Prior to connecting a well to a production pipeline, a well test is performed where the well is produced and the production evaluated. The product collected from the well (e.g., crude oil and gas) must be disposed of In certain instances, the product is separated and a portion of the product (e.g., substantially crude) is disposed of by burning using a surface well test burner system. For example, on an offshore drilling platform, the well test burner system is often mounted at the end of a boom that extends outward from the side of the platform. As the well is tested, the crude is piped out the boom to the well test burner system and burned. Well test burner systems are also sometimes used on land-based wells.
From an environmental standpoint, it is desirable to have efficient, complete combustion of the product with minimal smoke or oil fallout. If, while burning well product, one of the burner nozzles is extinguished by a gust of wind or otherwise, the burner nozzle will expel unburned well product (i.e., oil fallout).
Like reference symbols in the various drawings indicate like elements.
The well test burner system 10 includes a frame 12 that carries the other components of the well test burner system 10 and is adapted to be mounted to a boom or a skid. The frame 12 is shown as being tubular and defining a substantially cubic rectangular shape, but could be other configurations.
The frame 12 carries one or more burner nozzles 14 adapted to receive air and well product, combine the air and well product, and expel an air/well product mixture for burning through an outlet 34. The burner nozzles 14 are carried on a common air inlet pipe 18 attached to the frame 12. In the vicinity of the burner nozzles, the inlet pipe 18 is straight and vertical. Each of the burner nozzles 14 has an air inlet 42 (
As shown in the figures, the burner nozzles 14 can be arranged in a precise vertical column, within a reasonable manufacturing tolerance, with the outlet 34 of each on a common precise vertical line. In other instances, the arrangement can be not precisely vertical, for example, with the column being tilted yet more vertical than horizontal and/or the outlets 34 of some or all of the nozzles 14 not precisely on the same line.
The vertical column arrangement, whether precise or not, is adapted to facilitate vertical cross-lighting between adjacent burner nozzles 14 in that the nozzles 14 are positioned so the flame produced by a lower burner nozzle 14 tends to travel upward and light or maintain lit at least the immediately adjacent, higher burner nozzle 14. As shown in
The burner nozzles 14 in a column can be arranged to produce patterns 30 that extend substantially parallel to each other. Alternately, as shown in
The flat flame produced by the burner nozzles 14 arranged in a column, whether fanned or having parallel flames, has a smaller surface area visible to the platform than a shape that projects more laterally. Therefore, the flat flame radiates less heat toward the boom and other components of the platform. The frame 12 further carries one or more heat shields to reduce transmission of heat from the burning product to components of the burner system 10, as well as to the boom and other components of the platform. For example, the frame 12 can include a primary heat shield 26 that spans substantially the entire front surface of the frame 12. In a configuration where the frame 12 is a cubic rectangular shape, the larger dimension of the rectangle can be aligned with the height of the flat flame. The resulting primary heat shield 26 can then block a larger portion of the radiative heat emitted from the flat flame toward the platform. The frame 12 can also include one or more secondary heat shields to further protect other components of the burner system 10. For example, a secondary heat shield 28 is shown surrounding a control box of the burner system 10. Fewer or more heat shields can be provided.
The frame 12 carries one or more pilot burners 24 that are coupled to and receive a supply of pilot gas. In certain instances, the pilot burners 24 are mounted together with the burner nozzles 14 to move with the burner nozzles 14. The pilot burners 24 burn the pilot gas to maintain a pilot flame that lights the air/product mixture expelled from burner nozzles 14. In certain instances, the pilot gas is not a gas collected from the well, but rather a separate supply of clean gas. Two pilot burners 24 are shown flanking the columns of burner nozzles 14. Each pilot burner 24 is positioned vertically between the vertically lowest burner nozzle 14 and an adjacent burner nozzle 14. The pilot burners 24 each have a pilot gas inlet 38 (
In operation, if fewer than all of the burner nozzles 14 are used to burn air/well product mixture, using the lowest burner nozzles 14 enables readily igniting vertically higher burner nozzles 14 if the vertically higher nozzles 14 are later needed to be used. Also, because the burner nozzles 14 are arranged to cross-light, if one is extinguished an adjacent burner nozzle 14 or the pilot burner 24 will automatically re-light it.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other embodiments are within the scope of the following claims.
This application is a U.S. National Phase Application of and claims the benefit of priority to International Application Ser. No. PCT/US2013/024266, filed on Feb. 1, 2013, the entire contents of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/024266 | 2/1/2013 | WO | 00 |