The present disclosure generally relates to rock crushing equipment. More specifically, the present disclosure relates to a cone crusher including a multi-section bowl liner that is split along at least two vertical joints.
Rock crushing systems, such as those referred to as cone crushers, generally break apart rock, stone or other material in a crushing gap between a stationary element and a moving element. For example, a conical rock crusher is comprised of a head assembly including a crushing head that gyrates about a vertical axis within a stationary bowl indirectly attached to a main frame of the rock crusher. The crushing head is assembled surrounding an eccentric that rotates about a fixed shaft to impart the gyrational motion of the crushing head which crushes rock, stone or other material in a crushing gap between the crushing head and the bowl. The eccentric can be driven by a variety of power drives, such as an attached gear, driven by a pinion and countershaft assembly, and a number of mechanical power sources, such as electrical motors or combustion engines.
The exterior of the conical crushing head is covered with a protective or wear-resistant mantle that engages the material that is being crushed, such as rock, stone, ore, minerals or other substances. The bowl, which is indirectly mechanically fixed to the mainframe, is fitted with a bowl liner. The bowl liner and bowl are stationary and spaced from the crushing head. The bowl liner provides an opposing surface from the mantle for crushing the material. The material is crushed in the crushing gap between the mantle and the bowl liner.
The gyrational motion of the crushing head with respect to the stationary bowl crushes, rock, stone or other material within the crushing gap. Generally, the rock, stone or other material is fed onto a feed plate that directs the material toward the crushing gap where the material is crushed as it travels through the crushing gap. The crushed material exits the crushing chamber through the bottom of the crushing gap. The size of the crushing gap determines the maximum size of the crushed material that exits the crushing gap.
As cone crushers increase in size, shipping costs become an issue in transporting both the cone crusher and replacement parts from a manufacturing facility to a mine site. Specifically, the shipping cost dramatically increases due to the extra cost for break bulk shipping when parts do not fit into standard size vessel containers. Additionally, road transportation costs increase to obtain the required permits needed to transport oversized loads. Shipping costs are especially critical for crushing chamber wear components that are consumable items and are replaced once a maximum wear is achieved. Shipping costs may make large cone crushers cost prohibitive due to the ongoing operating costs.
The present disclosure relates to a multi-section bowl liner for use in rock crushing equipment, such as a cone crusher. The multi-section bowl liner includes at least of a pair of sections joined along a pair of vertical joints and can be assembled and disassembled for shipping.
The bowl liner in accordance with the present disclosure includes a first bowl liner section and a second bowl liner section that are joined along the pair of vertical joints. The first and second bowl liner sections are mating components that each includes an inner surface and an outer surface. The inner surface of the combined bowl liner sections forms the contact surface used in the crushing operation.
Each of the first and second bowl liner sections includes a first vertical end and a second vertical end positioned on opposite sides of the each of the bowl liner sections. When the first and second bowl liner sections are mated in an assembled condition, the first end of the first bowl liner section engages the second end of the second bowl liner section. Likewise, the second end of the first bowl liner section engages the first end of the second bowl liner section in the assembled condition.
When the first and second bowl liner sections are in the assembled condition, at least a pair of upper fasteners are positioned to hold the first and second bowl liner sections in the assembled condition. In addition to the pair of upper fasteners, a pair of lower fasteners can also be used to hold the first and second bowl liner sections in the assembled condition. Alternatively, other types of devices, such as clamps, could be used to hold the bowl liner sections in the assembled condition. Once the combined bowl liner is installed in a cone crusher, the fasteners or clamps could be removed and the bowl liner would be held in the assembled condition by other components of the cone crusher, such as the bowl and wedge.
In one embodiment of the disclosure, the first and second ends each include a portion of a key feature. The key feature allows the first and second bowl liner sections to interact with each other to limit the relative movement between the first and second bowl liner sections in the assembled condition. In one embodiment of the disclosure, the first end of each bowl liner section includes a first series of key slots while the second end includes a series of protruding axial keys. When the first and second bowl liner sections are brought together in the assembled condition, the series of axial keys on the second end mates and meshes with the key slots formed on the first end to restrict the axial movement of the first and second bowl liner sections when in the assembled condition.
In addition to the axial keys, the first and second bowl liner sections each include a key slot formed in a first upper fastener boss and a radial key formed on a second upper fastener boss. When the first and second bowl liner sections are brought together in the assembled condition, the key slot receives the radial key to help limit the radial movement between the bowl liner sections when in the assembled condition.
When the first and second bowl liner sections are brought together in the assembled condition, the first end includes a portion that is slightly recessed from the second end to define an inner wear relief area. The inner relief area allows for manganese growth during use of the bowl liner. In addition, the inner relief allows for monitoring of the wear on the bowl liner.
The bowl liner of the present disclosure can be used with a cone crusher or other types of equipment used to crush rock. During initial manufacture, the bowl liner sections are positioned adjacent to each other in the assembled condition and a lower tapered surface of the bowl liner is machined to the desired tolerances. Once the lower tapered surface of the bowl liner and any other required surface has been machined, the bowl liner is separated into the two bowl liner sections for shipment.
After shipment to a mine site, the first and second bowl liner sections are reassembled and installed on the crushing equipment. In this manner, the bowl liner can be broken down into multiple pieces for shipment and reassembled prior to installation in a cone crusher.
The drawings illustrate the best mode presently contemplated of carrying out the disclosure. In the drawings:
The main shaft 20 supports an eccentric 22 that surrounds the main shaft 20 and is coupled to a head assembly 24. The eccentric 22 rotates about the stationary main shaft 20, thereby causing the head assembly 24 to gyrate within the cone crusher 10. Gyration of the head assembly 24 within a bowl 26 that is indirectly fixed to an adjustment ring 28 that is supported by the mainframe 12 and allows rock, stone, ore, minerals or other materials to be crushed between a mantle 30 and a bowl liner 32 constructed in accordance with the present disclosure. The gyrational motion of the head assembly 24 crushes rock in a crushing gap 34 and the force of gravity causes additional material to move toward the crushing gap 34. The bowl liner 32 is held against the bowl 26 by a wedge 44 and the mantle 30 is attached to the head assembly 24. The head assembly 24 forces the mantle 30 toward the bowl liner 32 to create the rock crushing force within the crushing gap 34.
As can be understood in
As illustrated in
During operation of the cone crasher 10, material is crushed by the rotating movement of the head assembly 24 in the crushing gap 34 formed between the outer surface of the mantle 30 and the bowl liner 32. Both the bowl liner 32 and the mantle 30 are designed as replaceable equipment such that the cone crusher can be refurbished upon wear.
When the first and second bowl liner sections 48, 50 are joined as shown in
As illustrated in
As illustrated in
When the bowl liner 32 is installed as shown in
During operation of the cone crusher, the crushing forces created against the bowl liner 32 exert a rotational force on the bowl liner 32 relative to the stationary bowl 26. The rotational forces created against the bowl liner 32 cause the bowl liner 32 to rotate relative to the stationary wedges 44, thereby causing the wedges 44 to ride up the helical ramps 60 shown in
The bowl liner 32 includes an inner surface 66 that contacts the material being crushed and thus is subject to wear during continued use of the cone crusher. Both the outer surface 62 and the inner surface 66 are defined by the pair of mated first and second bowl liner sections 48, 50, as illustrated.
As further illustrated in
Specifically, as illustrated in
In addition to the upper bosses discussed, each of the first and second bowl liner sections 48, 50 includes a first lower fastener boss 80 and a second lower fastener boss 82. The first and second lower fastener bosses 80, 82 receive one of the lower connectors 56. When the lower connector 56 is inserted into the aligned first and second lower fastener bosses of the first and second bowl liner sections 48, 50, the lower connector 56 receives a nut 84 to further secure the first and second bowl liner sections 4850 into the one-piece construction shown in
Although the upper and lower connectors are shown in the Figures, it is contemplated that the connectors could be removed once the bowl liner 32 is installed. As described above, the wedge 44 exerts and upward force on the bowl liner 32, thereby causing the contacting taper 63 to engage the machine taper 27. The force created by such contact compresses the bowl liner 32, thereby eliminating the need for the fasteners. However, the fasteners, or some other type of connector, are needed to hold the bowl liner 32 in the assembled condition during machining and prior to installation.
The bowl liner section 48 defines a first end 86 and a second end 88 that each define a transition between the inner surface 66 and the outer surface 62. The first and second ends 86, 88 interact with the corresponding ends on the second bowl liner section 50 when the bowl liner is assembled, as shown in
As best illustrated in
The first end 86 further includes lower contact surface 99 that is in the same plane as the outermost surface of the series of bosses 94 as well as the contact surface 114 of the first upper fastener boss 68. The common plane that extends through the lower contact surface 99, the lower contact surface 114 as well as the faces of the series of bosses 94 defines an engagement surface for the first end 86.
The second end 88 includes the second portion 92 of the axial key feature. The second portion of the axial key feature includes a series of axial keys 100 that are each spaced by an open slot 102. The length of the open slots 102 corresponds to the length of the bosses 94 while the length of the axial keys 100 corresponds to the length of the key slots 96. In this manner, when the first and second bowl liner sections 48, 50 are mated as shown in
Referring back to
As shown in
As can be understood in
Referring to
The opposite side of each of the bowl liner sections includes the second upper fastener boss 70, which also defines the upper contact surface 118. The upper contact surface 118 is in the same plane as the surface that defines the open slots 102, as illustrated. The second upper fastener boss 70 includes a radial key 120 that protrudes away from the contact surface 118. The radial key 120 is sized to fit within the key slot 116 when the first and second ends 86, 88 are positioned adjacent to each other. When joined, the contact surface 118 engages the contact surface 114 and the radial key 120 is received within the key slot 116. The interaction between the radial key 120 and the key slot 116 at each of the two vertical joints helps to limit the radial movement between the bowl liner sections when in an assembled condition. As illustrated in
When the first and second bowl liner sections are assembled as shown in
During the initial construction of the bowl liner 32 of the present disclosure, each of the bowl liner sections 48, 50 are cast separately. As previously described, the first and second bowl liner sections 48, 50 can have an identical appearance to each other and thus can be made from the same casting molds. Alternatively, the two bowl liner sections 48, 50 can be created as separate components that include mating features that allow the two bowl liner sections 48, 50 to be joined to each other to define a complete bowl liner. The user of the pair of identical bowl liner sections reduces the number of different components needed to create the bowl liner. However, different bowl liner sections are contemplated as being within the scope of the present disclosure.
On the first and second bowl liner sections are cast, the components are placed adjacent to each other and joined through the use of the pair of upper connectors 54 and lower connectors 56. After the bowl liner has been assembled, the entire bowl liner can be machined to the desired tolerances offsite from the location of the cone crusher. Specifically, when the bowl liner sections are joined to each other, the contacting taper 63 is machined around the entire bowl liner. Once the machining process has been completed, the two bowl liner sections 48, 50 are disassembled for shipping. Since the bowl liner 32 may have a large outer diameter, such as up to 13 feet, shipping the assembled bowl liner or a one-piece bowl liner is both costly and difficult. Separating the bowl liner into two separate bowl liner sections 48, 50 reduces the transportation costs and increases the number of foundries that can cast the bowl liner sections.
Once the pair of bowl liner sections arrives at the location of the cone crusher, the bowl liner sections are reassembled and installed on the cone crusher.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1424792 | Ackermann | Aug 1922 | A |
1459305 | Kennedy | Jun 1923 | A |
3406917 | Curtis | Oct 1968 | A |
3582008 | Motz et al. | Jun 1971 | A |
3587987 | Motz | Jun 1971 | A |
3834633 | Dougall et al. | Sep 1974 | A |
4010905 | Motz et al. | Mar 1977 | A |
4065064 | Anthony | Dec 1977 | A |
4215826 | Schafer | Aug 1980 | A |
4886218 | Bradley et al. | Dec 1989 | A |
5080294 | Dean | Jan 1992 | A |
5184389 | Dean | Feb 1993 | A |
5482218 | Ha | Jan 1996 | A |
5602945 | Davis | Feb 1997 | A |
5967431 | Stafford et al. | Oct 1999 | A |
7451944 | Hall et al. | Nov 2008 | B2 |
20120223171 | Flath et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
201552018 | Aug 2010 | CN |
566840 | Jan 1945 | GB |
2011025088 | Mar 2011 | WO |
Entry |
---|
Austrian Patent Office Search Report dated May 12, 2015. |
Number | Date | Country | |
---|---|---|---|
20140361106 A1 | Dec 2014 | US |