This technology relates to furnaces for melting scrap and refined metal shapes.
A vertical shaft melting furnace is a particular type of furnace that is used to melt scrap and refined metal shapes. Pieces of metal are dropped into the furnace shaft to form a load of pieces that are stacked upon one another in the shaft. Burners fire into the shaft to melt the load of metal pieces, and the molten metal drains outward through an outlet at the bottom of the shaft.
The claimed invention includes a method of operating a vertical shaft melting furnace. The furnace is operated by firing a plurality of burners to generate combustion products, and by directing jets of the combustion products into the shaft in a bottom region of the shaft. Additionally, a jet of hot gas is directed into the shaft in an upper region of the shaft in a non-radial direction. The non-radial jet of hot gas can induce a swirl to disperse a concentrated channel of combustion products rising from the bottom region to the upper region through a void in unmelted portions of a load of metal pieces in the shaft.
The non-radial jet of hot gas that is directed into the upper region of the shaft may comprise recirculated flue gas, a mixture of air and recirculated flue gas, or combustion products that are generated by a burner. If the non-radial jet of hot gas comprises combustion products that are generated by a burner, the burner is preferably fired into the shaft with a relatively low heat input. In each case, it is preferable to direct multiple jets of hot gas into the shaft in the upper region of the shaft in non-radial directions, with the non-radial directions together extending in a common direction circumferentially around the inside of the shaft.
Summarized differently, the invention includes a method of operating a vertical shaft melting furnace by firing a plurality of burners to generate combustion products, and by directing jets of the combustion products into the shaft at a plurality of vertically spaced levels. A jet of combustion products at the uppermost level is directed into the shaft in a non-radial direction to induce the swirl.
The invention also includes an apparatus for performing the method. The apparatus may comprise parts of a newly constructed furnace or a retrofitted furnace. Accordingly, the invention further includes a method of retrofitting a furnace by rendering it operative to perform the method.
The apparatus 10 shown schematically in
This apparatus 10 is a vertical shaft melting furnace with an inlet 12, an outlet 14, and a shaft 16 extending vertically downward from the inlet 12 to the outlet 14. A hearth 18 is located at the bottom of the shaft 16 beside the outlet 14, and is inclined toward the outlet 14. The furnace 10 has a flue (not shown) at the upper end of the shaft 16, and has burners 22 and 24 that fire into the shaft 16 between the inlet 12 and the outlet 14. Metal pieces are dropped into the shaft 16 through the inlet 12, and are stacked upward from the hearth 18 to form an irregularly shaped load with a height that reaches upward past the burners 22 and 24 to the inlet 12. Molten metal drops to the hearth 18 and flows from the hearth 18 through the outlet 14 as the load of metal pieces is melted in the shaft 16.
The furnace wall structure 30 shown schematically in
The burners 22 and 24 include primary burners 22 and secondary burners 24. As shown in
As best shown in
The ports 55 and burners 22 in the middle row 52 also are arranged in the furnace wall structure 30 in the manner described above, but are offset from the upper row 51 circumferentially about the axis 41. This is best shown in
The lower row 53 of ports 55 and burners 22 is circumferentially offset from the middle row 52 in the same manner that the middle row 52 is circumferentially offset from the upper row 51. Like the primary burners 22 in the other two rows 51 and 52, each primary burner 22 in the lower row 53 is inclined at about 15° downward from horizontal. As shown in
The secondary burners 24, which also are shown schematically in the drawings, likewise can be attached to the furnace wall structure 30 in any suitable manner known in the art.
Although the secondary burners 24 and the primary burners 22 can be alike, as illustrated schematically in the drawings, the secondary burners 24 preferably are nozzle mix burners rather than premix burners. The structural details of nozzle mix burners also are well known to a person of ordinary skill in the art.
As shown in
Each centerline 67 is inclined from horizontal at an angle B (
In the arrangement shown by way of example in
The burners 22 and 24 of
The primary valve assembly 104 is operative to communicate the fuel and oxidant sources 108 and 110 with the primary burners 22 at the furnace wall structure 30. As noted above, the primary burners 22 are premix burners. The primary valve assembly 104 includes valves that are operative to provide and regulate separate flows of fuel and oxidant to each of the three rows of primary burners 22. These flows are directed through three corresponding premix manifolds 112, 114 and 116 in which the fuel and oxidant are mixed for the formation of premix upstream of the primary burners 22. The secondary valve assembly 106 similarly includes valves that are operative to provide and regulate separate flows of fuel and oxidant from the sources 108 and 110 to each of the two pairs of secondary burners 24, which are nozzle mix burners.
The controller 102 includes primary controls in the form of hardware and/or software 120 for operation of the primary valve assembly 104. The controller 102 further includes secondary controls in the form of hardware and/or software 122 for operation of the secondary valve assembly 106. As the controller 102 carries out those instructions, the valve assemblies 104 and 106 are directed to provide the burners 22 and 24 with flows of fuel and oxidant in ratios such that the burners 22 and 24 will fire into the shaft 16 with heat inputs that are controlled with reference to the particular melting process to be performed by the furnace 10.
The load of metal pieces in the shaft 16 will typically have one or more voids extending vertically through the load between the various metal pieces. Such voids could result from the configuration of the unmelted load, and/or could be created by the passage of hot combustion products vertically upward through the load. When the primary burners 22 fire into the bottom region 50 of the shaft 16, they generate and direct jets of primary combustion products from the burner ports 55 into the shaft 16 in the directions indicated in
Each primary burner 22 is preferably fired into the shaft 16 with a first individual heat input, and each secondary burner 24 is preferably fired into the shaft 16 with a second, lower individual heat input. This enables the secondary burners 24 to disperse concentrated channels of combustion products rising from the primary burners 22, and to provide heat so as not to cool the primary combustion products in an amount that would detract from the melting process. The relatively low heat input is preferably accomplished by the use of nozzle mix burners rather than premix burners in the upper region 60 of the shaft 16. Alternatively, premix burners could be fired into the upper region 60 of the shaft 16 as non-radial burners with fuel and oxidant flows that provide lower individual heat inputs under the influence of the controller 102.
The furnace 10 described above could be a newly constructed furnace or a pre-existing furnace that is retrofitted. Retrofitting of this example of a furnace 10 would include formation of the secondary burner ports 62 in the furnace wall structure 30, with installation of the secondary burners 24 in the secondary ports 62. Retrofitting of this furnace 10 would further include installation of the secondary valve assembly 106 in the reactant supply and control system 100, along with the addition of the secondary controls 122, either by reprogramming or otherwise modifying a pre-existing controller to perform the secondary control function, or by replacing a pre-existing controller with the controller 102 described above.
The hot gas from the source 150 could be recirculated flue gas, a combination of atmospheric air and recirculated flue gas, or combustion products generated by a secondary burner like the secondary burners 24 described above. The use of a plenum 142 to communicate the upper ports 62 with a source of hot gas could be a feature of a newly constructed furnace, but may be especially suitable for retrofitting an existing furnace in which access for installation of burners is limited.
This written description sets forth the best mode of carrying out the invention, and describes the invention to enable a person of ordinary skill in the art to make and use the invention, by presenting examples of the elements recited in the claims. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. In this regard, the description of a controller is meant to include any suitable control device or combination of control devices that can be programmed or otherwise arranged to perform as recited in the claims. Such other examples, which may be available either before or after the application filing date, are intended to be within the scope of the claims if they have structural or process elements that do not differ from the literal language of the claims, or if they have equivalent structural or process elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
471618 | Leede | Mar 1892 | A |
865659 | Scott | Sep 1907 | A |
1640251 | Poumay | Aug 1927 | A |
1799643 | Rogers | Apr 1931 | A |
1834630 | Meloche | Dec 1931 | A |
2474504 | West | Jun 1949 | A |
3547624 | Gray | Dec 1970 | A |
3603571 | Geiger et al. | Sep 1971 | A |
3838974 | Hemsath et al. | Oct 1974 | A |
4111687 | Syska | Sep 1978 | A |
4116611 | Syska | Sep 1978 | A |
4129742 | Ward | Dec 1978 | A |
4211555 | Berry et al. | Jul 1980 | A |
4243209 | Pariani et al. | Jan 1981 | A |
4301997 | Berry et al. | Nov 1981 | A |
4309170 | Ward | Jan 1982 | A |
4311519 | Berry | Jan 1982 | A |
4315775 | Odle et al. | Feb 1982 | A |
4402740 | Arp et al. | Sep 1983 | A |
4403951 | Beckenbach et al. | Sep 1983 | A |
4452585 | Arp | Jun 1984 | A |
4536152 | Little, Jr. et al. | Aug 1985 | A |
4556418 | Syska | Dec 1985 | A |
4664702 | Barnes et al. | May 1987 | A |
4844426 | Barnes et al. | Jul 1989 | A |
4959102 | Clarkson et al. | Sep 1990 | A |
5196155 | Askin et al. | Mar 1993 | A |
5209893 | Askin et al. | May 1993 | A |
5397109 | Wilson et al. | Mar 1995 | A |
5411393 | Askin et al. | May 1995 | A |
5518524 | Wilson et al. | May 1996 | A |
6113386 | Shannon et al. | Sep 2000 | A |
6524356 | Fournier et al. | Feb 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20050161868 A1 | Jul 2005 | US |