The present invention relates completely generally to improvements in the field of flying objects having vertical take-off and landing (VTOL) capability and to improved ducted propellers which can be used for example in said flying objects.
Aeroplanes having the capability for vertical take-off and landing have the potential to combine the advantages of helicopters, namely take-off and landing on a limited space and/or in poorly accessible terrain, with the advantages of conventional aeroplanes, such as high possible cruise speed and energy-efficient flight. In the last few decades, significant progress has been made in the field of aeroplanes having vertical take-off and landing capability, but thus far a broad-based economic breakthrough has not been achieved.
In particular the generation of a sufficient vertical thrust for vertical take-off of an aeroplane of this type and of a sufficient propulsion thrust in normal horizontal flight (cruising) pose challenges which are hard to meet and for which a wide range of solution approaches have been proposed. For example, reference may be made to the drive systems set out in U.S. Pat. No. 3,488,018 and U.S. Pat. No. 3,700,189, which combine the vertical thrust generation for take-off and the horizontal thrust generation for cruising in various manners.
One of the main challenges in the construction of an aeroplane with the capability for vertical take-off and landing is that, on the one hand, large propeller areas are needed for it to be possible to generate a sufficient mass flow for the thrust generation in the vertical direction for take-off and landing, and for the energy consumption simultaneously to remain in an acceptable range. On the other hand, when the aeroplane is cruising the lift force is generated dynamically, generally by suitable wing profiles, and this means that the aforementioned large propellers have to be stowed in such a way that they produce as little aerodynamic resistance as possible during cruising.
Ducted propellers (ducted fans) are particularly suitable for this purpose, and have a range of advantages over freely rotating propellers. On the one hand, ducted propellers provide more thrust for the same area flowed through and the same shaft power, and are much quieter; on the other hand, they are also safer, since in ducted propellers the rotor blades are much better protected against external effects than in freely rotating propellers. A drawback of ducted propellers is that unlike free propellers they are not foldable and therefore require more stowing space than freely rotating, foldable propellers in an aeroplane with vertical take-off and landing capability.
Therefore, a first aspect of the invention provides a mechanism for stowing and/or adjusting a ducted propeller of a flying object, which solves the aforementioned problem and is suitable, by way of example and non-exclusively, for use in a flying object having vertical take-off and landing capability. In this context, the flying object comprises a fuselage and at least one pair of wings, the outer walls of which together define a shell of the flying object. The mechanism for stowing and/or adjustment comprises a ducted propeller which in turn comprises a substantially cylindrical duct, which defines a longitudinal axis of the ducted propeller and is open at the base faces thereof, a rotor comprising a plurality of rotor blades, which is set up to rotate in a plane perpendicular to the longitudinal axis of the ducted propeller, and a drive device for driving the rotor. The mechanism for stowing and/or adjustment further comprises a receiving chamber, provided in the fuselage and/or a wing of the flying object, for the ducted propeller and a mechanism which is set up to transfer the ducted propeller from a stowed state into a deployed state. In this context, in the stowed state the ducted propeller is received in the receiving chamber in such a way that as considered in a longitudinal direction of the flying object it is received completely within the shell of the flying object. Further, according to the invention, in the deployed state at least the base faces of the duct of the ducted propeller are positioned outside the shell of the flying object and the longitudinal axis of the ducted propeller is tilted towards the longitudinal axis of the flying object through a variable angle, between 0 degrees and 90 degrees, with respect to a pitch axis of the flying object.
A mechanism of this type according to the invention makes it possible, on the one hand, to align a ducted propeller both to generate a thrust in the vertical direction and to generate a thrust in both the vertical and the horizontal direction and, on the other hand, to receive it completely in the shell of the flying object, where it does not contribute to the effective air resistance of the flying object in a cruising configuration.
In this context, the concept of the aeroplane shell refers to the outline of the flying object defined by the outer skin of the aeroplane fuselage and of the wings, whilst attachments additionally provided on the flying object, such as gondola engines, are not counted as part of the shell of the flying object.
According to the invention, the concept of the cylindrical duct should be understood broadly and not as limited to a purely geometrically correct definition. In particular, the duct of the ducted propeller is not restricted to a circular cylinder shape, and the two base faces of the duct also need not necessarily be planar, but rather the duct of the ducted propeller may comprise profiling in the region of the base faces. Further, it is not necessary for the duct to be of a constant circumference over the length thereof, but rather it may also for example be funnel-shaped or formed with a bulge.
Further, it is even conceivable for the duct of the ducted propeller likewise substantially to have a cylindrical shape, in accordance with the above definition, with respect to a further axis perpendicular to the longitudinal axis thereof. Because of the increased symmetry thereof, a “double cylinder” of this type may be used particularly flexibly and stowed compactly.
Both in the above description of the first aspect of the present invention and in all further aspects, the term “longitudinal direction” of the flying object denotes a direction extending from the front to the tail of the flying object and substantially corresponding to the roll axis of the flying object during cruising. The pitch axis and the yaw axis of the flying object are each perpendicular to the longitudinal direction of the flying object, the yaw axis substantially corresponding to the vertical axis of the flying object and the pitch axis substantially corresponding to the transverse axis of the flying object.
The orientation of the longitudinal axes of the flying object and ducted propeller may be selected freely in the first position; for example, the two longitudinal axes may be substantially mutually parallel.
According to the invention, the mechanism for stowing and/or adjusting the ducted propeller always transmits the thrust generated by the ducted propeller to the flying object.
In one embodiment, the transfer mechanism may comprise a first mechanism which is set up to pivot the ducted propeller about a first pivot axis which is substantially parallel to the longitudinal axis of the flying object and a second mechanism which is set up to pivot the ducted propeller about a second pivot axis at an inclination to the first axis. In this context, the first pivot axis may preferably be outside the ducted propeller or in the region of the duct of the ducted propeller.
A mechanism formed in accordance with this embodiment has a very low space requirement in the fuselage of the flying object, and this makes an advantageous overall configuration of the flying object possible.
In a mechanism in accordance with this embodiment, the second pivot axis may be parallel to the pitch axis of the flying object. As a result, by varying the pivot angle about the second pivot axis between 0 degrees and 90 degrees with respect to the longitudinal direction of the flying object, the thrust generated by the ducted propeller during operation can be adjusted continuously between a state in which it is merely used for propulsion of the flying object and a state in which it is merely used for lift of the flying object.
Further, in a mechanism in accordance with the embodiment, the ducted propeller may comprise a stator which has one or more substantially radially extending stator blades, and the second pivot axis may be arranged within the ducted propeller and in the region of the stator with respect to the longitudinal direction of the ducted propeller. As a result of this arrangement of the second pivot axis, a particularly preferred take-up of the thrust force by the transfer mechanism can be provided.
In this context, completely generally, all of the parts of the stator, including the at least one stator blade, are stationary with respect to the duct of the ducted propeller, and the stator can thus be considered a “fixed component” of the ducted propeller.
In an alternative embodiment, the transfer mechanism may comprise a retraction/deployment mechanism, which is set up to retract/deploy the ducted propeller radially linearly in a first direction with respect to the longitudinal axis of the flying object, and a pivot mechanism, which is set up to pivot the ducted propeller about a pivot axis which is parallel to the first direction. In particular, the first direction may be parallel to the pitch axis of the flying object.
In a preferred embodiment, the retraction/deployment mechanism may comprise a first support element, which is associated with the fuselage of the flying object and extends in the first direction, and a second support element, which is associated with the ducted propeller, extends in the first direction and is movable a predetermined distance in the first direction relative to the first support element. In this embodiment, the first support element and the second support element are set up to cooperate in such a way that in the stowed state of the ducted propeller they overlap by at least a first predetermined amount with respect to the first direction and in such a way that in the deployed state they overlap by a second amount, smaller than the first predetermined amount, with respect to the first direction and transfer propulsion/lift forces generated by the ducted propeller to the flying object. In this context, the second amount may in particular even be zero, in other words it is conceivable for there no longer to be any overlap between the first and second support element in the deployed state.
Providing an overlap of the first support element and the second support element in the stowed state makes a particularly compact configuration of the retraction/deployment mechanism possible in the fuselage of the flying object.
Further, the first and second support element may each be provided with elements which cooperate in such a way that a movement of the second support element with respect to the first support element in the first direction brings about the pivoting of the ducted propeller, at least over part of the predetermined distance. For this purpose, any desired cooperating elements may be provided which are capable of converting a translational movement into a rotational movement. One possible example would be a curved slot in which a cam is guided, it being possible for the slot and the cam each to be associated with the first or second support element.
In a further preferred embodiment of the mechanism in accordance with the embodiment, the ducted propeller may further comprise a stator which has one or more substantially radially extending stator blades. In this context, the second support element may accordingly be arranged in the region of the stator, preferably within at least one stator blade, at least in part with respect to the longitudinal direction of the ducted propeller.
For example, the first support element may be formed as a rod and the second support element as a hollow rod or the first support element as a hollow rod and the second support element as a rod, the rod being formed substantially completely within the hollow rod in the stowed state. This embodiment of the retraction/deployment mechanism combines the advantages of a compact construction in the stowed state and an optimum force take-up in the deployed state.
In the two aforementioned embodiments, in the stowed state of the ducted propeller the shell of the flying object may be formed at least in part by the duct of the ducted propeller and/or by a cover element in the region of the receiving chamber, the cover element optionally also being able to form part of the shell in the deployed state. In this context, for example a flap is conceivable which opens for the deployment of the ducted propeller and closes again after deployment is completed. Both forming part of the shell of the flying object using the duct of the ducted propeller and providing a cover element make it possible to achieve advantageous flow properties of the flying object both in the stowed state and in the deployed state of the ducted propeller.
A second aspect of the present invention relates to an electrically driven ducted propeller which can be provided for example for use in a flying object having vertical take-off and landing capability and which may optionally be used in connection with a mechanism in accordance with the first aspect of the invention. According to the invention, the electrically driven ducted propeller comprises a duct having a substantially circular internal cross-section, a stator rotationally engaged with the duct, having one or more substantially radially extending stator blades and having on a radially inner region a shaft for supporting a rotor, a rotor supported on the shaft rotatably with respect to the stator and the duct and having a plurality of rotor blades, a plurality of magnets rotationally engaged with the rotor or a conductive cage rotationally engaged with the rotor, and a plurality of coils arranged rotationally engaged with respect to the stator and the duct. According to the invention, the rotor comprises a plurality of additional blades rigidly connected to the rotor in a radial end region, the radial end region of the rotor which comprises the additional blades facing towards the plurality of coils.
In this context, the electrical drive of the ducted propeller corresponds to a synchronous or asynchronous machine depending on whether the plurality of magnets or the conductive cage is associated with the rotor.
As a result of the additional blades being provided in a radial end region of the rotor, the airflow generated by the rotor can advantageously be shaped in this region. In particular, the plurality of additional blades may be formed in such a way that they deflect part of the air sucked in by the rotor towards the coils in such a way that the coils are cooled by the resulting airflow. This improved cooling of the coils makes a higher power of the ducted propeller possible, since for example a high provided rotational speed of the rotor requires a high switching frequency of the coils, which in turn leads to increased heat losses in the coils and in particular the cores, for example made of iron, of the coils, which losses have to be dissipated suitably so as to prevent damage to the coils.
A third aspect of the present invention relates to an electrically driven ducted propeller, which may for example be used in a flying object having vertical take-off and landing capability, may optionally be used in connection with a mechanism in accordance with the first aspect of the invention, and may optionally be combined with the second aspect of the invention. In this context, the ducted propeller comprises a duct having a substantially circular internal cross section, a stator rotationally engaged with the duct, having one or more substantially radially extending stator blades and having on a radially inner region a shaft for supporting a rotor, a rotor supported on the shaft rotatably with respect to the stator and the duct and having a plurality of rotor blades, a plurality of magnets rotationally engaged with the rotor or a conductive cage rotationally engaged with the rotor, and a plurality of coils arranged rotationally engaged with respect to the stator and the duct. According to the invention, a deflector element is provided upstream from the rotor blades with respect to the flow direction of air sucked in through the ducted propeller, and covers both the magnets of the rotor or the conductive cage and the coils as considered in the flow direction, the coils being arranged in such a way that they can be flowed onto during the operation of the ducted propeller by air flowing around the deflector element.
Providing a deflector element prevents foreign substances sucked in by the ducted propeller from reaching the region between the rotor and the coils, since these substances can damage the coils in particular. The foreign substances may for example be sand or the like which is swirled up by the ducted propeller itself and which is sucked into the region of the rotor together with the airflow sucked in by the ducted propeller.
Both in a ducted propeller in accordance with the second aspect of the invention and in one in accordance with the third aspect of the invention, the radially outer ends of the rotor blades may be connected by a peripheral ring. This measure provides improved force distribution of the forces acting on the rotor during operation. Further, this results in the possibility of at least some of the plurality of magnets or at least part of the conductive cage being able to be received in or supported by the peripheral ring.
As a result of this arrangement, it can be provided that the centrifugal forces acting on the magnets received in or supported by the peripheral ring or on the part of the conductive cage received in or supported on the ring are distributed uniformly over the ring and thus do not act on the rotor blades, whilst the rotor blades merely have to absorb the torsional forces used to drive them.
A fourth aspect of the present invention relates to an electrically driven ducted propeller, which may for example be used in a flying object having vertical take-off and landing capability and may optionally be used in connection with a mechanism in accordance with the first aspect of the invention, and which may optionally have further features of the second and third aspects of the invention. The ducted propeller in accordance with the fourth aspect of the invention comprises a duct having a substantially circular internal cross section, a stator rotationally engaged with the duct, having one or more substantially radially extending stator blades and having on a radially inner region a shaft for supporting a rotor, a rotor supported on the shaft rotatably with respect to the stator and the duct and having a plurality of rotor blades, a plurality of magnets rotationally engaged with the rotor or a conductive cage rotationally engaged with the rotor, and a plurality of coils arranged rotationally engaged with respect to the stator and the duct. In accordance with the fourth aspect of the invention, the shaft for supporting the rotor is a hollow shaft which defines a substantially cylindrical interior which is open at both base faces.
As a result of the selection according to the invention of a hollow shaft for supporting the rotor, on the one hand, the airflow formed by the ducted propeller can be optimally guided, and, on the other hand, both the at least one stator blade and the rotor blades can be selected to be shorter, leading to a reduced weight and an increased rigidity of the ducted propeller.
In an advantageous embodiment, the coils may further be attached to the hollow shaft and cooling ribs may be provided on the radial inner face of the hollow shaft, leading to excellent cooling of the coils along with the advantages discussed in relation to the third aspect of the invention.
A fifth aspect of the invention relates to an electrically driven ducted propeller, which may for example be used in a flying object having vertical take-off and landing capability and may optionally be used in connection with a mechanism in accordance with the first aspect of the invention, and which may optionally have further features of the second to fourth aspects of the invention. The ducted propeller in accordance with the fifth aspect of the invention comprises a duct having a substantially circular internal cross section, a stator rotationally engaged with the duct, having one or more substantially radially extending stator blades and having on a radially inner region a shaft for supporting a rotor, a rotor supported on the shaft rotatably with respect to the stator and the duct and having a plurality of rotor blades, a plurality of magnets rotationally engaged with the rotor or a conductive cage rotationally engaged with the rotor, and a plurality of coils arranged rotationally engaged with respect to the stator and the duct. In accordance with the fifth aspect of the invention, the rotor is supported on the shaft using a four-point bearing, said four-point bearing being arranged along an individual peripheral circle of the shaft.
As a result of the use and suitable arrangement of a four-point bearing, the construction of the ducted propeller is simplified and weight is saved without detracting from the structural properties of the ducted propeller.
A sixth aspect of the present invention relates to a flying object having vertical take-off and landing capability, comprising a plurality of ducted propellers, which each comprise a substantially cylindrical duct which defines a longitudinal axis of the ducted propeller and is open at the base faces thereof. In this context, the ducted propellers are each mounted rotatably about a pitch axis of the flying object and can each take on a first position, in which the longitudinal axis of the respective ducted propeller is parallel to the longitudinal axis of the flying object, and a second position, in which the longitudinal axis of the respective ducted propeller is at an inclination to the longitudinal axis by a particular angular amount. In this context, the ducted propellers are arranged in at least one row, each row comprising a plurality of ducted propellers, in such a way that when all of the ducted propellers in a row are in the first position the ducts of the ducted propellers form an overall cylinder. According to the invention, in the first position the ducts of at least two of the ducted propellers in the or each row of ducted propellers follow one another without interruption along the longitudinal axes thereof.
This configuration of the ducted propellers in the first position thereof leads, on the one hand, to optimal use of space in each of the rows with respect to the longitudinal axes thereof, resulting in a reduced weight and reduced size and, on the other hand, also to a flow-optimised shape of the overall cylinder which is formed by a plurality of duct cylinders in the first position of the duct cylinders.
If a row of duct cylinders consists of at least three duct cylinders, a configuration is in particular conceivable in which the ducts of at least three ducted propellers follow one another along the longitudinal axes thereof without interruption, in other words the duct of at least the central ducted propeller of the row transitions into the duct of the adjacent ducted propeller without interruption in each case in both directions along the longitudinal axis thereof. If the row comprises more than three ducted propellers, accordingly the ducts of a plurality of ducted propellers can transition into the duct of the adjacent ducted propeller without interruption in each case in both directions along the longitudinal axes thereof.
In a preferred embodiment, a start element may be associated with the or each row of ducted propellers in the longitudinal direction of the flying object and be formed in such a way that in the first position of the ducted propellers, as considered in the longitudinal direction of the flying object, the base face of the overall cylinder formed by the ducts of the ducted propellers is covered in a front view.
Alternatively or in addition, an end element may further be associated with the or each row of ducted propellers in the longitudinal direction of the flying object, and be formed in such a way that in the first position of the ducted propellers, as considered in the longitudinal direction of the flying object, the base face of the overall cylinder formed by the ducts of the ducted propellers is covered in a rear view.
As a result of a start and/or end element being provided, an advantageous flow of air around the row or along the row can be achieved.
Both the start and the end element may either be formed by a dedicated component, for example provided on the fuselage of the flying object, or be formed by front and rear wing edges, for example if the row of ducted propellers is provided in a wing of the flying object.
In a preferred embodiment, in each case at least one base face of each ducted propeller may be formed S-shaped in a side view along the pitch axis of the flying body, the S shape preferably following the circulation of the longitudinal axis of the ducted propeller about the pitch axis of the flying body.
In this connection, it should again be noted that the concept “cylindrical” is to be interpreted broadly for the ducts of the ducted propellers, and that the base faces which are formed S-shaped do not conflict with the cylindrical shape. The S-shape, following the circulation of the longitudinal axis of the ducted propeller, of the base faces of the ducts makes a seamless transition of the ducts possible in the first state of the ducted propellers as well as an optimum flow onto the ducted propellers in the second state. Further, as a result of the stated geometry of the ducts, it may also be possible to pivot each of the ducted propellers individually, and this is advantageous in particular in relation to redundancy and safety issues.
In one possible embodiment, at least some of the ducted propellers may be arranged directly on an outer face of a fuselage of the flying object.
Alternatively or in addition, at least some of the ducted propellers may further be arranged in a wing of the flying object, the ducts of the ducted propellers arranged in the wings preferably forming part of the wing profile in the first position. In this connection, the broad definition of the term “cylindrical duct” should again be noted.
According to the invention, a flying object in accordance with the sixth aspect of the invention may further comprise at least one further ducted propeller and/or further devices which merely contribute to the propulsion of the flying object.
As a result of these measures, it can for example be provided that during cruising the flying object obtains its thrust exclusively from the devices merely provided for the propulsion of the flying object, and this makes it possible to use the ducted propellers arranged in sequence merely during a vertical take-off, a vertical landing and the transition from hovering operation into cruising operation, and to turn them off during cruising operation.
A seventh aspect of the invention relates to a flying object having vertical take-off and landing capability, which optionally comprises at least one mechanism in accordance with the first aspect of the invention and/or at least one ducted propeller in accordance with the second and/or third and/or fourth and/or fifth aspect and/or has further features of the flying object in accordance with the sixth aspect of the invention. The flying object in accordance with the seventh aspect of the invention comprises an undercarriage and at least one pair of wings, which can be slid or folded in a mode of travel of the flying object which can be implemented using the undercarriage on the base, the wings each being pivotable about an axis which is inclined by an angle of between 25 degrees and 65 degrees, preferably approximately 45 degrees, with respect to each of the primary axes of the flying object and which is provided directly on the wing attachment, or in that the wings are each pivotable about an axis which is positioned in the fuselage of the flying object and which is positioned in the plane spanned by the longitudinal axis and the pitch axis and which is tilted in each case through an angle of between approximately 25 degrees and approximately 65 degrees, preferably through approximately 45 degrees, towards the longitudinal axis and the pitch axis of the flying object, or in that the wings can be folded inwards into the fuselage, the fuselage being sealable by sealing elements, or in that the wings are retractable into the fuselage by means of a slide arrangement, or in that the wings are pivotable forwards or backwards using two articulations configured as a double articulation, a first pivot axis being positioned along a wingspan direction of the wing and a second pivot axis being positioned perpendicular to the first axis parallel to the yaw axis of the flying object, and the wing, for folding in, initially being pivoted through 90° about the first pivot axis and subsequently being pivoted forwards or backwards about the second pivot axis.
As a result of stowable or foldable wings being provided, the flying object gains considerable flexibility in a state in which it moves on the ground by means of its undercarriage, in particular since the width dimensions thereof are considerably reduced, meaning that it is made considerably simpler to manoeuvre and generally has a lower space requirement.
If one of the pivot axes of the wings extends along the respective wingspan direction of the individual wing, the function of an elevator or aileron can additionally be taken on by the wings by way of combined or coordinated pivoting of the wings of the flying object about this respective axis during flight. This makes it possible to improve the manoeuvrability of the flying object or to dispense completely with conventional elevators or ailerons and thus to simplify the construction of the flying object.
A eighth aspect of the invention relates to a flying object having vertical take-off and landing capability, which optionally comprises at least one mechanism in accordance with the first aspect of the invention and/or at least one ducted propeller in accordance with the second and/or third and/or fourth and/or fifth aspect of the invention and/or has further features of the flying object in accordance with the sixth and/or seventh aspect of the invention, and which comprises at least one ducted propeller, which is arranged in such a way that it is completely covered by a fuselage and/or a wing of the flying object in a front view of the flying object along the longitudinal axis of the flying object and is provided with controllable elements for thrust deflection, in such a way that in operation the ducted propeller can selectively contribute to the propulsion or lift or both to the propulsion or lift of the flying object.
Providing the ducted propeller in the “slipstream” of a fuselage or wing makes an advantageous flow onto the rotor of the ducted propeller possible, since the speed of the air sucked in is comparatively low and this increases the efficiency of the ducted propeller and in cooperation with the elements for thrust deflection leads to an increased performance and an improved vertical take-off and landing capability of the flying object.
In the following, the invention is described in greater detail with reference to the accompanying drawings by way of embodiments. In the drawings, in detail:
a and 10b are a schematic side view and oblique view of a row of ducted propellers of a flying object according to the invention in a vertical flight position;
a and 11 b are a schematic side view and oblique view of a row of ducted propellers of a flying object according to the invention in a transition position from vertical flight to horizontal flight;
a and 12b are a schematic side view and oblique view of a row of ducted propellers of a flying object according to the invention in a horizontal flight position;
a and 20b are a schematic plan view and side view of a wing folding mechanism in a flying object according to the invention;
b is a schematic side view of a flying object according to the invention having a third embodiment of a wing folding mechanism; and
In
The mechanism 10 is provided in the fuselage 12 of the flying object 1, which here is shown merely schematically on a cross-sectional view in the region of the mechanism 10 for stowing the ducted propeller. The outer skin of the fuselage 12, together with the outer profile of wings (not shown) of the flying object, forms the shell 14 of the flying object. The ducted propeller 16 is shown merely schematically in
A receiving chamber 22, into and out of which the ducted propeller 16 can be pivoted about the first pivot axis 24, is provided in the fuselage 12 of the flying object 1. The pivot axis 24 extends parallel to the longitudinal axis L of the flying object outside the duct 18 of the ducted propeller 16. During pivoting about the first pivot axis 24, a central longitudinal axis M of the ducted propeller 16 follows the dashed line S1 and the outermost point, opposite the first pivot axis 24, of the duct 18 of the ducted propeller 16 follows the dashed line S2. In this context, the state shown in
In the state shown in
In the stowed state of the ducted propeller, a cover element (not shown) may further cover the receiving chamber 22, following the shape of the shell 14 of the flying object 1.
In this context, the embodiment shown in
Again, in
The embodiment shown in
The embodiment shown in
The hollow rod 130″ of the retraction/deployment mechanism shown in
By contrast with the embodiments shown in
In the embodiment shown, the stator shaft 28 is formed as a hollow shaft and part of the air sucked in by the rotor 20 is passed through this hollow shaft 28 during the operation of the ducted propeller 16.
a and 10b schematically show a row of ducted propellers which are attached to a flying object 1000 according to the invention, the longitudinal axis L and vertical axis H of which are indicated by pairs of coordinate axes. The ducted propellers are denoted by reference numerals 16a, 16b and 16c. They are arranged in a row along a fuselage 1012 of the flying object 1, the fuselage 1012 merely being shown schematically. The row of ducted propellers 16a to 16c is provided with a start element 202 at the front end thereof and with an end element 204 at the rear end thereof. In
In
Finally,
For reasons of aerodynamics, in the configuration shown in
The flying object 3000′ according to the invention of
a and 20b show a flying object 4000 according to the invention, which has a longitudinal axis L, a pitch axis N and a yaw axis G. A wing 4018 is pivotably attached to the flying object 4000, the pivot axis S being provided directly on the attachment of the wing 4018 and being inclined through 45 degrees with respect to each of the primary axes L, N and G, specifically rearwards, upwards and outwards. During folding, the tip of the wing 4018 follows the curve K shown in
a shows a modified embodiment of the flying object 4100 shown in
b is a side view of a third embodiment of the flying object 4200 shown in
During slow flight, the wing 4218 can be inclined slightly downwards relative to the fuselage 4212 together with a nose of the fuselage. This has the advantage that the angle of attack of the fuselage 4212 can be set independently of the angle of attack of the wing 4218. Thus, the fuselage 4212 can take on a very high angle of attack during slow flight and generate a large amount of lift without the wing 4218 also having to be aligned.
The double articulation 4220 may also be arranged rotated through 90° in the fuselage, in such a way that the wing 4218 is folded upwards.
The variant of the wing folding in which only one axis is used, which is at an inclination of approximately 45° in each case to all three aeroplane axes, can be constructed in such a way that all of the flight loads are transferred via the articulation and the wing can be pivoted during flight. In this case too, ailerons can be dispensed with.
Finally,
Number | Date | Country | Kind |
---|---|---|---|
10 2014 213 215.0 | Jul 2014 | DE | national |