A gas cooktop may be mounted on top of a counter. The knobs that control operation of the cooktop gas burners are arranged in a control knob panel. Typically, the control knob panel is mounted along a side of the cooktop or in a corner of the cooktop and in a plane that is parallel to the counter on which the cooktop is mounted.
In an example embodiment, a knob assembly is provided. The knob assembly may include, but is not limited to, a valve, a knob, and a receptacle mounted between the valve and the knob. The valve may include, but is not limited to, a valve housing, an input gas port mounted to the valve housing and configured to connect to an input gas line to receive gas, an output gas port mounted to the valve housing, and a knob control rod extending from the valve housing and configured to control a gas flow from the input gas port to the output gas port when the knob control rod is rotated and when the input gas port is connected to an input gas line. The knob directly mounts to the knob control rod such that the knob control rod rotates with the knob when the knob is rotated to control a flame from a cooktop burner positioned below a horizontal support surface for a cooking receptacle. The knob is configured to mount in a vertical plane that is perpendicular to a plane defined by the horizontal support surface for the cooking receptacle. The receptacle may include, but is not limited to, a receptacle abutment wall, a receptacle wall extending from the receptacle abutment wall, and a control rod aperture wall formed through the receptacle abutment wall. The control rod aperture wall is sized and positioned to support insertion of the knob control rod therethrough. The receptacle abutment wall is configured to abut a back panel face of a control panel when the knob assembly is mounted to the control panel. The receptacle wall is sized and positioned within a knob aperture wall formed through the control panel when the knob assembly is mounted to the control panel.
In another example embodiment, a gas cooktop is provided. The gas cooktop may include, but is not limited to, a housing, a grate, a burner, an input gas line, and the knob assembly. The housing may include, but is not limited to, one or more walls. The grate is mounted between the one or more walls of the housing. The grate forms a horizontal support surface for a cooking receptacle. The burner is mounted below the grate within the one or more walls of the housing.
In yet another example embodiment, a method of installing a gas cooktop is provided. The method may include, but is not limited to, mounting the receptacle to the valve of the gas cooktop, positioning the gas cooktop within an opening formed in a counter top by inserting the receptacle wall into a knob aperture wall of a control panel until the receptacle abutment wall or a spacer that abuts the receptacle abutment wall abuts a back panel face of the control panel, and mounting the knob directly to the knob control rod such that the knob control rod rotates with the knob when the knob is rotated to control the flame from the burner of the gas cooktop. The knob aperture wall is formed through the control panel in a horizontal direction that is parallel to the horizontal support surface of the grate of the gas cooktop. The control panel is mounted perpendicular to the horizontal support surface.
Other principal features of the disclosed subject matter will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Illustrative embodiments of the disclosed subject matter will hereafter be described referring to the accompanying drawings, wherein like numerals denote like elements.
Referring to
Cooktop 100 may include a cooktop mounting flange 104, a grate 106, a plurality of burners 108, and a plurality of control knobs 110. A control knob of the plurality of control knobs 110 controls a respective burner of the plurality of burners 108. There may be a fewer or a greater number of the plurality of control knobs 110 and the plurality of burners 108. The plurality of control knobs 110 are mounted vertically with respect to the plurality of burners 108.
As used herein, the term “mount” includes join, unite, connect, couple, associate, insert, hang, hold, affix, attach, fasten, bind, paste, secure, hinge, bolt, screw, rivet, solder, weld, glue, form over, form in, layer, mold, rest on, rest against, abut, and other like terms. The phrases “mounted on”, “mounted to”, and equivalent phrases indicate any interior or exterior portion of the element referenced. These phrases also encompass direct mounting (in which the referenced elements are in direct contact) and indirect mounting (in which the referenced elements are not in direct contact, but are connected through an intermediate element) unless specified otherwise. Elements referenced as mounted to each other herein may further be integrally formed together, for example, using a molding or thermoforming process as understood by a person of skill in the art. As a result, elements described herein as being mounted to each other need not be discrete structural elements unless specified otherwise. The elements may be mounted permanently, removably, or releasably unless specified otherwise.
Use of directional terms, such as top, bottom, right, left, front, back, upper, lower, horizontal, vertical, behind, etc. are merely intended to facilitate reference to the various surfaces of the described structures relative to the orientations introduced in the drawings and are not intended to be limiting in any manner unless otherwise indicated.
Grate 106 mounts to cooktop mounting flange 104 and extends over the plurality of burners 108 to support various cooking receptacles as understood by a person of skill in the art. Grate 106 may have various prong designs.
The plurality of burners 108 provide a flame to heat the various cooking receptacles placed on grate 106. The burners may be single or multiple level burners, such as a dual stack burner. Merely for illustration, each burner may be implemented similar to the stacked dual gas burner described in U.S. Pat. No. 6,322,354, which issued Nov. 27, 2001, to Wolf Appliance Inc., the assignee of the present application. Other gas burner designs may be used. The plurality of burners 108 may be arranged in manners other than that shown in the illustrative embodiment of
Cooktop 100 may include a greater or a fewer number of components. The one or more components of cooktop 100 may be formed of one or more materials, such as various metals, glass, and/or plastics having a sufficient strength and rigidity as well as thermal and permeability properties sufficient to support the described application.
Cabinet 102 may include a counter top 112, a control panel 114, a left door 116, a right door 118, a left side wall 200, a right side wall 120, a front wall 122, a back wall 300, and a bottom wall 500 (shown with reference to
Left door 116 and right door 118 are mounted to front wall 122 below control panel 114. A left handle 124 is mounted to left door 116 on a right edge to facilitate opening of left door 116. A right handle 126 is mounted to right door 118 on a left edge to facilitate opening of right door 118. Counter top 112, left side wall 200, right side wall 120, front wall 122, back wall 300, and bottom wall 500 define an enclosed cabinet space when left door 116 and right door 118 are closed. One or more doors may be mounted to left side wall 200, right side wall 120, and/or back wall 300, in the alternative, or in addition to front wall 122, to provide access to the enclosed cabinet space. The cabinet space provides a storage area below cooktop 100. The cabinet space may not be enclosed on all sides.
Counter top 112 is mounted on left side wall 200, right side wall 120, front wall 122, and back wall 300. Counter top 112 may include a counter top surface 128, a left counter top wall 202, a front counter top wall 130, a right counter top wall 132, and a back counter top wall 302. Counter top surface 128 extends between left counter top wall 202, front counter top wall 130, right counter top wall 132, and back counter top wall 302. As shown with reference to the illustrative embodiments of
Referring to
Control panel 114 of cabinet 102 may include knob aperture walls 402. The knob aperture walls 402 extend horizontally through control panel 114 towards an interior of cabinet 102 between a front panel face 115 and a back panel face 2604 (shown referring to
Referring to
Cooktop mounting flange 104 extends outward and perpendicular to left housing wall 602, front housing wall 604, right housing wall 606, and back housing wall 608 so that cooktop 100 can be supported by platform 400.
Cooktop 100 further may include a gas manifold 610, a protection bracket 612, a first bracket 614, a second bracket 616, and a main gas line port 618. Gas manifold 610 is mounted between the plurality of control knobs 110 and front housing wall 604. When cooktop 100 is mounted to cabinet 102, gas manifold 610 extends in line with the plurality of control knobs 110 though in an interior of cabinet 102 so that it is not visible by the consumer. Main gas line port 618 mounts to a main gas line (not shown) at a first end of gas manifold 610 and provides an entry port for gas that is provided to one or more of the plurality of burners 108 under control of a respective control knob of the plurality of control knobs 110. For example, the consumer adjusts a flame from a burner of the plurality of burners 108 by rotating the respective control knob. Main gas line port 618 mounts to the main gas line that extends through a main line slot aperture wall 621.
Protection bracket 612 is mounted to gas manifold 610 by first bracket 614 and second bracket 616. A greater or a fewer number of brackets may be used to mount protection bracket 612 to gas manifold 610. Other mounting devices may be used in alternative embodiments. Protection bracket 612 is mounted below the plurality of control knobs 110 to protect a user from inadvertently touching an electrical component of the plurality of control knobs 110. In alternative embodiments, protection bracket 612, first bracket 614, and second bracket 616 may not be included.
Referring to
Though not shown, upper burner gas line 720 and lower burner gas line 722, respectively, connect to an upper burner and a lower burner of a dual stack burner. For example, lower burner gas line 722 may provide a simmer flame, and upper burner gas line 720 may provide a main cooking flame. Lower burner gas line 722 and upper burner gas line 720 may be small metallic tubes. For illustration, lower burner gas line 722 and upper burner gas line 720 may be formed of corrugated stainless steel tubing. Use of corrugated stainless steel allows each knob assembly 700 to move in and out relative to front housing wall 604 to support a greater range of options in mounting cooktop 100 to cabinet 102. In an alternative embodiment, one or more burner of the plurality of burners 108 may not be a multiple stack burner such as a dual stack burner. Thus, each knob assembly 700 may connect to a fewer or a greater number of gas lines.
Upper burner gas line 720 may extend through a first gas line slot aperture wall 726 of the plurality of slot aperture walls 620 formed through front housing wall 604. Lower burner gas line 722 may extend through a second gas line slot aperture wall 728 of the plurality of slot aperture walls 620 formed through front housing wall 604. In the illustrative embodiment, first gas line slot aperture wall 726 and second gas line slot aperture wall 728 are separate aperture walls though this is not required. Lower burner gas line 722 and upper burner gas line 720 may extend through the same slot aperture wall. Each knob assembly 700 may include a similar arrangement of first gas line slot aperture wall 726 and second gas line slot aperture wall 728 though this is not required.
In the illustrative embodiment, first gas line slot aperture wall 726, second gas line slot aperture wall 728, and main line slot aperture wall 621 (shown in
Valve 714 connects to gas manifold 610 using valve manifold connector 718. Valve 714 regulates gas pressure to the respective burner based on a rotation angle of knob 702 by a consumer. Though not shown a small wire may extend from valve 714 to an igniter at the respective burner. The igniter receives an electrical current and lights the selected burner flame when knob 702 is depressed and rotated to an ignite or “ON” position. Knob 702 may provide separate rotation angles to control the flow of gas to the upper and lower burners separately.
When cooktop 100 is mounted to cabinet 102, the knob aperture walls 402 are positioned between mounting disc 706 and spacer 708. A distance may be selected between mounting disc 706 and spacer 708 based on a thickness of control panel 114 through which the knob aperture walls 402 extend. For flexibility, the one or more additional spacer rings 724 of various widths may be positioned between spacer 708 and control panel 114 so that spacer 708 or one of the spacer rings 724 abuts the back face of control panel 114 to add stability to the plurality of control knobs. For example, the one or more additional spacer rings 724 may be determined by measuring the thickness of control panel 114, by subtracting one inch from the measured value of the thickness to determine a remaining width, and by adding an appropriate number and width of the one or more additional spacer rings 724 that provide the determined remaining width.
When cooktop 100 is mounted to cabinet 102, front panel face 115 of control panel 114 may be positioned a distance from bezel 704. The distance may be selected to allow the consumer to move knob 702 towards control panel 114 to release knob 702 for rotation to switch on the burner for use.
Referring to
Light pipe 1000 mounts to light assembly 710. Referring to
Referring again to
Rotation of knob control rod 1014 by rotation of knob 702 adjusts a height of the flame at the respective burner and/or whether or not one or more stacked burners are lit. First biasing element 1002 and second biasing element 1004 mount between bezel 704 and mounting disc 706 so that knob 702 returns to an “OFF” position at which knob 702 cannot be rotated in order to avoid inadvertently releasing gas from valve 714 or lighting a burner. In the illustrative embodiment, first biasing element 1002 and second biasing element 1004 are compression springs. Knob assembly 700 may include a greater or a fewer number of biasing elements. Movement of knob 702 in a direction towards control panel 114 against the biasing force of first biasing element 1002 and second biasing element 1004 releases knob 702 for rotation to adjust the height of the flame and the burner that is lit.
First fastener 1006 and second fastener 1008 mount mounting disc 706 to receptacle 712. Third fastener 1010 and fourth fastener 1012 mount receptacle 712 to valve 714. In the illustrative embodiment, first fastener 1006, second fastener 1008, third fastener 1010, and fourth fastener 1012 are screws that include a shaft and a head as understood by a person of skill in the art. A portion of the shafts may be threaded. Other types of fasteners and mounting methods than those shown for illustration may be used to mount the components of knob assembly 700 to each other and to lower burner gas line 722, upper burner gas line 720, and gas manifold 610.
Referring to
Knob mounting protrusion 1208 is mounted to knob back wall 1206 to extend towards valve 714 when knob assembly 700 is assembled. Knob interior sleeve 1204 extends from edges of knob back wall 1206 towards valve 714 to create a cavity between knob interior sleeve 1204 and knob mounting protrusion 1208. The cavity between knob interior sleeve 1204 and knob mounting protrusion 1208 is sized to accommodate light pipe 1000 as knob 702 is rotated around light pipe 1000. Knob mounting aperture wall 1210 extends into knob mounting protrusion 1208 to form a hole sized and shaped to accept a tip 2210 (shown with reference to
Referring to
Referring to
The lettering aperture walls 1410 are cutouts that indicate a flame setting. In the illustrative embodiment, the lettering includes “OFF ONHI . . . LO ONHI . . . LO”. The lettering OFF is positioned on lettering flat wall 1400 and is upwards when the burner is off. Turning the knob counter clockwise controls a first burner ONHI . . . LO. Continued rotation controls a second burner ONHI . . . LO. Numerical setting values may be used in alternative embodiments. The lettering further may not be in the form of cutouts. For example, the lettering may be formed by etching partially into lettering flat wall 1400 and lettering curved wall 1402 or by a different coloration. In an illustrative embodiment, only one of first burner and second burner is lit at a time. Thus, continued rotation to turn the second burner on turns off the first burner.
Referring to
The plurality of tab cutouts 1508 protrude from and towards an interior of knob interior sleeve 1500. The plurality of tab cutouts 1508 align with and abut the plurality of tabs 1308 to mount knob exterior sleeve 1200, knob lettering sleeve 1202, and knob interior sleeve 1204 to each other. In the illustrative embodiment, the plurality of tab cutouts 1508 includes four tab cutouts though a greater or a fewer number of tab cutouts may be used in alternative embodiments. Interior flat wall 1500, interior curved wall 1502, first interior flat wall edge 1504, second interior flat wall edge 1506, and the plurality of tab cutouts 1508 may be integrally formed together.
Referring to
Pipe insertion rod 1608 is sized and shaped to fit within a light pipe aperture wall 1626 of bezel 704. To mount light pipe 1000 to bezel 704, pipe insertion rod 1608 is inserted through light pipe aperture wall 1626 until a top of first pipe tab 1610 and second pipe tab 1612 abuts a back face of a top wall 1622 of bezel 704. Pipe mounting flange 1606 has a larger circumference than light pipe aperture wall 1626 to mount light pipe 1000 in a fixed position relative to bezel 704. Pipe insertion rod 1608 is non-circular so that it does not rotate within light pipe aperture wall 1626 of bezel 704.
Light from light source 2002 is reflected inside an interior of light pipe 1000 to exit through light exit aperture wall 1600. Light exit aperture wall 1600 is aligned with a bezel flat wall 1614 of bezel 704 so that the light exits in a plane that is perpendicular to an exterior face of bezel flat wall 1614. Light exit aperture wall 1600 is mounted below the lettering of a portion of the lettering aperture walls 1410. As knob 702 is rotated, light exit aperture wall 1600 remains directed upwards to illuminate a portion of the lettering aperture walls 1410 based on the rotation angle of knob 702. For example, when knob 702 is in the “OFF” position, the “OFF” portion of the lettering aperture walls 1410 is above light exit aperture wall 1600. When knob 702 is pushed towards front panel face 115 of control panel 114, light source 2002 is switched on, and the light reflected out of light pipe 1000 through light exit aperture wall 1600 illuminates the “OFF” portion of the lettering aperture walls 1410.
Bezel 704 may include bezel flat wall 1614, a bezel curved wall 1616, a first bezel flat wall edge 1618, a second bezel flat wall edge 1620, top wall 1622, a center mounting aperture wall 1624, light pipe aperture wall 1626, a first fastener aperture wall 1628, a second fastener aperture wall 1630, a first prong aperture wall 1632, and a second prong aperture wall 1634. Bezel flat wall 1614 is generally flat. Bezel curved wall 1616 is generally curved. Bezel curved wall 1616 transitions to bezel flat wall 1614 at first bezel flat wall edge 1618 and at second bezel flat wall edge 1620. Bezel flat wall 1614 and bezel curved wall 1616 approximately align with exterior flat wall 1300 and exterior curved wall 1302, respectively, when knob assembly 700 is assembled, and knob 702 is in the “OFF” position.
Center mounting aperture wall 1624, light pipe aperture wall 1626, first fastener aperture wall 1628, second fastener aperture wall 1630, first prong aperture wall 1632, and second prong aperture wall 1634 are formed through top wall 1622. Center mounting aperture wall 1624 is sized and shaped to accept a center mounting protrusion 1638 of mounting disc 706.
First fastener aperture wall 1628 and second fastener aperture wall 1630 are sized and shaped to accept a fastening device such as a shaft of a screwdriver to pass through to allow tightening of first fastener 1006 and second fastener 1008, respectively, to mount mounting disc 706 to receptacle 712 after cooktop 100 has been positioned on cabinet 102. First prong aperture wall 1632 and second prong aperture wall 1634 are sized and shaped to accept the shafts of a first prong 1700 (shown with reference to
Referring to
Mounting disc flat wall 1702 is generally flat. Mounting disc curved wall 1704 is generally curved. Mounting disc curved wall 1704 transitions to mounting disc flat wall 1702 at first mounting disc flat wall edge 1706 and at second mounting disc flat wall edge 1708. Mounting disc flat wall 1702 approximately aligns with bezel flat wall 1614 and with exterior flat wall 1300 when knob assembly 700 is assembled and knob 702 is in the “OFF” position. Mounting disc curved wall 1704 approximately aligns with bezel curved wall 1616 and with exterior curved wall 1302 when knob assembly 700 is assembled and knob 702 is in the “OFF” position.
First biasing element 1002 is positioned over first prong 1700, and second biasing element 1004 is positioned over second prong 1640. When knob 702 is pushed in a horizontal direction towards front panel face 115 of control panel 114, bezel 704 is moved towards mounting disc 706 along the shafts of first prong 1700, of second prong 1640, of pipe insertion rod 1608, and of center mounting protrusion 1638 against the biasing force of first biasing element 1002 and of second biasing element 1004. First biasing element 1002 and second biasing element 1004 return the knob 702 to the initial position.
First fastener 1006 is inserted through first fastener nut interior wall 1822 of first fastener nut 1712, and second fastener 1008 is inserted through second fastener nut interior wall 1824 of second fastener nut 1714 to mount mounting disc 706 to valve 714.
An end of light assembly 710 is sized and shaped to fit within light assembly aperture wall 1800 of mounting disc 706. To mount light assembly 710 to mounting disc 706, the end of light assembly 710 that includes light source 2002 is inserted through light assembly aperture wall 1800.
Center mounting protrusion 1638 includes a center aperture wall 1802, a first tab protrusion 1804, a first tab 1806, a second tab protrusion 1808, a second tab 1810, a third tab protrusion 1812, a third tab 1814, a first wall extension 1816, a second wall extension 1818, and a third wall extension 1820. Center aperture wall 1802 is mounted to bottom wall 1710 and forms an aperture through which knob control rod 1014 is inserted. First tab protrusion 1804, second tab protrusion 1808, third tab protrusion 1812, first wall extension 1816, second wall extension 1818, and third wall extension 1820 extend from center aperture wall 1802 and are separated by openings. First wall extension 1816 is positioned between first tab protrusion 1804 and second tab protrusion 1808. Second wall extension 1818 is positioned between second tab protrusion 1808 and third tab protrusion 1810. Third wall extension 1820 is positioned between third tab protrusion 1810 and first tab protrusion 1804. First tab 1806 extends from a top edge of first tab protrusion 1804. Second tab 1810 extends from a top edge of second tab protrusion 1808. Third tab 1814 extends from a top edge of third tab protrusion 1812. First tab protrusion 1804, first tab 1806, second tab protrusion 1808, second tab 1810, third tab protrusion 1812, third tab 1814, first wall extension 1816, second wall extension 1818, and third wall extension 1820 are sized and shaped to fit within center mounting aperture wall 1624. First tab 1806, second tab 1810, and third tab 1814 are positioned to abut a top surface of top wall 1622 of bezel 704 that surrounds center mounting aperture wall 1624 when knob assembly 700 is assembled.
Referring to
Spacer 708 is sized and shaped to slide over receptacle wall 2006 and abut a top surface of receptacle abutment wall 2004 before mounting disc 706 is mounted to receptacle 712. Similarly, the one or more additional spacer rings 724 are sized and shaped to slide over receptacle wall 2006 and abut a top surface of spacer 708 or another of the one or more additional spacer rings 724 before mounting disc 706 is mounted to receptacle 712.
Light support wall 2008 is sized and shaped to accept light sleeve 2000 of light assembly 710. In the illustrative embodiment, light support wall 2008 has a horseshoe shape to make room for fourth fastener wall 2014. Light tabs 2003 extend from a bottom edge of light sleeve 2000 to hold light sleeve 2000 adjacent a bottom surface of receptacle abutment wall 2004.
Control rod aperture wall 2102 extends through approximately a center of receptacle abutment wall 2004. Control rod aperture wall 2102 is sized and shaped to accept knob control rod 1014 therethrough.
Referring to
A power connector is connected to valve power connectors 2218 to provide power to valve 714. The switch within switch housing 2216 controls power to switch on the igniter and to switch on light source 2002 when knob 702 is depressed and rotated to an ignite or “ON” position. The igniter may be switched off as knob 702 is rotated while light source 2002 may remain lit. In a dual burner, the igniter may be switched on again as knob 702 is rotated to a second “ON” position.
Knob control rod 1014 extends from valve 714 towards knob 702 when knob assembly 700 is assembled. Knob control rod 1014 may include a cylinder 2201 and tip 2210. Tip 2210 may include a control rod flat wall 2202, a control rod curved wall 2204, a first control rod flat wall edge 2206, a second control rod flat wall edge 2208, and tip end 2211. Cylinder 2201 is generally circular and mounts to valve 714. Control rod flat wall 2202 is cut into a portion of cylinder 2201. Control rod flat wall 2202 is mounted upwards when knob assembly 700 is assembled and knob 702 is in an “OFF” position. Rotation of knob 702 rotates knob control rod 1014 because knob mounting aperture wall 1210 does not allow rotation of knob control rod 1014 within knob mounting aperture wall 1210. Control rod curved wall 2204 transitions to mounting control rod flat wall 2202 at first control rod flat wall edge 2206 and at second control rod flat wall edge 2208. Control rod flat wall 2202 approximately aligns with mounting disc flat wall 1702, with bezel flat wall 1614, and with exterior flat wall 1300 when knob assembly 700 is assembled and knob 702 is in the “OFF” position.
Referring to
A cone piece (not shown) may mount to valve end 2400. One or more channels may be formed in the cone piece to control the flow of gas from input gas line connector port 1016 to at least one of first burner gas line connector port 1018 or second burner gas line connector port 1100. Knob 702 directly controls operation of valve 714 to provide gas to a respective burner by mounting directly to knob control rod 1014 of valve 714.
To install cooktop 100, knob aperture walls 402 and platform 400 are formed in cabinet 102 at desired locations within the physical constraints of the plurality of slot aperture walls 620 and main line slot aperture wall 621. Main gas line port 618 is mounted to the main gas line. Input gas line connector port 1016 of each valve 714 of each knob assembly 700 is mounted to gas manifold 610. First burner gas line connector port 1018 and second burner gas line connector port 1100 of each valve 714 of each knob assembly 700 are mounted to upper burner gas line 720 and lower burner gas line 722, respectively. Receptacle 712 is mounted to valve 714 using third fastener 1010 and fourth fastener 1012. Spacer 708 and possibly the one or more additional spacer rings 724 of each knob assembly 700 are slid over receptacle wall 2006.
Cooktop 100 is mounted to cabinet 102 by sliding receptacle wall 2006 with spacer 708 and possibly the one or more additional spacer rings 724 of each knob assembly 700 of the plurality of knobs 110 through the knob aperture walls 402. Cooktop mounting flange 104 of cooktop 100 is positioned on platform 400 of cabinet 102. Valve 714, a portion of receptacle 712, spacer 708, and possibly the one or more additional spacer rings 724 of each knob assembly 700 are positioned on an interior side of control panel 114 of cabinet 102. Upper burner gas line 720 and lower burner gas line 722 of each knob assembly 700 and the main gas line may be adjusted in three orthogonal directions relative to control panel 114. The remaining portion of receptacle 712 is positioned within the knob aperture walls 402 so that receptacle abutment wall 2004 or spacer 708, and possibly the one or more additional spacer rings 724 of receptacle 712 abut back panel face 2604 of control panel 114.
Light assembly 710 is inserted through light support wall 2008 of receptacle 712. Curving wall 1900 of mounting disc 706 is slid into receptacle wall 2006 until the bottom surface of bottom wall 1710 of mounting disc 706 abuts edge 2007 of receptacle wall 2006. Mounting disc 706 is mounted to receptacle 712 using first fastener 1006 and second fastener 1008, for example, by inserting a shaft of a screwdriver through first fastener aperture wall 1628 and second fastener aperture wall 1630, respectively. First biasing element 1002 and second biasing element 1004 are slid over first prong 1700 and second prong 1640, respectively. Bezel 704 is slid onto center mounting protrusion 1638, first prong 1700, and second prong 1640 of mounting disc 706. First tab 1806, second tab 1810, and third tab 1814 hold bezel 704 against mounting disc 706. Light pipe 1000 is slid into light pipe aperture wall 1626 of bezel 704 to approximately abut light source 2002. Knob 702 is slid onto knob control rod 1014.
Referring to
Second knob assembly 700a may include a second knob 702a, a second mounting disc 706a, a light diffuser 2500, a second light assembly 710a, a second receptacle 712a, valve 714, light power connector 716, light power connectors 717, a second light power connector 2502, a third light power connector 2600, and a second light source 2602. Second knob assembly 700a may further include spacer 708, one or more additional spacer rings 724, valve manifold connector 718, upper burner gas line 720, and lower burner gas line 722 as described previously. Third fastener 1010 and fourth fastener 1012 mount second receptacle 712a to valve 714 in a manner similar to that described for knob assembly 700.
Valve 714 regulates gas pressure to the respective burner based on a rotation angle of second knob 702a by a consumer. The igniter receives an electrical current and lights the selected burner flame when second knob 702a is depressed and rotated to an ignite position. Second knob 702a may provide separate rotation angles to control the flow of gas to upper and lower burners separately. Knob control rod 1014 extends from valve 714 towards second knob 702a when second knob assembly 700a is assembled.
When cooktop 100 is mounted to cabinet 102, the knob aperture walls 402 are positioned between light diffuser 2500 and second receptacle 712a, which may or may not include spacer 708 and/or one or more additional spacer rings 724. A distance may be selected between light diffuser 2500 and second receptacle 712a based on a thickness of control panel 114 through which the knob aperture walls 402 extend.
Wires 2603 connect third light power connector 2600 to second light source 2602. Third light power connector 2600 mates with second light power connector 2502. Light power connector 716 connects to second light power connector 2502 through an adapter 2506. Light power connectors 717 and second light power connectors 2504 extend from adapter 2506. Light power connectors 717 connect light power connector 716 to adapter 2506. Second light power connectors 2504 connect second light power connector 2502 to adapter 2506. As a result, light power connector 716 provides power to second light source 2602.
Light diffuser 2500 is formed of translucent or refractory material that can diffuse the light emitted by second light source 2602. For illustration, second light source 2602 may be a circular or ring shaped LED. Light diffuser 2500 may be operated to radiate the light from second light source 2602 to indicate the respective burner associated with second knob assembly 700a is “On”, when second knob assembly 700a is pushed towards valve 714.
Second knob 702a may include a second knob exterior sleeve 1200a and a second bezel 704a. Referring to
A first knob-bezel mounting protrusion 2700 may include a fifth fastener aperture wall 2702 formed therein. A second knob-bezel mounting protrusion 2704 may include a sixth fastener aperture wall 2706 formed therein. First knob-bezel mounting protrusion 2700 and second knob-bezel mounting protrusion 2704 extend from an interior face of knob back wall 1206 toward valve 714 when mounted to valve 714. Knob face 1020 forms an exterior face of knob back wall 1206 of second knob exterior sleeve 1200a. Fifth fastener aperture wall 2702 and sixth fastener aperture wall 2706 extend into first knob-bezel mounting protrusion 2700 and into second knob-bezel mounting protrusion 2704, respectively, to form a hole sized and shaped to accept a fifth fastener 2900 (shown with reference to
Referring to
In the illustrative embodiment, second bezel flat wall 2806 and second bezel curved wall 2808 are smaller than bezel flat wall 1614 and bezel curved wall 1616. Shelf 2810 extends between second bezel flat wall 2806 and bezel flat wall 1614 and between second bezel curved wall 2808 and bezel curved wall 1616 toward knob mounting protrusion 1208.
Referring to
Knob mounting protrusion 1208 is mounted to bezel back wall 2800 to extend towards valve 714 when second knob assembly 700a is assembled. Knob mounting aperture wall 1210 extends into knob mounting protrusion 1208 to form a hole sized and shaped to accept tip 2210 (shown with reference to
Referring to
Referring to
Nut 3003 and mounting disc head 3000 may be integrated to form a single head of second mounting disc 706a. Shaft 3002 extends from a back face 3200 of mounting disc head 3000 and has a cylindrical shape sized to fit within and generally abut a light diffuser aperture wall 3112 of light diffuser 2500. External threads 3004 extend from shaft 3002 towards valve 714 when second mounting disc 706a is mounted to second receptacle 712a. A first aperture wall 3106 is formed within mounting disc head 3000, shaft 3002, and nut 3003. A second aperture wall 3110 is formed within external threads 3004. A circumference of first aperture wall 3106 may be greater than a circumference of second aperture wall 3110 resulting in a transitional aperture wall 3108 though this is optional. First aperture wall 3106 and second aperture wall 3110 of second mounting disc 706a form an opening through which knob control rod 1014 is inserted when second mounting disc 706a is mounted to second receptacle 712a.
Referring to
Back face 3200 of mounting disc head 3000 may include a first mating indentation 3202 and a second mating indentation 3204 that form an indentation in mounting disc head 3000. First mating protrusion 3010 and second mating protrusion 3012 are sized, shaped, and positioned to fit within first mating indentation 3202 and a second mating indentation 3204 so that rotation of second mounting disc 706a also rotates light diffuser 2500. A fewer or a greater number of mating protrusions may be formed on front face 3114 of body 3006. A fewer or a greater number of corresponding mating indentations may be formed in mounting disc head 3000.
Referring to
Referring to
Referring to
A threaded aperture wall 3402 extends from control rod aperture wall 2102 upwards from receptacle abutment wall 2004 towards second light assembly 710a. At least a portion of an interior of threaded aperture wall 3402 includes interior threads 3700. Interior threads 3700 extend towards an interior of threaded aperture wall 3402 and are sized and shaped to mate with external threads 3004 of second mounting disc 706a.
Referring to
Second receptacle 712a is mounted to valve 714 using third fastener 1010 and fourth fastener 1012. Spacer 708 and possibly the one or more additional spacer rings 724 of each second knob assembly 700a are slid over second receptacle wall 2006a, if needed. Second light assembly 710a is mounted to second receptacle 712a by inserting first tab 3602 and second tab 3604 of second light assembly 710a into first tab aperture 3404 and second tab aperture 3500, respectively. Third light power connector 2600 is mated with second light power connector 2502.
Cooktop 100 is mounted to cabinet 102 by sliding second receptacle wall 2006a with or without spacer 708 and possibly the one or more additional spacer rings 724 of each second knob assembly 700a of the second plurality of knobs 110a through the knob aperture walls 402. Cooktop mounting flange 104 of cooktop 100 is positioned on platform 400 of cabinet 102. Valve 714, a portion of second receptacle 712a, a portion of second light assembly 710a, spacer 708, and possibly the one or more additional spacer rings 724 of each knob assembly 700 are positioned on an interior side of control panel 114 of cabinet 102. The remaining portion of second receptacle 712a and of second light assembly 710a is positioned within the knob aperture walls 402 so that receptacle abutment wall 2004 or spacer 708, and possibly the one or more additional spacer rings 724 of second receptacle 712a abut back panel face 2604 of control panel 114.
Light diffuser 2500 is mounted to second mounting disc 706a by aligning first mating protrusion 3010 and second mating protrusion 3012 with first mating indentation 3202 and a second mating indentation 3204, respectively. In an alternative embodiment, second mounting disc 706a may include one or more protrusions, and light diffuser 2500 may include one or more corresponding indentations. Second mounting disc 706a is mounted to second receptacle 712a by aligning external threads 3004 with threaded aperture wall 3402. In an alternative embodiment, second mounting disc 706a may be mounted to second receptacle 712a by aligning internal threads of second aperture wall 3110 with external threads of threaded aperture wall 3402. Other mounting methods may be used in alternative embodiments. Rotating second mounting disc 706a using nut 3003 mates external threads 3004 with interior threads 3700 of threaded aperture wall 3402 abutting light diffuser 2500 with front panel face 115 of control panel 114 adjacent or abutting second light source 2602.
Second bezel 704a is mounted to second knob exterior sleeve 1200a using fifth fastener 2900 and sixth fastener 2902. Knob mounting aperture wall 1210 of knob mounting protrusion 1208 of second knob 702a is mounted to tip 2210 of knob control rod 1014 that protrudes from second mounting disc 706a. When second knob 702a is rotated, knob control rod 1014 rotates with second knob 702a relative to valve housing 2200 as well as relative to second mounting disc 706a, light diffuser 2500, second light assembly 710a, and second receptacle 712a. Second knob 702a directly controls operation of valve 714 to provide gas to a respective burner by mounting directly to knob control rod 1014 of valve 714.
The word “illustrative” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “illustrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more”. Still further, using “and” or “or” in the detailed description is intended to include “and/or” unless specifically indicated otherwise.
The foregoing description of illustrative embodiments of the disclosed subject matter has been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the disclosed subject matter to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosed subject matter. The embodiments were chosen and described in order to explain the principles of the disclosed subject matter and as practical applications of the disclosed subject matter to enable one skilled in the art to utilize the disclosed subject matter in various embodiments and with various modifications as suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
2682859 | Jensen et al. | Jul 1954 | A |
2699141 | Gaguski | Jan 1955 | A |
2998733 | Thompson | Sep 1961 | A |
D194137 | Jenn | Nov 1962 | S |
D266348 | Piesco | Sep 1982 | S |
D316293 | Ragonot | Apr 1991 | S |
D324807 | Reid et al. | Mar 1992 | S |
D369940 | Wilsdorf | May 1996 | S |
5936613 | Jaeger et al. | Aug 1999 | A |
D419218 | Mullenmeister | Jan 2000 | S |
6079401 | Alvord et al. | Jun 2000 | A |
D493090 | Chen et al. | Jul 2004 | S |
D498657 | Milrud et al. | Nov 2004 | S |
D509095 | Grutzke et al. | Sep 2005 | S |
D509987 | Vetter | Sep 2005 | S |
D511290 | Coudurier | Nov 2005 | S |
D525517 | Baldwin | Jul 2006 | S |
D534628 | Chisenhall | Jan 2007 | S |
7171727 | Wylie | Feb 2007 | B2 |
7251861 | Suzuki | Aug 2007 | B2 |
7259908 | Wagener et al. | Aug 2007 | B2 |
D568715 | Gustafson et al. | May 2008 | S |
7381128 | Ogawa et al. | Jun 2008 | B2 |
D578890 | Swanson et al. | Oct 2008 | S |
7462795 | Montalvo | Dec 2008 | B2 |
D597632 | Obara et al. | Aug 2009 | S |
D631726 | Sanchez | Feb 2011 | S |
7967005 | Parrish | Jun 2011 | B2 |
D644912 | Benold | Sep 2011 | S |
D645702 | Baacke et al. | Sep 2011 | S |
D649004 | Sanchez | Nov 2011 | S |
8430460 | Erro et al. | Apr 2013 | B2 |
D696068 | Baacke | Dec 2013 | S |
8613276 | Parrish | Dec 2013 | B2 |
D697359 | Meda et al. | Jan 2014 | S |
8662102 | Shaffer | Mar 2014 | B2 |
D704028 | Meda et al. | May 2014 | S |
D724381 | Pionek et al. | Mar 2015 | S |
D724382 | Pionek et al. | Mar 2015 | S |
D724888 | Lee et al. | Mar 2015 | S |
8979289 | Camli | Mar 2015 | B2 |
9146033 | Cadima et al. | Sep 2015 | B2 |
D741454 | Freier et al. | Oct 2015 | S |
D752385 | Pionek et al. | Mar 2016 | S |
D752386 | Pionek et al. | Mar 2016 | S |
D764028 | Schoenherr et al. | Aug 2016 | S |
D779262 | Kim et al. | Feb 2017 | S |
D781126 | Pionek et al. | Mar 2017 | S |
D806512 | Chow et al. | Jan 2018 | S |
10114405 | Swayne | Oct 2018 | B2 |
20140047943 | Camli et al. | Feb 2014 | A1 |
20170227231 | Pionek et al. | Aug 2017 | A1 |
20180238552 | Ha | Aug 2018 | A1 |
20180238554 | Ha | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
2659190 | Sep 2014 | EP |
Number | Date | Country | |
---|---|---|---|
20170227231 A1 | Aug 2017 | US |