Embodiments relate to a semiconductor device, architecture, memory cell, array, and techniques for controlling and/or operating such device, cell, and array. More particularly, in one aspect, the embodiments relate to a dynamic random access memory (“DRAM”) cell, array, architecture and device, wherein the memory cell includes an electrically floating body configured or operated to store an electrical charge.
There is a continuing trend to employ and/or fabricate advanced integrated circuits using techniques, materials and devices that improve performance, reduce leakage current and enhance overall scaling. Semiconductor-on-Insulator (SOI) is a material in which such devices may be fabricated or disposed on or in (hereinafter collectively “on”). Such devices are known as SOI devices and include, for example, partially depleted (PD) devices, fully depleted (FD) devices, multiple gate devices (for example, double or triple gate), and Fin-FET.
One type of dynamic random access memory cell is based on, among other things, the electrically floating body effect of SOI transistors; see, for example, U.S. Pat. No. 6,969,662 (the “'662 patent). In this regard, the dynamic random access memory cell may consist of a PD or a FD SOI transistor (or transistor formed in bulk material/substrate) having a channel, which is disposed adjacent to the body and separated from the gate by a gate dielectric. The body region of the transistor is electrically floating in view of the insulation layer (or non-conductive region, for example, in a bulk-type material/substrate) disposed adjacent to the body region. The state of the memory cell is determined by the concentration of charge within the body region of the SOI transistor.
Data is written into or read from a selected memory cell by applying suitable control signals to a selected word line(s), a selected source line(s) and/or a selected bit line(s). In response, charge carriers are accumulated in or emitted and/or ejected from electrically floating body region wherein the data states are defined by the amount of carriers within electrically floating body region. Notably, the entire contents of the '662 patent, including, for example, the features, attributes, architectures, configurations, materials, techniques and advantages described and illustrated therein, are incorporated by reference herein.
Referring to the operations of an N-channel transistor, for example, the memory cell of a DRAM array operates by accumulating in or emitting/ejecting majority carriers (electrons or holes) from body region. In this regard, conventional write techniques may accumulate majority carriers (in this example, “holes”) in body region of memory cells by, for example, impact ionization near source region and/or drain region. In sum, conventional writing programming techniques for memory cells having an N-channel type transistor often provide an excess of majority carriers by impact ionization or by band-to-band tunneling (gate-induced drain leakage (“GIDL”)). The majority carriers may be emitted or ejected from body region by, for example, forward biasing the source/body junction and/or the drain/body junction, such that the majority carrier may be removed via drain side hole removal, source side hole removal, or drain and source side hole removal, for example.
Notably, for at least the purposes of this discussion, a logic high data state, or logic “1”, corresponds to, for example, an increased concentration of majority carries in the body region relative to an unprogrammed device and/or a device that is programmed with logic low data state, or logic “0”. In contrast, a logic low data state, or logic “0”, corresponds to, for example, a reduced concentration of majority carriers in the body region relative to a device that is programmed with a logic high data state, or logic “1”. The terms “logic low data state” and “logic 0” may be used interchangeably herein; likewise, the terms “logic high data state” and “logic 1” may be used interchangeably herein.
In one conventional technique, the memory cell is read by applying a small bias to the drain of the transistor as well as a gate bias which is above the threshold voltage of the transistor. In this regard, in the context of memory cells employing N-type transistors, a positive voltage is applied to one or more word lines to enable the reading of the memory cells associated with such word lines. The amount of drain current is determined or affected by the charge stored in the electrically floating body region of the transistor. As such, conventional reading techniques sense the amount of channel current provided/generated in response to the application of a predetermined voltage on the gate of the transistor of the memory cell to determine the state of the memory cell; a floating body memory cell may have two or more different current states corresponding to two or more different logical states (for example, two different current conditions/states corresponding to the two different logical states: “1” and “0”).
Additionally, conventional writing programming techniques for memory cells having an N-channel type transistor often provide an excess of majority carriers by channel impact ionization or by band-to-band tunneling (gate-induced drain leakage (“GIDL”)). The majority carrier may be removed via drain side hole removal, source side hole removal, or drain and source side hole removal, for example, using the back gate pulsing. Notably, conventional programming/reading techniques often lead to relatively large power consumption (due to, for example, high writing “0” current) and relatively small memory programming window.
Furthermore, in some cases, planar memory cell arrays may exhibit row disturb effects during write “1” in which holes from a row being written can diffuse across a common bit line active area to a memory cell of an adjacent row. The combination of adjacent row hole disturb and source line disturb can require a memory cell with separated source and drain active areas which can result in a larger memory cell.
Each patent, patent application, and/or publication mentioned in this specification is herein incorporated by reference in its entirety to the same extent as if each individual patent, patent application, and/or publication was specifically and individually indicated to be incorporated by reference.
There are many inventions described herein as well as many aspects and embodiments of those inventions. In one aspect, the present inventions are directed to a semiconductor device including an electrically floating body. “Electrically floating body” or “floating body” refers to a transistor body which is not coupled to, and is therefore insulated from, power or ground rails within a semiconductor device or integrated circuit (IC) chip. Various levels of charge may therefore accumulate within a floating body of a transistor. Floating-body transistors are a significant characteristic of SOI devices.
In another aspect, the present inventions are directed to techniques to control and/or operate a semiconductor memory cell (and memory cell array having a plurality of such memory cells as well as an integrated circuit device including a memory cell array) having one or more electrically floating body transistors in which an electrical charge is stored in the body region of the electrically floating body transistor. The techniques of the present inventions may employ intrinsic bipolar transistor currents (referred to herein as “source” currents) to control, write, read and/or refresh a data state in such a memory cell. In this regard, the present inventions may employ the intrinsic bipolar source current to control, write, read and/or refresh a data state in/of the electrically floating body transistor of the memory cell.
The present inventions are also directed to semiconductor memory cell, array, circuitry and device to implement such control and operation techniques. Notably, the memory cell and/or memory cell array may comprise a portion of an integrated circuit device, for example, logic device (such as, a microcontroller or microprocessor) or a portion of a memory device (such as, a discrete memory).
According to one embodiment, each electrically floating body transistor 104 comprises a vertically-disposed transistor (referred also to as a “vertical transistor 104”) that includes a pillar-like structure and orientation. In one embodiment, the pillar-like structure can be fabricated to a have a height of about 80 nm, and a width of about 40 nm. While a configuration is shown, other configurations, orientations, implementations, etc. are available. As discussed further below, source regions or sources and drain regions or drains, can be separated in conjunction with a pillar-like structure which may not result in a larger memory cell based in part on the use of the pillar structure for a transistor architecture.
Moreover, as described below, the drain regions 108 (see
For example, the drain region 108 of the vertical transistor 104 can be disposed such that a bit line can be electrically coupled to a top portion 110 of the drain region 108, wherein each bit line comprises a first type of conductor (a metal for this example). Each memory cell 102 also includes a source region 112 (see
In one embodiment, the body region 118 of a vertical transistor 104 includes a first type of semiconductor material which may be un-doped or doped to a first polarity, and the source region 112 and drain region 108 include a second type of semiconductor material which is doped to the opposite polarity of the first type of semiconductor material. For example, the body region 118 can be configured to be electrically floating and can include a number of portions or regions (e.g., three, etc.) that collectively define the electrically floating body 118. Each of the portions comprises the same or similar material (e.g., P-type in this example). As described below, a gate 114 can be disposed about a first portion 118a or boundary of the body region 118.
A source region 112 adjoins a second portion 118b or boundary of the body region 118; the second portion 118b of the body region 118 is adjacent the first portion 118a and separates the source region 112 from the first portion 118a. A drain region 108 adjoins a third portion 118c or boundary of the body region 118; the third portion 118c of the body region 118 is adjacent the first portion 118a and separates the drain region 112 from the first portion 118a. The source region 112 and/or drain region 108 can be created using conventional doping or implantation techniques, but is not so limited. The second portion 118b and third portion 118c of the body region 118 can be configured to electrically “disconnect” (e.g., disconnect any charge that may accumulate, disconnect any inversion channel that may form) in the first portion 118a from one or more of the source and the drain regions, as described further below.
In contrast to conventional MOSFET devices, the source 112 region and/or drain region 118 of an embodiment are configured so that no portion of the source and/or drain regions is encompassed by the gate 114. Configuration of the source and/or drain regions of an embodiment includes configuration through control of the shape and/or size of a doped source and/or doped drain regions of the vertical transistor 104. In accordance with such an embodiment, because only the first portion 118a of the body region 118 is under the gate 114, charge that may accumulate or an inversion channel that may form is found only in the first portion 118a when the appropriate control signal(s) is applied to an associated memory cell 102. Moreover, in such an embodiment, no charge is accumulated and no inversion channel is formed in the second portion 118b and/or third portion 118c because these portions do not underlie the gate 114. The second portion 118b and/or third portion 118c therefore cause accumulated charge if any (or inversion channel if formed) to be discontinuous with the source region 112 and/or drain region 108.
As a result of the application of gate voltage to vertical transistor 104, charge builds up in the first portion 118a of the body region 118, but current does not flow in the body region 118 because of the absence of accumulated charge and/or a continuous inversion channel between the source and drain regions. The discontinuous configuration of the first portion 118a of the body region relative to the source and drain regions therefore acts as an “open circuit” relative to the flow of current between the source and drain regions. Any charge present in the body region 118 thus causes transistor 104 to behave like a capacitor because the region of charge in the body is disconnected from the source region 112 and/or drain region 108.
For example, the vertical transistor 104 can be used when writing or programming logic “1” as part of a memory cell operation, under an embodiment. The vertical transistor 104 of such an embodiment is an N-channel or nMOS FET, but is not so limited; transistor 104 may be a P-channel or pMOS FET in an alternative embodiment. The N-channel device includes source and drain regions comprising N+-type material while the body region 118 comprises either a P-type or intrinsic material.
A logic “1” programming or writing operation of an embodiment includes a two stage control signal application during which the gate voltage is changed from a first voltage level to a second voltage level. In operation, when writing or programming logic “1”, in one embodiment, control signals having predetermined voltages are initially applied during stage one to gate 114, source region 112, and drain region 108 (respectively) of the transistor 104 of memory cell 102. The stage one control signals may result in an accumulation of minority carriers (not shown) in the electrically floating body of the vertical transistor 104. As a result of the polarity (e.g., positive) of the control signal applied to the gate with the stage one control signals, any minority carriers that happen to be present in the body region 118 accumulate in a first portion 118a of the body region 118 under an embodiment. The minority carriers may accumulate in an area of the first portion 118a under the gate, but are not so limited.
Continuing with this example, the physical behavior in the first portion 118a of the body 118 in response to the stage one control signals of an embodiment is in contrast to conventional transistor devices in which an inversion channel (also referred to as an “N-channel”) forms under the gate in an area that is close to the interface between a gate oxide or dielectric and electrically floating body 118. The inversion channel is of the same type as the source and drain regions (e.g., N-type in an nMOS FET) and functions to electrically couple the source and drain regions.
The inversion channel, however, is not generally formed in the vertical transistor 104 of an embodiment and, additionally, the accumulation of minority carriers in the first portion 118a of the body region 118 if any is discontinuous with the source and/or drain regions of a memory cell 102. No inversion channel is formed in the vertical transistor 104 since as the first portion 118a of the body region 108 is electrically “disconnected” from the source and drain regions, the time required to create an inversion channel during a programming operation is quite long relative to a writing time for example. Therefore, considering an example writing time of an embodiment approximately in a range of 1-10 nanoseconds, and considering the time required for generation of an inversion channel in the “disconnected” first portion 118a of the body region 118 is much longer than 10 nanoseconds, an inversion channel is not generally created in the vertical transistor 104 during typical programming operations.
Similarly, relatively few or no minority carriers accumulate in the body region 118. Furthermore, even if an inversion channel were to form in the first portion 118a of the body region 118 as a result of a gate voltage, the inversion channel would not form in the second portion 118b and third portion 118c of the body region 118 when these portions or regions are not encompassed or surrounded by the gate in this embodiment. Therefore, any inversion channel formed under the embodiments described herein would be “disconnected” from or discontinuous with the source and drain regions.
The lack of an inversion channel or discontinuous inversion channel (if one were to form) of the vertical transistor 104 of an embodiment is in contrast to conventional transistors in which the inversion channel forms and spreads from the source to the drain and provides conductivity of the conventional transistor. However, the configuration of these conventional devices is such that the gate overlays the entire body region between the source and drain regions, and the programming times are of a length that ensures formation of an inversion channel when appropriate voltages are applied, thereby creating a continuous inversion channel that “connects” the source and drain regions upon application of the appropriate polarity signal at the gate.
Stage one control signals also generate or provide a source current in electrically floating body region 118 of the vertical transistor 104. More specifically, the potential difference between the source voltage and the drain voltage is greater than the threshold required to turn on the bipolar transistor. Therefore, source current of the vertical transistor 104 causes or produces impact ionization and/or the avalanche multiplication phenomenon among charge carriers in the electrically floating body region 18. The impact ionization produces, provides, and/or generates an excess of majority carriers (e.g., holes) in the electrically floating body region 118 of transistor 104 of memory cell 102 as described above.
Notably, in one embodiment, the source current responsible for impact ionization and/or avalanche multiplication in electrically floating body region 118 is initiated or induced by a control signal applied to gate 114 of vertical transistor 104 along with the potential difference between the source and drain regions. Such a control signal may induce channel impact ionization which raises or increases the potential of body region 118 and “turns on”, produces, causes and/or induces a source current in vertical transistor 104. One advantage of the proposed writing/programming technique is that a large amount of the excess majority carriers may be generated and stored in electrically floating body region 118 of vertical transistor 104.
The stage two control signals are subsequently applied to the vertical transistor 104 when writing or programming logic “1” as described above. The stage two control signals are control signals having predetermined voltages applied to gate 114, source region 112 and drain region 108 (respectively) of vertical transistor 104 of memory cell 102 subsequent to stage one. As a result of a polarity (e.g., negative) of the control signal applied to the gate with the stage two control signals, the majority carriers of the body region 118 accumulate near an outer surface of the first portion 118a of the body region 118).
The polarity of the gate signal (e.g., negative) combined with the floating body causes the majority carriers to become trapped or “stored” near the outer surface of the first portion 118a of the body region 118. In this manner the body region 118 of the vertical transistor 104 “stores” charge (e.g., equivalently, functions like a capacitor). Thus, in this embodiment, the predetermined voltages of the stage one and stage two control signals program or write logic “1” in memory cell 102 via impact ionization and/or avalanche multiplication in electrically floating body region 118.
A logic “0” programming or writing operation of an embodiment includes a two stage control signal application during which a gate voltage is changed from a first voltage level to a second voltage level. In operation, when writing or programming logic “0”, in one embodiment, control signals having predetermined voltages are initially applied during stage one to gate 114, source region 112 and drain region 108 (respectively) of vertical transistor 104 of memory cell 102. The stage one control signals may result in an accumulation of minority carriers (not shown) in the electrically floating body 118.
As a result of the polarity (e.g., positive) of the control signal applied to the gate with the stage one control signals, any accumulation of minority carriers occurs under the gate 114 in the first portion 118a of the body region 118, in an area that is close to the interface between gate oxide or dielectric 116 and electrically floating body 118 as described above. Any minority carriers that accumulate are in the first portion 118a of the body region 118 as a result of the gate voltage, and thus do not accumulate in the second and third portion 118b and 118c of the body region 118. Therefore, the accumulated charge of the body region 118 is discontinuous with the source region 112 and drain region 108.
The potential difference between the source voltage and the drain voltage of the stage one control signals, however, is less than the threshold required to turn on vertical transistor 104. Consequently, no impact ionization takes place among particles in the body region 118 and no bipolar or source current is produced in the electrically floating body region 118. Thus, no excess of majority carriers are generated in the electrically floating body region 118 of vertical transistor 104 of memory cell 102.
Stage two control signals can be subsequently applied to the vertical transistor 104 when writing or programming logic “0” as described above. The stage two control signals are control signals having predetermined voltages applied to gate 114, source region 112 and drain region 108 (respectively) of vertical transistor 104 of memory cell 102 subsequent to stage one.
The polarity (e.g., negative) of the gate signal may result in any minority carriers that accumulate being removed from electrically floating body region 118 of vertical transistor 104 via one or more of the source region 112 and the drain region 108. Furthermore, a polarity of the gate signal (e.g., negative) causes any minority carriers remaining in the body region 118 to be trapped or “stored” near an outer surface of the first portion 118a of the body region 118. The result is an absence of excess majority carriers in the body region 118 so that, in this manner, the predetermined voltages of the stage one and stage two control signals program or write logic “0” in memory cell 102.
A logic “0” programming operation of an alternative embodiment includes a two stage control signal application during which the gate voltage is changed from a first voltage level to a second voltage level. In operation, when writing or programming logic “0”, in this alternative embodiment, control signals having predetermined voltages (for example, Vg=0v, Vs=0v, and Vd=0v) are initially applied during stage one to gate 114, source region 112 and drain region 108 (respectively).
The voltage levels described here as control signals to implement the write operations are provided merely as examples, and the embodiments described herein are not limited to certain voltage levels. The control signals increase the potential of electrically floating body region 118 which “turns on”, produces, causes and/or induces a source current in the transistor of the memory cell. In the context of a write operation, the source current generates majority carriers in the electrically floating body region which are then stored. In the context of a read operation, the data state may be determined primarily by, sensed substantially using and/or based substantially on the source current that is responsive to the read control signals and significantly less by the interface channel current component, which is less significant and/or negligible relatively to the bipolar component.
Accordingly, the voltage levels to implement write operations are merely examples of control signals. Indeed, the indicated voltage levels may be relative or absolute. Alternatively, the voltages indicated may be relative in that each voltage level, for example, may be increased or decreased by a given voltage amount (for example, each of the gate, source, and drain voltage may be increased or decreased by 0.5, 1.0, 2.0 volts, etc.) whether one or more of the voltages (for example, the source, drain or gate voltages) become or are positive and negative.
As described above, and in accordance with an embodiment, the memory cell 102 may be implemented in the memory cell or memory cell array. When a memory cell is implemented in a memory cell array configuration, it may be advantageous to implement a “holding” operation or condition to certain memory cells when programming one or more other memory cells of the array in order to improve or enhance the retention characteristics of such certain memory cells.
In this regard, the transistor of the memory cell may be placed in a “holding” state via application of control signals (having predetermined voltages) which are applied to the gate and the source and drain regions of the transistor of the memory cells which are not involved in the write or read operations. For example, such control signals provide, cause and/or induce majority carrier accumulation in an area that is close to the interface between gate oxide 116 and electrically floating body 118. In this embodiment, it may be preferable to apply a negative voltage to gate 114 where vertical transistor 104 is an N-channel type transistor. The proposed holding condition may provide enhanced retention characteristics.
In one embodiment, a data state of memory cell 102 may be read and/or determined by applying control signals having predetermined voltages to gate 114 and source region 112 and drain region 108 of vertical transistor 104. Such control signals, in combination, induce and/or cause a source current in memory cells that are programmed to logic “1” as described above. As such, sensing circuitry (for example, a cross-coupled sense amplifier), which is coupled to vertical transistor 104 (for example, drain region 108) of memory cell 102, senses the data state using primarily and/or based substantially on the source current. Notably, for those memory cells 102 that are programmed to logic “0”, such control signals induce, cause and/or produce little to no source current (for example, a considerable, substantial or sufficiently measurable source current).
Thus, in response to read control signals, electrically floating body vertical transistor 104 generates a source current which is representative of the data state of memory cell 102. Where the data state is logic high or logic “1”, electrically floating body transistor 114 provides a substantially greater source current than where the data state is logic low or logic “0”. Moreover, vertical transistor 104 may provide little to no source current when the data state is logic low or logic “0”. Data sensing circuitry determines the data state of the memory cell based substantially on the source current induced, caused and/or produced in response to the read control signals.
Voltage levels described here as control signals to implement the read operations are provided merely as examples, and the embodiments described herein are not limited to any voltage levels. Voltage levels may be relative or absolute. Alternatively, voltages may be relative in that each voltage level, for example, may be increased or decreased by a given voltage amount (for example, each voltage may be increased or decreased by a voltage amount) whether one or more of the voltages (for example, the source, drain or gate voltages) become or are positive and negative.
As described above with reference to
In accordance with an embodiment, each vertical transistor 104 in the array of memory cells 100 can be fabricated such that the source region 112 and drain region 108 of a vertical transistor 104 oppose one another and are separated vertically or substantially vertically. For example, the vertical transistor 104 of a memory cell 102 can be fabricated such that the drain region 108 is located in a layer above the source region 112. In another example, a vertical transistor 104 of a memory cell 102 can be fabricated such that the source region 112 is located in a layer above the drain region 108 of an associated memory cell 102 (see
Additionally, while not being shown to scale in
In one exemplary configuration, a width or outer diameter of a gate 114 can be fabricated to be about eighty (80) nm, a height of a vertical transistor 104 can be fabricated to be about one hundred (100) nm, a thickness of the gate oxide region can be fabricated to be about fifty six (56) Angstroms, a spacing between unconnected vertical transistors (see separation between rows in
As shown in
As shown in top view of the array in
With continuing reference to the example of
As shown in the examples of
The bipolar transistor 202 of an embodiment includes a floating body, meaning the potential is not fixed but is “floating”. The potential for example depends on the charge at an associated gate. Any base of the transistor 200 in this embodiment, however, is floating and not fixed because there is no base contact as found in conventional bipolar BJTs; the current in this transistor is therefore referred to herein as a “source” current produced by impact ionization in the body region as described below.
In one embodiment, the high electric field results in impact ionization in a first portion of a body region of an associated bit or memory cell. Impact ionization is a process during which electrons or charge carriers with enough energy generate majority carriers, such as holes for example. The impact ionization drives majority carriers to the body region, which increases the body potential, while any minority carriers flow to the drain (or source) region. The increased body potential results in an increase in source current in the body region; thus, the excess majority carriers of the body region generate source current, which can be used as part of an operation of the associated memory cell of an embodiment.
At 506, depending in part on an implementation, the process of forming the vertical transistor includes forming a source and/or a drain about a body portion of the vertical transistor. For example, ion implantation can be used to form a pillar-like transistor structure having N+ source and drain regions located at opposing ends of the pillar. At 508, an insulating layer and a gate can be formed about a portion of the semiconductor. For example, a gate oxide and a gate can be formed, wherein the gate is disposed to surround one or more of an electrically floating body region, a source, and/or a drain.
Moreover, doping profiles that result in creation of the source and/or drain region can be configured according to various embodiments so that a body region includes the second and/or third portions and thus extends beyond an extended boundary of the gate. The second and/or third portions of the body region function to prevent any inversion channel formation through the entire body region of the device because the area of the body region in which the channel forms under the gate is not continuous with the source and drain regions, as described above. Therefore, upon application of a gate voltage that is appropriate to material of the body region, charge accumulates in the body region of the device, but current cannot flow between the source and drain regions because no inversion channel is formed between the source and/or drain and any accumulated charge is disconnected from the source and/or drain.
Transistor devices of various alternative embodiments can provide a discontinuous region of any accumulated charge in the body by disconnecting the first portion of the body as described herein at the source region, the drain region, or both the source and drain regions. Further, various doping densities (e.g., very light, light, high, and very high doping) and/or profiles can be used in the source, body, and drain regions of the vertical transistor.
A number of examples follow of various alternative embodiments. In one example, an electrically floating body vertical transistor in which a first portion of the body region is made discontinuous with only the drain by a third portion of the body region. Another example includes an electrically floating body vertical transistor in which a first portion of the body region is made discontinuous with only the drain by a third portion of the body region. Under an embodiment, the source region includes a highly-doped (HD) portion and a lightly-doped (LD) portion. Yet another example includes an electrically floating body vertical transistor in which a first portion of the body region is made discontinuous with only the source by a second portion of the body region. Under an embodiment, the drain region includes a highly-doped portion and a lightly-doped portion.
Another example includes an electrically floating body transistor in which a first portion of the body region is made discontinuous with both the source and drain regions. Under an embodiment, each of the source and drain regions comprise LD and/or HD portions. Under another embodiment, each of the source and drain regions comprise LD portions. In one embodiment, each of the source and drain regions comprise HD portions. Under yet another embodiment, the source region is LD and the drain region is HD. In another embodiment, the source region is HD and the drain region is LD.
As described above, in contrast to conventional devices, the various embodiments described herein for a vertical transistor produce a relatively lower potential difference between the source and drain regions during write operations. The lower potential difference results from the device configuration described above which includes an increased distance between the source and drain regions resulting from the configuration (e.g., size, shape, etc.) of the source and drain regions relative to the gate region.
The embodiments described herein may be implemented in an integrated circuit (IC) device (for example, a discrete memory device or a device having embedded memory) including a memory array having a plurality of memory cells arranged in a plurality of rows and columns wherein each memory cell includes an electrically floating body transistor. The memory arrays may comprise N-channel, P-channel and/or both types of vertical transistors. Indeed, circuitry that is peripheral to the memory array (for example, data sense circuitry (for example, sense amplifiers or comparators), memory cell selection and control circuitry (for example, word line and/or source line drivers), as well as row and column address decoders) may include P-channel and/or N-channel type transistors.
The present inventions may be implemented in any architecture, layout, and/or configuration comprising memory cells having electrically floating body transistors. For example, in one embodiment, a memory array including a plurality of memory cells having a separate source line for each row of memory cells (a row of memory cells includes a common word line connected to the gates of each memory cell of the row). The memory array may employ one or more of the example programming, reading, refreshing and/or holding techniques described above.
In one embodiment, the present inventions are implemented in conjunction with a two step write operation whereby all the memory cells of a given row are written to a predetermined data state by first executing a “clear” operation, whereby all of the memory cells of the given row are written or programmed to logic “0”, and thereafter selected memory cells of the row are selectively written to the predetermined data state (here logic “1”). The present inventions may also be implemented in conjunction with a one step write operation whereby selected memory cells of the selected row are selectively written or programmed to either logic “1” or logic “0” without first implementing a “clear” operation.
As mentioned above, the source current responsible for impact ionization and/or avalanche multiplication in the floating body can be initiated or induced by the control signal (control pulse) applied to the gate of the vertical transistor. Such a signal/pulse may induce the channel impact ionization which raises or increases the potential of the electrically floating body region of the vertical transistor of a memory cell or cells and “turns-on” and/or produces a source current in the associated vertical transistor. One advantage of the proposed method is that a large amount of the excess majority carriers may be generated and stored in the electrically floating body region of the vertical transistor that is associated with a memory cells.
The programming, reading, and other techniques described herein may be used in conjunction with a plurality of memory cells arranged in an array of memory cells. A memory array implementing the structure and techniques of the present inventions may be controlled and configured including a plurality of memory cells having a separate source line for each row of memory cells (a row of memory cells includes a common word line and a column of memory cells includes a common bit line). The memory array may use any of the example programming, reading, refreshing, and/or holding techniques described herein. The memory arrays may comprise N-channel, P-channel and/or both types of vertical transistors. Circuitry that is peripheral to the memory array (for example, sense amplifiers or comparators, row and column address decoders, as well as line drivers (not illustrated herein)) may include P-channel and/or N-channel type transistors. Where P-channel type transistors are employed as memory cells in the memory array(s), suitable write and read voltages (for example, negative voltages) are well known to those skilled in the art in light of this disclosure.
The present inventions may be implemented in any electrically floating body memory cell and memory cell array. For example, in certain aspects, the present inventions are directed to a memory array, having a plurality of memory cells each including an electrically floating body transistor, and/or technique of programming data into and/or reading data from one or more memory cells of such a memory cell array. In this aspect of the inventions, the data states of adjacent memory cells and/or memory cells that share a word line may or may not be individually programmed.
As shown in
The data sense amplifier may employ voltage and/or current sensing circuitry and/or techniques. In the context of current sensing, a current sense amplifier may compare the current from the selected memory cell to a reference current, for example, the current of one or more reference cells. From that comparison, it may be determined whether memory cell 12 contained logic high (relatively more majority carriers contained within body region 18) or logic low data state (relatively less majority carriers contained within body region 18). Notably, the present inventions may employ any type or form of data write and sense circuitry 36 (including one or more sense amplifiers, using voltage or current sensing techniques, to sense the data state stored in memory cell 12) to read the data stored in memory cells 12 and/or write data in memory cells 12.
Memory cell selection and control circuitry 38 selects and/or enables one or more predetermined memory cells 12 to facilitate reading data from and/or writing data to the memory cells 12 by applying a control signal on one or more word lines 28. The memory cell selection and control circuitry 38 may generate such control signals using address data, for example, row address data. Indeed, memory cell selection and control circuitry 38 may include a conventional word line decoder and/or driver. There are many different control/selection techniques (and circuitry) to implement the memory cell selection technique. Such techniques, and circuitry, are well known to those skilled in the art. All such control/selection techniques, and circuitry, whether now known or later developed, are intended to fall within the scope of the present inventions.
For example, the electrically floating body transistor, which programmed (written to), read, refreshed, and/or controlled using the techniques of the present inventions, may be employed in any electrically floating body memory cell, and/or memory cell array architecture, layout, structure and/or configuration employing such electrically floating body memory cells. Indeed, all memory cell selection and control circuitry for programming, reading, refreshing, controlling and/or operating memory cells including electrically floating body transistors, whether now known or later developed, are intended to fall within the scope of the present inventions.
Moreover, the data write and data sense circuitry may include a sense amplifier (not illustrated in detail herein) to read the data stored in memory cells 12. The sense amplifier may sense the data state stored in memory cell 12 using voltage or current sensing circuitry and/or techniques. In the context of a current sense amplifier, the current sense amplifier may compare the cell current to a reference current, for example, the current of a reference cell (not illustrated). From that comparison, it may be determined whether memory cell 12 contained logic high (relatively more majority carriers contained within body region 18) or logic low data state (relatively less majority carriers contained within body region 18). Such circuitry and configurations thereof are well known in the art.
The electrically floating memory cells, transistors and/or memory array(s) may be fabricated using well known techniques and/or materials. Indeed, any fabrication technique and/or material, whether now known or later developed, may be employed to fabricate the electrically floating memory cells, transistors and/or memory array(s). For example, the present inventions may employ silicon, germanium, silicon/germanium, gallium arsenide or any other semiconductor material (whether bulk-type or SOI) in which transistors may be formed. As such, the electrically floating memory cells may be disposed on or in (collectively “on”) a SOI-type substrate or a bulk-type substrate.
Memory array 10 (including SOI memory transistors) further may be integrated with SOI logic transistors, as described and illustrated in the Integrated Circuit Device Patent Applications. For example, in one embodiment, an integrated circuit device includes memory section (having, for example, partially depleted (PD) or fully depleted (FD) SOI memory transistors 14) and logic section (having, for example, high performance transistors, multiple gate transistors, and/or non-high performance transistors (for example, single gate transistors that do not possess the performance characteristics of high performance transistors).
Further, memory array(s) 10 may comprise N-channel, P-channel and/or both types of transistors, as well as partially depleted and/or fully depleted type transistors. For example, circuitry that is peripheral to the memory array (for example, sense amplifiers or comparators, row and column address decoders, as well as line drivers (not illustrated herein)) may include FD-type transistors (whether P-channel and/or N-channel type). Alternatively, such circuitry may include PD-type transistors (whether P-channel and/or N-channel type). There are many techniques to integrate both PD and/or FD-type transistors on the same substrate. All such techniques, whether now known or later developed, are intended to fall within the scope of the present inventions. Where P-channel type transistors are employed as memory cells 12 in the memory array(s), suitable write and read voltages (for example, negative voltages) are well known to those skilled in the art in light of this disclosure.
Notably, electrically floating body vertical transistor may be a symmetrical or non-symmetrical device. Where vertical transistor is symmetrical, the source and drain regions are essentially interchangeable. However, where vertical transistor is a non-symmetrical device, the source or drain regions of vertical transistor have different electrical, physical, doping concentration and/or doping profile characteristics. As such, the source or drain regions of a non-symmetrical device are typically not interchangeable. This notwithstanding, the drain region of the electrically floating N-channel transistor of the memory cell (whether the source and drain regions are interchangeable or not) is that region of the transistor that is connected to the bit line/sense amplifier.
There are many inventions described and illustrated herein. While certain embodiments, features, attributes and advantages of the inventions have been described and illustrated, it should be understood that many others, as well as different and/or similar embodiments, features, attributes and advantages of the present inventions, are apparent from the description and illustrations. As such, the embodiments, features, attributes and advantages of the inventions described and illustrated herein are not exhaustive and it should be understood that such other, similar, as well as different, embodiments, features, attributes and advantages of the present inventions are within the scope of the present inventions.
As mentioned above, the illustrated/example voltage levels to implement the read and write operations are merely examples. The indicated voltage levels may be relative or absolute. Alternatively, the voltages indicated may be relative in that each voltage level, for example, may be increased or decreased by a given voltage amount (for example, each voltage may be increased or decreased by 0.1, 0.15, 0.25, 0.5, 1 volt) whether one or more of the voltages (for example, the source, drain or gate voltages) become or are positive or negative.
The illustrated/example voltage levels and/or timing to implement the write and read operations are merely examples. In this regard, in certain embodiments, the control signals increase the potential of electrically floating body region of the transistor of the memory cell which “turns on” or produces a source current in the transistor. In the context of a write operation, the source current generates majority carriers in the electrically floating body region which are then stored. In the context of a read operation, the data state may be determined primarily by, sensed substantially using and/or based substantially on the source current that is responsive to the read control signals and significantly less by the interface channel current component, which is less significant and/or negligible relative to the bipolar component.
Aspects of the present inventions described herein, and/or embodiments thereof, may include an integrated circuit device. The IC device of an embodiment comprises a memory cell consisting essentially of one vertical transistor including an electrically floating body region that includes a gate disposed about a first boundary of the body region, a drain region adjoining a second boundary of the body region, the second boundary adjacent the first boundary and separating the drain region from the first boundary, and, a source region vertically separated from the drain region and adjoining a third boundary of the body region, the third boundary adjacent the first boundary and separating the source region from the first boundary.
The device of an embodiment includes an insulating region adjoining the body region and isolating the body region from the gate.
The device of an embodiment includes an insulating region that comprises an oxide.
The device of an embodiment includes an insulating region surrounding a portion of one of a drain region and source region.
The device of an embodiment includes a gate surrounding a portion of an insulating region and a portion of one of a drain region and source region.
The device of an embodiment includes a gate surrounding an insulating region and a portion of one of a body region, drain region, and source region.
The device of an embodiment includes a gate surrounding an insulating region, a body region, and one of a drain region and source region.
The device of an embodiment includes a source region disposed below a third boundary of a body region.
The device of an embodiment includes a source region coupled to a source line.
The device of an embodiment includes a source region disposed above a second boundary of a body region.
The device of an embodiment includes a source region coupled to a source line.
The device of an embodiment includes a drain region disposed above a second boundary of a body region.
The device of an embodiment includes a drain region coupled to a bit line.
The device of an embodiment includes a drain region disposed below a third boundary of a body region.
The device of an embodiment includes a drain region coupled to a bit line.
The device of an embodiment includes a drain region disposed in a layer above and spaced apart from a source region layer.
The device of an embodiment includes a drain region disposed in a layer below and spaced apart from a source region layer.
The device of an embodiment includes a body region comprising a core region, the source and drain regions disposed above and below the core region, and an insulating layer encompassing a portion of one or more of the core region, the source region, and drain region.
The device of an embodiment includes a body region comprising a core region, source and drain regions opposite one another and in separate planes about the core region, and an insulating layer surrounding portions of the core region, source region, and drain region.
The device of an embodiment includes a substantially cylindrically configured transistor.
The device of an embodiment includes a vertical channel transistor.
The device of an embodiment includes a first voltage coupled to a gate, wherein the first voltage may cause minority carriers to accumulate in a body region.
The device of an embodiment wherein minority carriers accumulate at a surface region of a body region adjacent to a gate dielectric which is disposed between the gate and a first boundary of the body region.
The device of an embodiment wherein a region that includes minority carriers is disconnected from a source region by a portion of a third boundary of a body region.
The device of an embodiment wherein a region that includes minority carriers is disconnected from a drain region by a portion a second boundary of a body region.
The device of an embodiment wherein a region that includes minority carriers is disconnected from a source region by a portion of a second boundary of a body region.
The device of an embodiment wherein a region that includes minority carriers is disconnected from a drain region by a portion a third boundary of a body region.
The device of an embodiment includes a first potential difference coupled between a source and a drain, the first potential difference generating source current as a result of impact ionization of minority carriers.
The device of an embodiment includes a second voltage coupled to a gate after and instead of a first voltage, the second voltage causing an accumulation of majority carriers in a body region, wherein the majority carriers result in a first data state which is representative of a first charge in the body region.
The device of an embodiment includes a second potential difference coupled between a source and a drain, the second potential difference resulting in a second data state which is representative of a second charge in a body region.
The device of an embodiment includes a body region having a first type of semiconductor material which can be either un-doped or doped.
The device of an embodiment includes a source region and drain region having a second type of semiconductor material.
The device of an embodiment includes a source region having a lightly doped region.
The device of an embodiment includes a source region having a highly doped region.
The device of an embodiment includes a source region having a lightly doped region and a highly doped region.
The device of an embodiment includes a drain region includes a lightly doped region.
The device of an embodiment includes a drain region includes a highly doped region.
The device of an embodiment includes a drain region includes a lightly doped region and a highly doped region.
The device of an embodiment includes a bit line coupled to a drain region.
The device of an embodiment includes a source line coupled to a source region.
The device of an embodiment includes a bit line coupled to adjacent drain regions such that hole diffusion between adjacent cells is reduced during a write operation.
The device of an embodiment includes a gate which comprises a write line associated with an adjacent gate.
Aspects of the present inventions described herein, and/or embodiments thereof, may include an integrated circuit device. The IC device of an embodiment comprises a memory cell consisting essentially of one vertical transistor including an electrically floating body region that includes a gate, a body region configured as an electrically floating body, the body region configured so that material forming the body region extends beyond at least one vertical boundary of the gate, and a source region and a drain region adjacently disposed to the body region in opposing planes.
Aspects of the present inventions described herein, and/or embodiments thereof, may include an integrated circuit device. The IC device of an embodiment comprises a memory cell consisting essentially of one vertical transistor including an electrically floating body region that includes a source region disposed on an insulating substrate, a floating body region disposed over the source region, a drain region disposed over the floating body region and opposing the source region, and, a gate encompassing the floating body region and a portion of one or more of the source region and drain region, wherein a doping profile of one or more of the source and the drain region is configured to prevent formation of a contiguous current channel extending between the source region and the drain region through the floating body region.
Aspects of the present inventions described herein, and/or embodiments thereof, may include an integrated circuit device. The IC device of an embodiment comprises a memory cell consisting essentially of one vertical transistor that can be formed by: forming a source region by implanting an impurity into a first portion of a semiconductor, forming a floating body region over the source region, wherein the floating body includes a pillar structure and defines a vertical channel, forming an insulating layer and a gate to encompass the floating body region, wherein the insulating layer is disposed between the gate and the floating body region, and, forming a drain region by implanting the impurity into a second portion of the semiconductor adjacent to the floating body region, wherein the drain region is formed to oppose the source region vertically.
The method of an embodiment comprising forming a floating body region using a first type of semiconductor material which can be either un-doped or doped.
The method of an embodiment comprising forming a source region and drain region using a second type of semiconductor material that is different from a first type.
The method of an embodiment comprising implanting an impurity into a first portion includes implanting to form a lightly doped source region.
The method of an embodiment comprising implanting an impurity into a first portion includes implanting to form a highly doped source region.
The method of an embodiment comprising implanting an impurity into a first portion includes implanting to form a source region that includes both a lightly doped source portion and a highly doped source portion.
The method of an embodiment comprising implanting an impurity into a second portion includes implanting to form a lightly doped drain region.
The method of an embodiment comprising implanting an impurity into a second portion includes implanting to form a highly doped drain region.
The method of an embodiment comprising implanting an impurity into a second portion includes implanting to form a drain region that includes both a lightly doped drain portion and a highly doped drain portion.
A semiconductor device produced by a method, the semiconductor device comprising: a body region configured to be electrically floating, wherein the body region includes an outer surface, a lower surface, and an upper surface, a gate surrounding the outer surface of the body region, a source region adjoining the lower surface of the body region, and, a drain region adjoining the upper surface of the body region.
A semiconductor device produced by a method, the semiconductor device comprising: a body region configured to be electrically floating, wherein the body region includes an outer surface, a lower surface, and an upper surface, a gate surrounding the outer surface of the body region, a drain region adjoining the lower surface of the body region, and, a source region adjoining the upper surface of the body region.
Aspects of the present inventions described herein, and/or embodiments thereof, may include an integrated circuit device. The IC device of an embodiment comprises a memory cell including a transistor, the transistor comprising a body region configured to be electrically floating, a gate disposed about a first boundary of the body region, a drain region adjoining a second boundary of the body region, the second boundary adjacent the first boundary and separating the drain region from the first boundary, and, a source region vertically separated from the drain region and adjoining a third boundary of the body region, the third boundary adjacent the first boundary and separating the source region from the first boundary, wherein the memory cell includes a first data state representative of a first charge in the body region, wherein the memory cell includes a second data state representative of a second charge in the body region, wherein first write control signals can be applied to the memory cell to write the first data state and second write control signals to the memory cell to write the second data state, wherein, in response to first write control signals, the electrically floating body transistor generates a first source current which substantially provides the first charge in the body region.
An integrated circuit device under an embodiment wherein first write control signals cause, provide, produce and/or induce the first source current.
An integrated circuit device under an embodiment wherein first write control signals include a signal applied to a gate and a signal applied to a source region, wherein the signal applied to the gate includes a first voltage having a first amplitude and a second voltage having a second amplitude.
An integrated circuit device under an embodiment wherein first write control signals include a signal applied to a gate and a signal applied to a drain region, wherein the signal applied to the gate includes a first voltage having a first amplitude and a second voltage having a second amplitude.
An integrated circuit device under an embodiment wherein first write control signals include a potential difference applied between a source region and a drain region.
An integrated circuit device under an embodiment wherein first write control signals include a signal applied to a gate, wherein the signal applied to the gate includes a first voltage having a first amplitude and a second voltage having a second amplitude.
An integrated circuit device under an embodiment wherein first write control signals include a signal applied to a gate, a signal applied to a source region, and a signal applied to the drain region to cause, provide, produce and/or induce the first source current, wherein the signal applied to the source region includes a first voltage having a first amplitude, the signal applied to the drain region includes a second voltage having a second amplitude, and the signal applied to the gate includes a third voltage having a third amplitude and a fourth voltage having a fourth amplitude.
An integrated circuit device under an embodiment wherein first write control signals include a first potential difference applied between a source region and a drain region and a signal applied to a gate that includes a third voltage, wherein the first write control signals may cause, provide, produce and/or induce an accumulation of minority carriers in a first portion of a body region.
An integrated circuit device under an embodiment wherein minority carriers accumulate at a surface region of a body region that is juxtaposed or near a gate dielectric which is disposed between a gate and the body region.
An integrated circuit device under an embodiment wherein first write control signals cause, provide, produce and/or induce current in a body region as a result of impact ionization induced by minority carriers.
An integrated circuit device under an embodiment wherein a signal applied to a gate temporally changes to a fourth voltage that causes, provides, produces and/or induces an accumulation of majority carriers in a first portion of a body region, wherein the majority carriers result in a first data state.
An integrated circuit device under an embodiment wherein second write control signals include a second potential difference applied between a source region and a drain region and a signal applied to a gate that includes a third voltage, wherein the second write control signals prevent a first data state from being written into the body transistor.
An integrated circuit device under an embodiment wherein an applied second potential difference is relatively less than a first potential difference.
An integrated circuit device under an embodiment wherein in response to read control signals applied to a memory cell, a vertical channel transistor generates a second source current which is representative of a data state of the memory cell.
An integrated circuit device under an embodiment wherein read control signals include a signal applied to a gate, source region, and drain region to cause, force and/or induce the source current which is representative of a data state of a memory cell of the device.
An integrated circuit device under an embodiment wherein read control signals include a first potential difference applied between a source region and drain region.
An integrated circuit device under an embodiment comprising a bit line coupled to a drain region.
An integrated circuit device under an embodiment comprising a source line coupled to a source region.
An integrated circuit device under an embodiment including a bit line coupled to adjacent drain regions such that hole diffusion between adjacent cells is reduced during a memory operation.
Aspects of the present inventions described herein, and/or embodiments thereof, may include an integrated circuit device. The IC device of an embodiment comprises a memory cell array including a plurality of word lines, plurality of source lines, plurality of bit lines, and plurality of memory cells arranged in a matrix of rows and columns, wherein each memory cell includes a transistor comprising a body region configured to be electrically floating, a gate disposed about a first boundary of the body region, the gate coupled to an associated word line, a drain region adjoining a second boundary of the body region, the second boundary adjacent the first boundary and separating the drain region from the first boundary, the drain region coupled to an associated bit line, and, a source region vertically separated from the drain region and adjoining a third boundary of the body region, the third boundary adjacent the first boundary and separating the source region from the first boundary, the source region coupled to an associated source line, wherein each memory cell includes a first data state representative of a first charge in the body region, wherein each memory cell includes a second data state representative of a second charge in the body region, wherein the drain region of each memory cell of a first column of memory cells is connected to a first bit line, wherein the source region of each memory cell of a first row of memory cells is connected to a first source line, wherein, in response to first write control signals applied to at least a portion of the memory cells of the first row of memory cells, the electrically floating body transistor of each memory cell of the portion of the memory cells of the first row of memory cells generates a first source current which at least substantially provides the first charge in the body region of the electrically floating body transistor of the portion of the memory cells of the first row of memory cells.
An integrated circuit device under an embodiment including a bit line comprising a metal and coupled to drain regions of a row of memory cells to reduce hole disturb to adjacent memory cells.
An integrated circuit device under an embodiment wherein a source region of each memory cell of a second row of memory cells is connected to a second source line.
An integrated circuit device under an embodiment wherein a drain region of each memory cell of a second column of memory cells is connected to a second bit line.
An integrated circuit device under an embodiment wherein a source region of each memory cell of a second row of memory cells is connected to a second source line, drain region of each memory cell of a second column of memory cells connected to a second bit line, the source region of each memory cell of a third row of memory cells connected to a third source line, wherein the second and third rows of memory cells are adjacent to the first row of memory cells, and, the drain region of each memory cell of a third column of memory cells connected to a third bit line, wherein the second and third columns of memory cells are adjacent to the first column of memory cells.
An integrated circuit device under an embodiment wherein first write control signals cause, provide, produce and/or induce first source current.
An integrated circuit device under an embodiment wherein first write control signals include a signal applied to a gate and a signal applied to a source region, wherein the signal applied to the gate includes a first voltage having a first amplitude and a second voltage having a second amplitude.
An integrated circuit device under an embodiment wherein first write control signals include a signal applied to a gate and a signal applied to a drain region, wherein the signal applied to the gate includes a first voltage having a first amplitude and a second voltage having a second amplitude.
An integrated circuit device under an embodiment wherein first write control signals include a potential difference applied between a source region and a drain region of a number of the memory cells of a first row of memory cells.
An integrated circuit device under an embodiment wherein first write control signals include a signal applied to a gate, wherein the signal applied to the gate includes a first voltage having a first amplitude and a second voltage having a second amplitude.
An integrated circuit device under an embodiment wherein second write control signals can be applied to all of the memory cells of a first row of memory cells to write a second data state therein prior to applying the first write control signals.
An integrated circuit device under an embodiment wherein first write control signals can be at least substantially simultaneously applied to a portion of the memory cells of a first row of memory cells to write a first data state therein with second write control signals to the other portion of the memory cells of the first row of memory cells to write the second data state therein.
An integrated circuit device under an embodiment wherein first write control signals include a signal applied to a gate, a signal applied to a source region, and a signal applied to a drain region of a number of memory cells of a first row of memory cells to cause, provide, produce and/or induce a first source current, wherein the signal applied to the source region includes a first voltage having a first amplitude, the signal applied to the drain region includes a second voltage having a second amplitude, and the signal applied to the gate includes a third voltage having a third amplitude and a fourth voltage having a fourth amplitude.
An integrated circuit device under an embodiment wherein first write control signals include a first potential difference applied between a source region and a drain region and a signal applied to a gate of a number of memory cells of a first row of memory cells that includes a first voltage, wherein the first write control signals may cause, provide, produce and/or induce an accumulation of minority carriers at a surface region of a first portion of the body region.
An integrated circuit device under an embodiment wherein first write control signals cause, provide, produce and/or induce source current in a body region as a result of impact ionization induced by minority carriers.
An integrated circuit device under an embodiment wherein a signal applied to a gate temporally changes to a second voltage that causes, provides, produces and/or induces an accumulation of majority carriers in a body region, wherein the majority carriers result in a first data state.
An integrated circuit device under an embodiment wherein, in response to read control signals applied to memory cells, a transistor of each memory cell generates a second source current which is representative of a data state of a memory cell.
An integrated circuit device under an embodiment wherein read control signals include a signal applied to a gate, source region, and drain region to cause, force and/or induce a source current which is representative of a data state of a memory cell.
An integrated circuit device under an embodiment wherein read control signals include a first potential difference applied between a source region and drain region of a vertical transistor of a memory cell.
An integrated circuit device under an embodiment wherein a signal applied to a gate region includes a negative voltage pulse.
As mentioned above, each of the aspects of the present inventions, and/or embodiments thereof, may be employed alone or in combination with one or more of such aspects and/or embodiments. For the sake of brevity, those permutations and combinations will not be discussed separately herein. As such, the present inventions are neither limited to any single aspect (nor embodiment thereof), nor to any combinations and/or permutations of such aspects and/or embodiments.
Moreover, the above embodiments of the present inventions are merely example embodiments. They are not intended to be exhaustive or to limit the inventions to the precise forms, techniques, materials and/or configurations disclosed. Many modifications and variations are possible in light of the above teaching. It is to be understood that other embodiments may be utilized and operational changes may be made without departing from the scope of the present inventions. As such, the foregoing description of the example embodiments of the inventions has been presented for the purposes of illustration and description. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the inventions not be limited solely to the description above.
This application claims the benefit of U.S. Patent Application No. 61/120,173, filed Dec. 5, 2008.
Number | Name | Date | Kind |
---|---|---|---|
3439214 | Kabell | Apr 1969 | A |
3997799 | Baker | Dec 1976 | A |
4032947 | Kesel et al. | Jun 1977 | A |
4250569 | Sasaki et al. | Feb 1981 | A |
4262340 | Sasaki et al. | Apr 1981 | A |
4298962 | Hamano et al. | Nov 1981 | A |
4371955 | Sasaki | Feb 1983 | A |
4527181 | Sasaki | Jul 1985 | A |
4630089 | Sasaki et al. | Dec 1986 | A |
4658377 | McElroy | Apr 1987 | A |
4791610 | Takemae | Dec 1988 | A |
4807195 | Busch et al. | Feb 1989 | A |
4954989 | Auberton-Herve et al. | Sep 1990 | A |
4979014 | Hieda et al. | Dec 1990 | A |
5010524 | Fifield et al. | Apr 1991 | A |
5144390 | Matloubian | Sep 1992 | A |
5164805 | Lee | Nov 1992 | A |
5258635 | Nitayama et al. | Nov 1993 | A |
5313432 | Lin et al. | May 1994 | A |
5315541 | Harari et al. | May 1994 | A |
5350938 | Matsukawa | Sep 1994 | A |
5355330 | Hisamoto et al. | Oct 1994 | A |
5388068 | Ghoshal et al. | Feb 1995 | A |
5397726 | Bergemont et al. | Mar 1995 | A |
5432730 | Shubat et al. | Jul 1995 | A |
5446299 | Acovic et al. | Aug 1995 | A |
5448513 | Hu et al. | Sep 1995 | A |
5466625 | Hsieh et al. | Nov 1995 | A |
5489792 | Hu et al. | Feb 1996 | A |
5506436 | Hayashi et al. | Apr 1996 | A |
5515383 | Katoozi | May 1996 | A |
5526307 | Yiu et al. | Jun 1996 | A |
5528062 | Hsieh et al. | Jun 1996 | A |
5568356 | Schwartz | Oct 1996 | A |
5583808 | Brahmbhatt | Dec 1996 | A |
5593912 | Rajeevakumar | Jan 1997 | A |
5606188 | Bronner et al. | Feb 1997 | A |
5608250 | Kalnitsky | Mar 1997 | A |
5627092 | Alsmeier et al. | May 1997 | A |
5631186 | Park et al. | May 1997 | A |
5677867 | Hazani | Oct 1997 | A |
5696718 | Hartmann | Dec 1997 | A |
5740099 | Tanigawa | Apr 1998 | A |
5754469 | Hung et al. | May 1998 | A |
5774411 | Hsieh et al. | Jun 1998 | A |
5778243 | Aipperspach et al. | Jul 1998 | A |
5780906 | Wu et al. | Jul 1998 | A |
5784311 | Assaderaghi et al. | Jul 1998 | A |
5798968 | Lee et al. | Aug 1998 | A |
5811283 | Sun | Sep 1998 | A |
5847411 | Morii | Dec 1998 | A |
5877978 | Morishita et al. | Mar 1999 | A |
5886376 | Acovic et al. | Mar 1999 | A |
5886385 | Arisumi et al. | Mar 1999 | A |
5897351 | Forbes | Apr 1999 | A |
5929479 | Oyama | Jul 1999 | A |
5930648 | Yang | Jul 1999 | A |
5936265 | Koga | Aug 1999 | A |
5939745 | Park et al. | Aug 1999 | A |
5943258 | Houston et al. | Aug 1999 | A |
5943581 | Lu et al. | Aug 1999 | A |
5960265 | Acovic et al. | Sep 1999 | A |
5968840 | Park et al. | Oct 1999 | A |
5977578 | Tang | Nov 1999 | A |
5982003 | Hu et al. | Nov 1999 | A |
5986914 | McClure | Nov 1999 | A |
6018172 | Hidada et al. | Jan 2000 | A |
6048756 | Lee et al. | Apr 2000 | A |
6081443 | Morishita | Jun 2000 | A |
6096598 | Furukawa et al. | Aug 2000 | A |
6097056 | Hsu et al. | Aug 2000 | A |
6097624 | Chung et al. | Aug 2000 | A |
6111778 | MacDonald et al. | Aug 2000 | A |
6121077 | Hu et al. | Sep 2000 | A |
6133597 | Li et al. | Oct 2000 | A |
6157216 | Lattimore et al. | Dec 2000 | A |
6171923 | Chi et al. | Jan 2001 | B1 |
6177300 | Houston et al. | Jan 2001 | B1 |
6177698 | Gruening et al. | Jan 2001 | B1 |
6177708 | Kuang et al. | Jan 2001 | B1 |
6214694 | Leobandung et al. | Apr 2001 | B1 |
6222217 | Kunikiyo | Apr 2001 | B1 |
6225158 | Furukawa et al. | May 2001 | B1 |
6245613 | Hsu et al. | Jun 2001 | B1 |
6252281 | Yamamoto et al. | Jun 2001 | B1 |
6262935 | Parris et al. | Jul 2001 | B1 |
6292424 | Ohsawa | Sep 2001 | B1 |
6297090 | Kim | Oct 2001 | B1 |
6300649 | Hu et al. | Oct 2001 | B1 |
6320227 | Lee et al. | Nov 2001 | B1 |
6333532 | Davari et al. | Dec 2001 | B1 |
6333866 | Ogata | Dec 2001 | B1 |
6350653 | Adkisson et al. | Feb 2002 | B1 |
6351426 | Ohsawa | Feb 2002 | B1 |
6359802 | Lu et al. | Mar 2002 | B1 |
6384445 | Hidaka et al. | May 2002 | B1 |
6391658 | Gates et al. | May 2002 | B1 |
6403435 | Kang et al. | Jun 2002 | B1 |
6421269 | Somasekhar et al. | Jul 2002 | B1 |
6424011 | Assaderaghi et al. | Jul 2002 | B1 |
6424016 | Houston | Jul 2002 | B1 |
6429477 | Mandelman et al. | Aug 2002 | B1 |
6432769 | Fukuda et al. | Aug 2002 | B1 |
6440872 | Mandelman et al. | Aug 2002 | B1 |
6441435 | Chan | Aug 2002 | B1 |
6441436 | Wu et al. | Aug 2002 | B1 |
6466511 | Fujita et al. | Oct 2002 | B2 |
6479862 | King et al. | Nov 2002 | B1 |
6480407 | Keeth | Nov 2002 | B1 |
6492211 | Divakaruni et al. | Dec 2002 | B1 |
6518105 | Yang et al. | Feb 2003 | B1 |
6531754 | Nagano et al. | Mar 2003 | B1 |
6537871 | Forbes | Mar 2003 | B2 |
6538916 | Ohsawa | Mar 2003 | B2 |
6544837 | Divakaruni et al. | Apr 2003 | B1 |
6548848 | Horiguchi et al. | Apr 2003 | B2 |
6549450 | Hsu et al. | Apr 2003 | B1 |
6552398 | Hsu et al. | Apr 2003 | B2 |
6552932 | Cernea | Apr 2003 | B1 |
6556477 | Hsu et al. | Apr 2003 | B2 |
6560142 | Ando | May 2003 | B1 |
6563733 | Liu et al. | May 2003 | B2 |
6566177 | Radens et al. | May 2003 | B1 |
6567330 | Fujita et al. | May 2003 | B2 |
6573566 | Ker et al. | Jun 2003 | B2 |
6574135 | Komatsuzaki | Jun 2003 | B1 |
6590258 | Divakauni et al. | Jul 2003 | B2 |
6590259 | Adkisson et al. | Jul 2003 | B2 |
6617651 | Ohsawa | Sep 2003 | B2 |
6621725 | Ohsawa | Sep 2003 | B2 |
6632723 | Watanabe et al. | Oct 2003 | B2 |
6650565 | Ohsawa | Nov 2003 | B1 |
6653175 | Nemati et al. | Nov 2003 | B1 |
6686624 | Hsu | Feb 2004 | B2 |
6703673 | Houston | Mar 2004 | B2 |
6707118 | Muljono et al. | Mar 2004 | B2 |
6714436 | Burnett et al. | Mar 2004 | B1 |
6721222 | Somasekhar et al. | Apr 2004 | B2 |
6825524 | Ikehashi et al. | Nov 2004 | B1 |
6861689 | Burnett | Mar 2005 | B2 |
6870225 | Bryant et al. | Mar 2005 | B2 |
6882566 | Nejad et al. | Apr 2005 | B2 |
6888770 | Ikehashi | May 2005 | B2 |
6894913 | Yamauchi | May 2005 | B2 |
6897098 | Hareland et al. | May 2005 | B2 |
6903984 | Tang et al. | Jun 2005 | B1 |
6909151 | Hareland et al. | Jun 2005 | B2 |
6912150 | Portmann et al. | Jun 2005 | B2 |
6913964 | Hsu | Jul 2005 | B2 |
6936508 | Visokay et al. | Aug 2005 | B2 |
6969662 | Fazan et al. | Nov 2005 | B2 |
6975536 | Maayan et al. | Dec 2005 | B2 |
6982902 | Gogl et al. | Jan 2006 | B2 |
6987041 | Ohkawa | Jan 2006 | B2 |
7030436 | Forbes | Apr 2006 | B2 |
7037790 | Chang et al. | May 2006 | B2 |
7041538 | Ieong et al. | May 2006 | B2 |
7042765 | Sibigtroth et al. | May 2006 | B2 |
7061806 | Tang et al. | Jun 2006 | B2 |
7085153 | Ferrant et al. | Aug 2006 | B2 |
7085156 | Ferrant et al. | Aug 2006 | B2 |
7170807 | Fazan et al. | Jan 2007 | B2 |
7177175 | Fazan et al. | Feb 2007 | B2 |
7187581 | Ferrant et al. | Mar 2007 | B2 |
7230846 | Keshavarzi | Jun 2007 | B2 |
7233024 | Scheuerlein et al. | Jun 2007 | B2 |
7256459 | Shino | Aug 2007 | B2 |
7301803 | Okhonin et al. | Nov 2007 | B2 |
7301838 | Waller | Nov 2007 | B2 |
7317641 | Scheuerlein | Jan 2008 | B2 |
7324387 | Bergemont et al. | Jan 2008 | B1 |
7335934 | Fazan | Feb 2008 | B2 |
7341904 | Willer | Mar 2008 | B2 |
7416943 | Figura et al. | Aug 2008 | B2 |
7456439 | Horch | Nov 2008 | B1 |
7477540 | Okhonin et al. | Jan 2009 | B2 |
7492632 | Carman | Feb 2009 | B2 |
7517744 | Mathew et al. | Apr 2009 | B2 |
7539041 | Kim et al. | May 2009 | B2 |
7542340 | Fisch et al. | Jun 2009 | B2 |
7542345 | Okhonin et al. | Jun 2009 | B2 |
7545694 | Srinivasa Raghavan et al. | Jun 2009 | B2 |
7606066 | Okhonin et al. | Oct 2009 | B2 |
7696032 | Kim et al. | Apr 2010 | B2 |
20010055859 | Yamada et al. | Dec 2001 | A1 |
20020030214 | Horiguchi | Mar 2002 | A1 |
20020034855 | Horiguchi et al. | Mar 2002 | A1 |
20020036322 | Divakauni et al. | Mar 2002 | A1 |
20020051378 | Ohsawa | May 2002 | A1 |
20020064913 | Adkisson et al. | May 2002 | A1 |
20020070411 | Vermandel et al. | Jun 2002 | A1 |
20020072155 | Liu et al. | Jun 2002 | A1 |
20020076880 | Yamada et al. | Jun 2002 | A1 |
20020086463 | Houston et al. | Jul 2002 | A1 |
20020089038 | Ning | Jul 2002 | A1 |
20020098643 | Kawanaka et al. | Jul 2002 | A1 |
20020110018 | Ohsawa | Aug 2002 | A1 |
20020114191 | Iwata et al. | Aug 2002 | A1 |
20020130341 | Horiguchi et al. | Sep 2002 | A1 |
20020160581 | Watanabe et al. | Oct 2002 | A1 |
20020180069 | Houston | Dec 2002 | A1 |
20030003608 | Arikado et al. | Jan 2003 | A1 |
20030015757 | Ohsawa | Jan 2003 | A1 |
20030035324 | Fujita et al. | Feb 2003 | A1 |
20030042516 | Forbes et al. | Mar 2003 | A1 |
20030047784 | Matsumoto et al. | Mar 2003 | A1 |
20030057487 | Yamada et al. | Mar 2003 | A1 |
20030057490 | Nagano et al. | Mar 2003 | A1 |
20030102497 | Fried et al. | Jun 2003 | A1 |
20030112659 | Ohsawa | Jun 2003 | A1 |
20030123279 | Aipperspach et al. | Jul 2003 | A1 |
20030146474 | Ker et al. | Aug 2003 | A1 |
20030146488 | Nagano et al. | Aug 2003 | A1 |
20030151112 | Yamada et al. | Aug 2003 | A1 |
20030231521 | Ohsawa | Dec 2003 | A1 |
20040021137 | Fazan et al. | Feb 2004 | A1 |
20040021179 | Lee | Feb 2004 | A1 |
20040029335 | Lee et al. | Feb 2004 | A1 |
20040075143 | Bae et al. | Apr 2004 | A1 |
20040108532 | Forbes et al. | Jun 2004 | A1 |
20040188714 | Scheuerlein et al. | Sep 2004 | A1 |
20040217420 | Yeo et al. | Nov 2004 | A1 |
20050001257 | Schloesser et al. | Jan 2005 | A1 |
20050001269 | Hayashi et al. | Jan 2005 | A1 |
20050017240 | Fazan | Jan 2005 | A1 |
20050047240 | Ikehashi et al. | Mar 2005 | A1 |
20050062088 | Houston | Mar 2005 | A1 |
20050063224 | Fazan et al. | Mar 2005 | A1 |
20050064659 | Willer | Mar 2005 | A1 |
20050105342 | Tang et al. | May 2005 | A1 |
20050111255 | Tang et al. | May 2005 | A1 |
20050121710 | Shino | Jun 2005 | A1 |
20050135169 | Somasekhar et al. | Jun 2005 | A1 |
20050141262 | Yamada et al. | Jun 2005 | A1 |
20050141290 | Tang et al. | Jun 2005 | A1 |
20050145886 | Keshavarzi et al. | Jul 2005 | A1 |
20050145935 | Keshavarzi et al. | Jul 2005 | A1 |
20050167751 | Nakajima et al. | Aug 2005 | A1 |
20050189576 | Ohsawa | Sep 2005 | A1 |
20050208716 | Takaura et al. | Sep 2005 | A1 |
20050226070 | Ohsawa | Oct 2005 | A1 |
20050232043 | Ohsawa | Oct 2005 | A1 |
20050242396 | Park et al. | Nov 2005 | A1 |
20050265107 | Tanaka | Dec 2005 | A1 |
20060043484 | Cabral et al. | Mar 2006 | A1 |
20060091462 | Okhonin et al. | May 2006 | A1 |
20060098481 | Okhonin et al. | May 2006 | A1 |
20060126374 | Waller et al. | Jun 2006 | A1 |
20060131650 | Okhonin et al. | Jun 2006 | A1 |
20060223302 | Chang et al. | Oct 2006 | A1 |
20070008811 | Keeth et al. | Jan 2007 | A1 |
20070023833 | Okhonin et al. | Feb 2007 | A1 |
20070045709 | Yang | Mar 2007 | A1 |
20070058427 | Okhonin et al. | Mar 2007 | A1 |
20070064489 | Bauser | Mar 2007 | A1 |
20070085140 | Bassin | Apr 2007 | A1 |
20070097751 | Popoff et al. | May 2007 | A1 |
20070114599 | Hshieh | May 2007 | A1 |
20070133330 | Ohsawa | Jun 2007 | A1 |
20070138524 | Kim et al. | Jun 2007 | A1 |
20070138530 | Okhonin et al. | Jun 2007 | A1 |
20070187751 | Hu et al. | Aug 2007 | A1 |
20070187775 | Okhonin et al. | Aug 2007 | A1 |
20070200176 | Kammler et al. | Aug 2007 | A1 |
20070252205 | Hoentschel et al. | Nov 2007 | A1 |
20070263466 | Morishita et al. | Nov 2007 | A1 |
20070278578 | Yoshida et al. | Dec 2007 | A1 |
20080049486 | Gruening-von Schwerin | Feb 2008 | A1 |
20080083949 | Zhu et al. | Apr 2008 | A1 |
20080099808 | Burnett et al. | May 2008 | A1 |
20080130379 | Ohsawa | Jun 2008 | A1 |
20080133849 | Demi et al. | Jun 2008 | A1 |
20080165577 | Fazan et al. | Jul 2008 | A1 |
20080180995 | Okhonin | Jul 2008 | A1 |
20080253179 | Slesazeck | Oct 2008 | A1 |
20080258206 | Hofmann | Oct 2008 | A1 |
20090086535 | Ferrant et al. | Apr 2009 | A1 |
20090121269 | Caillat et al. | May 2009 | A1 |
20090127592 | El-Kareh et al. | May 2009 | A1 |
20090201723 | Okhonin et al. | Aug 2009 | A1 |
20100085813 | Shino | Apr 2010 | A1 |
20100091586 | Carman | Apr 2010 | A1 |
20100110816 | Nautiyal et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
272437 | Jul 1927 | CA |
0 030 856 | Jun 1981 | EP |
0 350 057 | Jan 1990 | EP |
0 354 348 | Feb 1990 | EP |
0 202 515 | Mar 1991 | EP |
0 207 619 | Aug 1991 | EP |
0 175 378 | Nov 1991 | EP |
0 253 631 | Apr 1992 | EP |
0 513 923 | Nov 1992 | EP |
0 300 157 | May 1993 | EP |
0 564 204 | Oct 1993 | EP |
0 579 566 | Jan 1994 | EP |
0 362 961 | Feb 1994 | EP |
0 599 506 | Jun 1994 | EP |
0 359 551 | Dec 1994 | EP |
0 366 882 | May 1995 | EP |
0 465 961 | Aug 1995 | EP |
0 694 977 | Jan 1996 | EP |
0 333 426 | Jul 1996 | EP |
0 727 820 | Aug 1996 | EP |
0 739 097 | Oct 1996 | EP |
0 245 515 | Apr 1997 | EP |
0 788 165 | Aug 1997 | EP |
0 801 427 | Oct 1997 | EP |
0 510 607 | Feb 1998 | EP |
0 537 677 | Aug 1998 | EP |
0 858 109 | Aug 1998 | EP |
0 860 878 | Aug 1998 | EP |
0 869 511 | Oct 1998 | EP |
0 878 804 | Nov 1998 | EP |
0 920 059 | Jun 1999 | EP |
0 924 766 | Jun 1999 | EP |
0 642 173 | Jul 1999 | EP |
0 727 822 | Aug 1999 | EP |
0 933 820 | Aug 1999 | EP |
0 951 072 | Oct 1999 | EP |
0 971 360 | Jan 2000 | EP |
0 980 101 | Feb 2000 | EP |
0 601 590 | Apr 2000 | EP |
0 993 037 | Apr 2000 | EP |
0 836 194 | May 2000 | EP |
0 599 388 | Aug 2000 | EP |
0 689 252 | Aug 2000 | EP |
0 606 758 | Sep 2000 | EP |
0 682 370 | Sep 2000 | EP |
1 073 121 | Jan 2001 | EP |
0 726 601 | Sep 2001 | EP |
0 731 972 | Nov 2001 | EP |
1 162 663 | Dec 2001 | EP |
1 162 744 | Dec 2001 | EP |
1 179 850 | Feb 2002 | EP |
1 180 799 | Feb 2002 | EP |
1 191 596 | Mar 2002 | EP |
1 204 146 | May 2002 | EP |
1 204 147 | May 2002 | EP |
1 209 747 | May 2002 | EP |
0 744 772 | Aug 2002 | EP |
1 233 454 | Aug 2002 | EP |
0 725 402 | Sep 2002 | EP |
1 237 193 | Sep 2002 | EP |
1 241 708 | Sep 2002 | EP |
1 253 634 | Oct 2002 | EP |
0 844 671 | Nov 2002 | EP |
1 280 205 | Jan 2003 | EP |
1 288 955 | Mar 2003 | EP |
2 197 494 | Mar 1974 | FR |
1 414 228 | Nov 1975 | GB |
H04-176163 | Jun 1922 | JP |
S62-007149 | Jan 1987 | JP |
S62-272561 | Nov 1987 | JP |
02-294076 | Dec 1990 | JP |
03-171768 | Jul 1991 | JP |
05-347419 | Dec 1993 | JP |
08-213624 | Aug 1996 | JP |
H08-213624 | Aug 1996 | JP |
08-274277 | Oct 1996 | JP |
H08-316337 | Nov 1996 | JP |
09-046688 | Feb 1997 | JP |
09-082912 | Mar 1997 | JP |
10-242470 | Sep 1998 | JP |
11-087649 | Mar 1999 | JP |
2000-247735 | Aug 2000 | JP |
12-274221 | Sep 2000 | JP |
12-389106 | Dec 2000 | JP |
13-180633 | Jun 2001 | JP |
2002-009081 | Jan 2002 | JP |
2002-083945 | Mar 2002 | JP |
2002-094027 | Mar 2002 | JP |
2002-176154 | Jun 2002 | JP |
2002-246571 | Aug 2002 | JP |
2002-329795 | Nov 2002 | JP |
2002-343886 | Nov 2002 | JP |
2002-353080 | Dec 2002 | JP |
2003-031693 | Jan 2003 | JP |
2003-68877 | Mar 2003 | JP |
2003-086712 | Mar 2003 | JP |
2003-100641 | Apr 2003 | JP |
2003-100900 | Apr 2003 | JP |
2003-132682 | May 2003 | JP |
2003-203967 | Jul 2003 | JP |
2003-243528 | Aug 2003 | JP |
2004-335553 | Nov 2004 | JP |
0124268 | Apr 2001 | WO |
2005008778 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20100142294 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
61120173 | Dec 2008 | US |