven and at least one trailed grinding assembly, wherein the grinding assemblies are formed by a grinding plate and at least one grinding roller which interact in such a manner that material to be ground is comminuted in the grinding bed between the grinding plate and the at least one grinding roller. The trailed grinding assembly, for increasing the flow of energy through the grinding bed between the grinding plate and the at least one grinding roller, moreover interacts with a brake unit for braking the trailed grinding assembly. The trailed grinding assembly is not driven by way of a drive but is set in rotation merely via the material to be ground.
Increasing the flow of energy through the grinding bed results in an increase of slippage between the grinding plate and the at least one grinding roller, which is explained in more detail in the following by means of
In
Slippage ΔvS1 of
Further embodiments of the invention are the subject matter of the dependent claims.
Increasing the flow of energy through the grinding bed may be implemented in a variety of manners. Accordingly, a grinding roller may be driven and the grinding plate may be braked, for example, or at least the grinding plate may be driven and at least one grinding roller may be braked. According to a preferred embodiment of the invention, during braking of one grinding assembly, energy which is used for driving the other grinding assembly is generated. On account of feeding back the braking energy, the energy consumption of the entire system is only slightly increased while, in contrast, the grinding efficiency in the case of a desired target fineness is significantly increased.
It may furthermore be provided that, for regulating the flow of energy through the grinding bed, slippage between the grinding plate and the at least one grinding roller is regulated in a prespecified range. To this end, in particular the rotational speed of the braked grinding assembly may be determined and used for regulating. It is furthermore conceivable that slippage between the grinding plate and at least one grinding roller is regulated depending on the fines content of the comminuted material to be ground.
It has been demonstrated in the experiments on which the invention is based that the braked grinding assembly is expediently braked in such a manner in relation to the driven grinding assembly that slippage between the grinding plate and the at least one grinding roller is regulated in a range of 3-10%. The braked assembly may furthermore be braked in such a manner in relation to the driven grinding assembly that slippage between the grinding plate and the at least one grinding roller, in relation to an unbraked and merely trailed grinding assembly, is increased by 15-100%.
In the physical embodiment of the vertical roller mill the at least one driven grinding assembly may be formed by at least one grinding roller which interacts with a grinding-roller drive and the at least one trailed grinding assembly may be formed by the grinding plate which interacts with a brake unit. It would, however, also be conceivable for the at least one driven grinding assembly to be formed by the grinding plate which interacts with a grinding-plate drive and for the at least one trailed grinding assembly to be formed by at least one grinding roller which interacts with the brake unit. The braking effect may be formed, in particular, by a generator.
In the exemplary embodiment according to
The brake unit 8 here is configured as a generator in order to generate energy when the grinding plate 1 is braked that may be used for the grinding-roller drives 6 and/or 7, via a common intermediate energy storage device 14.
If the grinding plate 1, according to
In the exemplary embodiment according to
In
In
Finally, in
The grinding-plate drive 11 and the brake unit 10 of the grinding plate are expediently implemented by way of an assembly which may selectively be capable of driving or braking. The grinding-roller drives 6 and/or 7 and the brake unit 12 may also be formed by an assembly which can implement both objectives.
Of course, in all illustrated variants more than two grinding rollers may also be provided, wherein each of the additional grinding rollers may be either driven, braked or merely trailed.
It has been demonstrated in the experiments on which the invention is based that slippage between a driven and a braked grinding assembly is expediently to be regulated in a range of 3-10%, in order to significantly increase the proportion of fines content, on the one hand, and to keep the additional energy requirement within reasonable limits, on the other hand. This means that the speed of the grinding bed in the contact region of the driven grinding assembly is higher by 3-10% than the speed of the grinding bed in the contact region of the braked grinding assembly.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 101 489 | Feb 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/051134 | 1/22/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/124106 | 8/29/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8109459 | Nissen | Feb 2012 | B2 |
Number | Date | Country |
---|---|---|
3520937 | Dec 1985 | DE |
19702854 | Jul 1998 | DE |
102007033256 | Jan 2009 | DE |
58-159854 | Sep 1983 | JP |
2011245372 | Dec 2011 | JP |
Entry |
---|
German Language International Search Report for International patent application No. PCT/EP2013/051134; mailing date Jan. 8, 2014. |
English Translation of International Search Report for International patent application No. PCT/EP2013/051134; mailing date Jan. 8, 2014. |
English language abstract of German Patent Application No. DE102007033256. |
English language abstract of German Patent No. DE19702854. |
English language abstract of German Patent No. DE3520937. |
English Language Abstract for JP2011245372. |
Machine Translation of Description of JP58-159854. |
Number | Date | Country | |
---|---|---|---|
20150014455 A1 | Jan 2015 | US |