This patent application relates generally to interconnection systems, such as those including electrical connectors, used to interconnect electronic assemblies.
Electrical connectors are used in many electronic systems. It is generally easier and more cost effective to manufacture a system as separate electronic assemblies, such as printed circuit boards (“PCBs”), which may be joined together with electrical connectors. A known arrangement for joining several printed circuit boards is to have one printed circuit board serve as a backplane. Other printed circuit boards, called “daughterboards” or “daughtercards,” may be connected through the backplane.
A known backplane is a printed circuit board onto which many connectors may be mounted. Conducting traces in the backplane may be electrically connected to signal conductors in the connectors so that signals may be routed between the connectors. Daughtercards may also have connectors mounted thereon. The connectors mounted on a daughtercard may be plugged into the connectors mounted on the backplane. In this way, signals may be routed among the daughtercards through the backplane. The daughtercards may plug into the backplane at a right angle. The connectors used for these applications may therefore include a right angle bend and are often called “right angle connectors.”
Connectors may also be used in other configurations for interconnecting printed circuit boards and for interconnecting other types of devices, such as cables, to printed circuit boards. Sometimes, one or more smaller printed circuit boards may be connected to another larger printed circuit board. In such a configuration, the larger printed circuit board may be called a “mother board” and the printed circuit boards connected to it may be called daughterboards. Also, boards of the same size or similar sizes may sometimes be aligned in parallel. Connectors used in these applications are often called “stacking connectors” or “mezzanine connectors.”
Regardless of the exact application, electrical connector designs have been adapted to mirror trends in the electronics industry. Electronic systems generally have gotten smaller, faster, and functionally more complex. Because of these changes, the number of circuits in a given area of an electronic system, along with the frequencies at which the circuits operate, have increased significantly in recent years. Current systems pass more data between printed circuit boards and require electrical connectors that are electrically capable of handling more data at higher speeds than connectors of even a few years ago.
In a high density, high speed connector, electrical conductors may be so close to each other that there may be electrical interference between adjacent signal conductors. To reduce interference, and to otherwise provide desirable electrical properties, shield members are often placed between or around adjacent signal conductors. The shields may prevent signals carried on one conductor from creating “crosstalk” on another conductor. The shield may also impact the impedance of each conductor, which may further contribute to desirable electrical properties.
Examples of shielding can be found in U.S. Pat. Nos. 4,632,476 and 4,806,107, which show connector designs in which shields are used between columns of signal contacts. These patents describe connectors in which the shields run parallel to the signal contacts through both the daughterboard connector and the backplane connector. Cantilevered beams are used to make electrical contact between the shield and the backplane connectors. U.S. Pat. Nos. 5,433,617, 5,429,521, 5,429,520, and 5,433,618 show a similar arrangement, although the electrical connection between the backplane and shield is made with a spring type contact. Shields with torsional beam contacts are used in the connectors described in U.S. Pat. No. 6,299,438. Further shields are shown in U.S. Pre-grant Publication 2013-0109232.
Other connectors have the shield plate within only the daughterboard connector. Examples of such connector designs can be found in U.S. Pat. Nos. 4,846,727, 4,975,084, 5,496,183, and 5,066,236. Another connector with shields only within the daughterboard connector is shown in U.S. Pat. No. 5,484,310. U.S. Pat. No. 7,985,097 is a further example of a shielded connector.
Other techniques may be used to control the performance of a connector. For instance, transmitting signals differentially may also reduce crosstalk. Differential signals are carried on a pair of conducting paths, called a “differential pair.” The voltage difference between the conductive paths represents the signal. In general, a differential pair is designed with preferential coupling between the conducting paths of the pair. For example, the two conducting paths of a differential pair may be arranged to run closer to each other than to adjacent signal paths in the connector. No shielding is desired between the conducting paths of the pair, but shielding may be used between differential pairs. Electrical connectors can be designed for differential signals as well as for single-ended signals. Examples of differential electrical connectors are shown in U.S. Pat. Nos. 6,293,827, 6,503,103, 6,776,659, 7,163,421, and 7,794,278.
Another modification made to connectors to accommodate changing requirements is that connectors have become much larger in some applications. Increasing the size of a connector may lead to manufacturing tolerances that are much tighter. For instance, the permissible mismatch between the conductors in one half of a connector and the receptacles in the other half may be constant, regardless of the size of the connector. However, this constant mismatch, or tolerance, may become a decreasing percentage of the connector's overall length as the connector gets longer. Therefore, manufacturing tolerances may be tighter for larger connectors, which may increase manufacturing costs. One way to avoid this problem is to use connectors that are constructed from modules to extend the length of the connector. Teradyne Connection Systems of Nashua, N.H., USA pioneered a modular connector system called HD-F®. This system has multiple modules, each having multiple columns of signal contacts, such as 15 or 20 columns. The modules are held together on a metal stiffener to enable construction of a connector of any desired length.
Another modular connector system is shown in U.S. Pat. Nos. 5,066,236 and 5,496,183. Those patents describe “module terminals” each having a single column of signal contacts. The module terminals are held in place in a plastic housing module. The plastic housing modules are held together with a one-piece metal shield member. Shields may be placed between the module terminals as well.
Embodiments of a high speed, high density interconnection system are described. Very high speed performance may be achieved by the shape and/or position of conductive and/or dielectric portions of one connector which are positioned in an impedance affecting relationship with respect to signal conductors of a mating connector over some or all of the functional mating range of the interconnection system.
In some embodiments, an interconnection system is provided, comprising: a plurality of signal conductors, each signal conductor of the plurality of signal conductors comprising a contact tail adapted to be attached to a printed circuit board, a mating contact portion, and an intermediate portion electrically coupling the contact tail and the mating contact portion; and a housing portion holding at least one signal conductor of the plurality of signal conductors, the housing portion comprising a mating region, wherein: a first mating contact portion of the at least one signal conductor is disposed in the mating region of the housing portion; the housing portion comprises a mating interface surface having an opening therein, wherein the opening is sized and positioned to receive a second mating contact portion from a mating component for mating with the first mating contact portion; and the mating region of the housing portion comprises at least one projecting member, the at least one projecting member extending along a mating direction beyond the mating interface surface and beyond a distal end of the first mating contact portion of the at least one signal conductor.
In some embodiments, an interconnection system is provided, comprising: a plurality of signal conductors, each signal conductor of the plurality of signal conductors comprising a contact tail adapted to be attached to a printed circuit board, a mating contact portion, and an intermediate portion electrically coupling the contact tail and the mating contact portion; and at least one reference conductor surrounding, on at least two sides, the mating contact portion of at least one signal conductor of the plurality of signal conductors, wherein; the at least one reference conductor extends along a mating direction beyond a distal end of the mating contact portion of the at least one signal conductor such that the at least one reference conductor has a first region adjacent the mating contact portion and a second region extending beyond the distal end of the mating contact portion; and the at least one reference conductor has a first separation from the mating contact portion in the first region and a second separation from the mating contact portion in the second region.
In some embodiments, an interconnection system is provided, comprising a first component comprising a first plurality of conductive elements held by a first dielectric housing and a second component comprising a second plurality of conductive elements held by a second dielectric housing, the interconnection system comprising a separable interface between the first plurality of conductive elements and the second plurality of conductive elements, wherein: the first plurality of conductive elements are configured to provide first signal paths within the first component, the first signal paths having a first impedance; the second plurality of conductive elements are configured to provide second signal paths within the second component, the second signal paths having the first impedance; and the first plurality of conductive elements, the second plurality of conductive elements, the first dielectric housing, and the second dielectric housing are configured to provide a mating region having a length that varies in relation to separation between the first component and the second component, and when the first plurality of conductive elements are mated with the second plurality of conductive elements, the impedance varies across the mating region to an inflection point with a second characteristic impedance such that a change in impedance from the first impedance at the first signal paths within the first component to the second impedance at the inflection point and from the second impedance at the inflection point to the first impedance at the second signal paths within the second component is distributed across the mating region.
In some embodiments, an interconnection system is provided, comprising a first component comprising a first plurality of conductive elements held by a first housing and a second component comprising a second plurality of conductive elements held by a second housing, the interconnection system comprising a separable interface between the first plurality of conductive elements and the second plurality of conductive elements, wherein: the first plurality of conductive elements, the second plurality of conductive elements, the first housing and the second housing are configured to provide a mating region having a length that varies in relation to separation between the first component and the second component; the first plurality of conductive elements comprises signal conductors, each signal conductor comprising: an intermediate portion disposed within the first housing; a mating portion extending from the first housing; and a transition portion between the intermediate portion and the mating portion, wherein: the intermediate portion has a first width, and the mating portion has a second width, the second width being greater than the first width; and the second plurality of conductive elements comprises signal conductors and reference conductors, each reference conductor comprising: an intermediate portion disposed within the second housing; a mating portion extending from the second housing; and a transition portion between the intermediate portion and the mating portion, wherein: the intermediate portion has a first separation from an adjacent signal conductor of the signal conductors of the second plurality of conductive elements; and the mating portion has a second separation from an adjacent signal conductor of the signal conductors of the first plurality of conductive elements.
In some embodiments, an interconnection system is provided, comprising a first component comprising a first plurality of conductive elements held by a first housing and a second component comprising a second plurality of conductive elements held by a second housing, the interconnection system comprising a separable interface between the first plurality of conductive elements and the second plurality of conductive elements, wherein: the first plurality of conductive elements comprises signal conductors and reference conductors and the second plurality of conductive elements comprises signal conductors and reference conductors; the first plurality of conductive elements, the second plurality of conductive elements, the first housing, and the second housing are configured to provide a mating region having a length that varies in relation to separation between the first component and the second component; and the interconnection system comprises a plurality of dielectric members in the mating region positioned to separate reference conductors and adjacent signal conductors for at least a portion of the signal conductors, each dielectric member being shaped to provide a volume of dielectric material between a reference conductor and an adjacent signal conductor, the volume of dielectric material varying along the length of the mating region when the first component and the second component are separated.
The foregoing is a non-limiting summary of the invention, which is defined by the attached claims.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
The inventors have recognized and appreciated that performance of a high density interconnection system may be increased, particularly those that carry very high frequency signals that are necessary to support high data rates, with designs that reduce effects of impedance discontinuities associated with variable separation of separable components that form a mating interface. Such impedance discontinuities may create signal reflections that increase near end cross talk, attenuate signals passing through the interconnect, cause electromagnetic radiation that gives rise to far end cross talk or otherwise degrades signal integrity. Separable electrical connectors are used herein as an example of an interconnection system. The mating interfaces of some electrical connectors have been designed such that the impedance of signal conductors thorough a mating region, when the connectors are in a designed mating position, matches the impedance of intermediate portions of those signal conductors within the connectors. For low density interconnects, such as coaxial connectors that have a single signal conductor, it may be possible to construct and operate the mating connectors such that the designed mating position is reliably achieved. Greater design flexibility in choice of material or shaping and positioning of components to avoid impedance discontinuities is possible with such low density connectors.
However, for high density interconnects having multiple signal conductors, it is difficult to achieve a designed mating position for all of the signal conductors simultaneously. Additionally, the constraints imposed by meeting mechanical requirements to accurately position numerous signal conductors, with appropriate grounding and shielding in a small volume, forecloses many design techniques that might be used in cables or in connectors that connect one or a small number of signal conductors. For example, a high density connector may have an array of signal conductors spread out over a connector length of 6 inches or more. Such connectors may have a width on the order of an inch or more, providing literally hundreds of signal conductors to be mated at a separable interface. Normal manufacturing tolerances of the connectors may preclude all the signal conductors mating in the designed mating position over such a wide area, because, when some portions of one connector press against a mating connector, other portions of those connectors may be separated.
The force required to press the connectors together may also lead to variability in the separation between connectors, such that all portions of the connector are not in the designed mating position. The force required to push the connectors together increases in proportion to the number of signal conductors that mate. For a high density connector with numerous signal conductors, the force may be on the order of tens of pounds or more. An interconnection system may be designed to rely on human action to press components together in a way that generates the required mating force. However, because of variability in the way an operator assembles the system or many other possible factors, the required force may not always be generated when connectors are mated, such that the connectors are not fully pressed together in practice.
Further contributing to variability in separation of connectors, the level of force needed to force the connectors fully together may also create flex in the substrates, such as printed circuit boards, to which the connectors are attached. A printed circuit board, for example, may flex more at the center than the ends, and portions of the connectors mounted near the middle of a printed circuit board may be separated more than portions of the connectors near the sides of the printed circuit board.
To accommodate for the components mating in other than the designed mating position, many high density connectors are designed to have a “functional mating range” of approximately 2-5 mm. “Functional mating range” means the amount that one conductive element is designed to slide over a mating conductive element to reach a designed mating position from a point where the conductive elements engage with sufficient normal force to provide a reliable connection. In many embodiments, the connectors are fully pressed-together in the designed mating position, and a fully pressed together position is used as an example of a designed mating position herein.
Because sliding the contacts relative to one another can remove oxide or contamination on the mating contacts, some portion of the functional mating range provides “wipe,” which is desirable because sliding conductive elements in contact can remove contaminants from the mating contact portions and make a more reliable connection. However, the functional mating range in a high density connector is typically larger than needed for “wipe”. In high density connectors, the functional mating range provides the additional benefit of enabling the mating signal conductors to be in electrical contact, even when the connector components are separated by a distance up to the amount of the “functional mating range.”
The inventors have recognized and appreciated a problem with designing connectors, particularly very high speed, high density connectors, with a large functional mating range. Conventionally, connectors designed to accommodate mating at any point over a range of positions, particularly when operated at high frequencies, provide signal paths with variations in impedance, whether those variations are relative to a nominal designed value or are variations along the length of the signal conductors, or both.
If the mating connectors are separated by less than the amount of “functional mating range” supported by the connector, the conductive elements of the mating connectors should make electrical contact at some point in the mating region, which is desired. However, when mated at that point, the signal conductors may not have the same relative position to other portions of the connector that they would in a fully mated position, which may impact impedance.
For example, spacing between signal conductors in one connector and certain reference conductors or dielectric material in a mating electrical connector can affect impedance of the signal conductors. When there is variation in spacing between the connectors, there may also be variation in spacing between the signal conductors in one connector and these other structures that are in an impedance affecting position. Thus, the impedance may vary depending on the separation between the mating connectors.
When the connectors are separated, portions of the signal conductors may not be surrounded by material with the same effective dielectric constant as when the connectors are pressed fully together. Likewise, the separation between signal conductors and adjacent ground conductors may be different than when the connectors are pressed fully together. As a result, when the connectors are separated, though still close enough together to be within the functional mating range, the impedance of the signal conductors within the mating region may be different than the designed impedance, and the resulting impedance may depend on the separation between the components.
The impedance in the mating region may result from a signal path geometry in which portions of the interconnection system are positioned as designed, while other portions are displaced from their designed positions. One such difference results from a different effective dielectric constant of material surrounding signal conductors when two components are fully pressed together relative to when there is separation between the components.
For example, portions of signal conductors may pass through regions in which the signal conductors are surrounded by dielectric structures that are part of the same connector such that, regardless of the relative separation between two connectors, the relative position of the signal conductors and these structures is preserved. When dielectric material is between the signal conductors and adjacent reference conductors, the dielectric may affect impedance. A fixed relationship of signal conductor, reference conductor and dielectric, for example, may occur for the intermediate portions of signal conductors in a connector module in which the signal conductor is embedded in a dielectric portion to which reference conductors are attached.
In the mating region, however, at least portions of the conductive elements must be exposed to make electrical connection to mating contact portions in a mating module. These structures might not be surrounded by dielectric members that form a portion of the same module as the signal conductor. When two mating connectors are fully pressed together, the extending mating contact portions of one connector may be inserted into the mating contact portions of another connector. In this configuration, the impedance of the signal path through the mating contact portion may be impacted by the relative positioning of a signal conductor in one connector and an adjacent reference conductor or dielectric material from the mating connector.
In the nominal mating position, the extending portion may be inserted into a mating contact portion of a mating connector. In some embodiments, the mating connector may have mating contact portions serving as receptacles. For any portions of the extending contact within the receptacle, the impedance of the signal path may be defined by the positioning of the receptacle relative to impedance affecting structures, such as dielectric material and reference conductors, in the mating connector. These relationships may be designed to provide a desired impedance, which, because it is determined by relative position of components within one connector, may be independent of separation between the mating connectors.
In some embodiments, the receptacle may be held within a dielectric housing. Thus, extending portions of the mating contact portions from a first connector may pass through the dielectric housing of a second connector before reaching the receptacles. In this region, the dielectric constant, as well as position of reference conductors, of the mating connector may be set such that the impedance has a desired value when the connectors are in a fully mated position.
In a conventional connector design, when there is separation between the mating connectors, the portion of the mating contact portion of one connector that relies on structures in the mating connector to achieve a desired impedance will not be in the designed position with respect to these impedance affecting structures in the mating connector. As a result, separation between the connectors will lead to an impedance in that region different than the designed impedance. This impedance may vary based on the amount of separation, introducing greater variability.
For example, two connectors may have mating interface surfaces that butt together when the connectors are fully mated. A mating contact portion extending from one connector may have an impedance that varies along its length, with different impedance in different regions in relation to those mating interface surfaces. The impedance of that signal path within the connector, up to the mating interface surface of that connector, may be controlled to have a nominal value based on values of design parameters within that connector. The mating interface of the connector may be designed such that, when the dielectric portions butt against one another, the impedance has a value such as 50, 85 or 100 Ohms or other suitable value, in order to match the impedance in other portions of the interconnection system. Likewise, the impedance of the signal path for the portion of the extending contact that extends through the mating interface surface of the mating connector may be controlled to have the nominal value based on values of design parameters within the mating connector.
However, any portion of the signal path between the two mating interface surfaces may have an impedance that differs from the nominal value. Such a portion of the signal path may exist as a result of separation between the connectors, which deviates from a designed separation for the fully mated connectors. In this region, there may be no dielectric members or reference conductors placed in an impedance affecting position with respect to the signal conductor. Frequently, the material surrounding the mating contact portions is air. In contrast to the insulator used in forming the connector housing that may have a relative dielectric constant in the range of 2-4, for example, air has a dielectric constant that is close to 1. As a result, a signal conductor designed to have a nominal impedance when passing through a dielectric housing, may have a different impedance when passing through air, meaning that a signal conductor may have a different impedance between the mating interface surfaces than within the housing of either connector.
Other design parameters may lead to a different impedance along a signal path in the region between mating interface surfaces than within the connectors. For example, reference conductors positioned to provide a nominal impedance within the connector housings may have a different spacing relative to the signal conductor in the region between the mating interface surfaces than within the connector housing. Because the impedance of a signal conductor may depend on the separation between the signal conductor and an adjacent reference conductor, different spacing in one region than another may result in a change in impedance along the signal path from one region to another. For a conventional high speed, high density connector, in which the reference conductors are fixed to the connectors, this spacing between signal and reference conductors, and therefore impedance, in the region between the mating interface surfaces, will be different when the connectors are fully mated than when separated.
The fact that impedance in the mating region is impacted by separation between components means that, particularly for high speed connectors that have been designed to have a uniform impedance in the intermediate portions and through the mating region, when the components of the interconnection system are not in their designed mating positions, there will be a change in impedance along the length of each signal conductor. The impedance in at least a portion of the mating region will be different than in the intermediate portion, where impedance is dictated by structures within each connector, and is unaffected by the amount of separation between components.
The impact of a change in impedance may depend on the amount of separation between the components or the operating frequency range of the connector. For a small separation, or for a low frequency signal, such a change in impedance may have no discernable performance impact. At low frequencies, a separation, even if equal to the full functional mating range of the connector, may give rise to a very small difference in impedance relative to the intermediate portions of the signal conductors that are within the connector housings. Moreover, at lower frequencies, such a change in impedance may be effectively averaged along the length of the signal paths through the interconnection system such that the change in impedance has little impact.
At higher frequencies, however, the change in impedance associated with separation of the connectors may be more significant, to the point of limiting performance of the connector. Such an impact may result because the difference in impedance, caused by the separation, between a mating region and the intermediate portions of the signal conductors is greater at higher frequencies. Moreover, at higher frequencies, a change in impedance attributable to separation of the components presents a localized impedance discontinuity rather than a change that is averaged over the length of the entire signal conductor. For example, in a high-speed interconnection system, a connector may be designed such that a fully mated connector may provide an impedance in the mating region that differs from the impedance in the intermediate portion by 3 ohms or less at the higher range of operating frequencies of the connector. However, when the mating connectors are separated by up to the functional mating range distance, the impedance difference between portions of the signal conductors in the mating region and the intermediate portions of the signal conductors may differ by two, three or more times the intended difference. This difference between the actual impedance of signal conductors and designed impedance may give rise to signal integrity problems, depending on the frequency range of interest.
The frequency range of interest may depend on the operating parameters of the system in which such a connector is used, but may generally have an upper limit between about 15 GHz and 50 GHz, such as 25 GHz, 30 or 40 GHz, although higher frequencies or lower frequencies may be of interest in some applications. Some connector designs may have frequency ranges of interest that span only a portion of this range, such as 1 to 10 GHz or 3 to 15 GHz or 5 to 35 GHz. The impact of variations in impedance may be more significant at these higher frequencies.
The operating frequency range for an interconnection system may be determined based on the range of frequencies that can pass through the interconnection with acceptable signal integrity. Signal integrity may be measured in terms of a number of criteria that depend on the application for which an interconnection system is designed. Some of these criteria may relate to the propagation of the signal along a single-ended signal path, a differential signal path, a hollow waveguide, or any other type of signal path. Two examples of such criteria are the attenuation of a signal along a signal path or the reflection of a signal from a signal path.
Other criteria may relate to interaction of multiple distinct signal paths. Such criteria may include, for example, near end cross talk, defined as the portion of a signal injected on one signal path at one end of the interconnection system that is measurable at any other signal path on the same end of the interconnection system. Another such criterion may be far end cross talk, defined as the portion of a signal injected on one signal path at one end of the interconnection system that is measurable at any other signal path on the other end of the interconnection system.
As specific examples, it could be required that signal path attenuation be no more than 3 dB power loss, reflected power ratio be no greater than −20 dB, and individual signal path to signal path crosstalk contributions be no greater than −50 dB. Because these characteristics are frequency dependent, the operating range of an interconnection system is defined as the range of frequencies over which the specified criteria are met.
Accordingly, the inventors have recognized and appreciated the desirability of using techniques in separable interfaces of high speed, high density interconnection systems to reduce the impact of changes in impedance attributable to variable separation of components that form the interface. Such techniques may provide an impedance in the mating region that is independent of separation between the separable components. Alternatively or additionally, such techniques may provide an impedance that varies smoothly over the mating region, regardless of separation between the separable components, to avoid discontinuities of a magnitude that impact performance.
Designs that reduce or eliminate impedance discontinuities or the effects of such discontinuities in the mating region, regardless of separation between components, may be achieved by selection of the shape and/or position of one or more conductive elements and/or dielectric elements. In accordance with some techniques, impedance control may be provided by members, projecting from one connector, partially or fully through the space separating the mating connectors. Accordingly, these members may have dimensions that are on the order of the functional mating range of the connector, such as 1-3 mm or, in some embodiments, at least 2 mm. These projecting members may be dielectric and/or conductive. Accordingly, these members will be positioned within the space between connectors when the connectors are de-mated by a distance up to the functional mating range. When the connectors are separated by less than the functional mating range, the projecting members of one connector may project into the mating connector. Though, it should be appreciated that the projecting members may extend by more than the functional mating range, such that they will project into the mating connector even if the connectors are separated by the functional mating range.
The projecting members may be positioned to reduce or substantially eliminate changes in impedance associated with variable separation of connectors. Such a result may be achieved by having the projecting members in an impedance affecting relationship with the signal conductors in the mating region between the connectors, when the connectors are separated. The shape and position of the projecting members may be such that the impedance of the signal conductors in this mating region provides a desired impedance, regardless of separation between the connectors. The connector may be designed such that the projecting member does not impact the impedance in either connector, regardless of separation between the connectors.
For example, the projecting members may be conductive and may be configured as reference conductors. In some embodiments, the conductive members may be configured to provide a nominal impedance within the connector to which they are attached, but to have little or no impact on the impedance in the other connector, regardless of the separation between connectors. Such a result may be achieved by having the projecting member adjacent to a reference conductor in that connector such that, regardless of the amount of separation between connectors, there is no significant difference in the distance between the signal conductors in that connector and the nearest reference conductor.
In contrast, the projecting member may be shaped and positioned to impact impedance along the signal path between connectors. For example, in the region between the mating connectors when separated, the projecting members may be shaped and positioned to provide a spacing between signal conductors and reference conductors that, in combination with other parameters, provides the nominal impedance in that region. Such other parameters may include thickness or shape of the signal conductor and/or dielectric constant of material in that region.
The projecting members may alternatively or additionally be dielectric, and may be formed, for example, from dielectric material of the type forming a connector housing. The dielectric projecting member may be shaped and positioned to lessen the impact of changes in impedance that might arise from separation of the connectors by distributing those changes across the mating interface region of the connector. For example, the dielectric projecting member from one connector may extend into an impedance affecting position with respect to a signal conductor in a mating connector when the connectors are fully mated. When partially de-mated, that dielectric projecting member will not extend all the way into the mating connector, occupying less of the impedance affecting position, and leaving a region with a void. Because the void may fill with air, separation means that more air is in an impedance affecting position with respect to the signal conductor within that connector, lowering the effective dielectric constant and impacting impedance in that region.
That dielectric projecting member, if it does not extend fully into the connector as a result of separation between the connectors, instead fills at least a portion of the space between the two connectors, thereby replacing air that might otherwise exist in that separation with a dielectric member. As a result, the projecting member raises the effective dielectric constant in the space between connectors, relative to what it would have been had the space been entirely filled with air. Because this dielectric constant is closer to what would be experienced had the entire signal conductor been within a connector housing, such as occurs when there is no separation between the connectors, the magnitude of any change in impedance as a result of separation is less than had the entire space been filled with air.
Moreover, the impact of the separation between the connectors is spread over a longer distance. Changes in the amount of dielectric material in impedance affecting positions impact both the impedance along a signal path in the space between the connectors as well as within one of the connectors. By distributing changes in impedance over a greater distance along the signal path, the abruptness of the change in impedance at any given location may be less, and the impact of that change may likewise be less.
These techniques may be used alone or in any suitable combination. Accordingly, in some embodiments, signal conductor pairs may be enclosed by or adjacent to, on one or more sides, reference conductors. The shape of some or all of the reference conductors, including their separation from the axis of the signal conductors, may vary over the signal path through the mated connectors. The shape of the signal conductors, including their width, may also vary. Likewise, the amount of insulating material relative to the amount of air adjacent a signal conductor may also vary over the mating region. Values of these design parameters at different locations along the length of the mating region may be selected, alone or in combination, to provide an impedance along the signal conductors within the mating region that either does not vary as a function of separation of the mating components or in which such a variation is distributed to reduce impedance discontinuities.
In some embodiments, some or all of the reference conductors, signal conductors and insulative portions may vary in shape over the mating region so as to define sub-regions. The length of at least some of the sub-regions may depend on the separation between components, and the components may be shaped to provide smooth transitions between the sub-regions. A first such sub-region may exist within the first component. A second sub-region may exist within the second component. The second sub-region may include a portion of the mating interface in which a signal conductor with flex is surrounded by adequate space for flexing as required to generate contract force. The third sub-region may be between the first and second sub-regions. The length of the third sub-region may depend on the separation between the components.
In the first sub-region, the reference conductors may be separated from the axis of the signal conductors (referred to herein as the “signal conductor axis”) by a first distance. This distance may be appropriate to provide a desired impedance given the average dielectric constant of the material and the shape of the signal conductor in the first sub-region. In the second sub-region, which in the example above has air surrounding the signal conductors, the reference conductors may be separated from the signal conductor axis by a second distance. This second distance may be appropriate to provide the desired impedance given the average dielectric constant of the material and the shape of the signal conductor in the second sub-region.
In the third sub-region, the separation between the reference conductors and the signal conductor axis may transition from the first distance, adjacent the first sub-region, to the second distance, adjacent the second sub-region. The width of the signal conductor extending from the first component may also transition from a first width, in the first sub-region, to a second width in the second sub-region. This transition in signal conductor width may be coordinated with changes in separation between the reference conductors and the signal conductor axis and/or changes in the effective dielectric constant of material adjacent the signal conductors so as to reduce or eliminate changes in impedance.
Moreover, the dielectric members within the mating region may be designed to provide a smooth transition of impedance. For example, in some embodiments, the dielectric members may be designed such that, when the connectors are in a nominal mating position, the effective dielectric constant of material surrounding signal conductors in the mating region provides the same impedance as in the intermediate portions. This effective dielectric constant may be provided by overlap of dielectric members from the two mating connectors. These members may be shaped so that the amount of overlap decreases smoothly as the separation between the connectors increases. In this way, any impedance discontinuity that might otherwise arise from the connectors being mated while in a position other than the nominal mating positioned may be lessened.
Designs of an electrical connector are described herein that improve signal integrity for high frequency signals, such as at frequencies in the GHz range, including up to about 25 GHz or up to about 40 GHz or higher, while maintaining high density, such as with a spacing between adjacent mating contacts on the order of 2 mm or less, including center-to-center spacing between adjacent contacts in a column of between 0.75 mm and 1.85 mm or between 1 mm and 1.75 mm, for example. Spacing between columns of mating contact portions may be similar, although there is no requirement that the spacing between all mating contacts in a connector be the same.
Each of the connectors also has a mating interface where that connector can mate—or be separated from—the other connector. Daughtercard connector 600 includes a mating interface 620. Backplane connector 200 includes a mating interface 220. Though not fully visible in the view shown in
Each of these conductive elements includes an intermediate portion that connects a contact tail to a mating contact portion. The intermediate portions may be held within a connector housing, at least a portion of which may be dielectric so as to provide electrical isolation between conductive elements. Additionally, the connector housings may include conductive or lossy portions, which in some embodiments may provide conductive or partially conductive paths between some of the conductive elements. In some embodiments, the conductive portions may provide shielding. The lossy portions may also provide shielding in some instances and/or may provide desirable electrical properties within the connectors.
In various embodiments, dielectric members may be molded or over-molded from a dielectric material such as plastic or nylon. Examples of suitable materials include, but are not limited to, liquid crystal polymer (LCP), polyphenyline sulfide (PPS), high temperature nylon or polypropylene (PPO). Other suitable materials may be employed, as aspects of the present disclosure are not limited in this regard.
All of the above-described materials are suitable for use as binder material in manufacturing connectors. In accordance some embodiments, one or more fillers may be included in some or all of the binder material. As a non-limiting example, thermoplastic PPS filled to 30% by volume with glass fiber may be used to form the entire connector housing or dielectric portions of the housings.
Alternatively or additionally, portions of the housings may be formed of conductive materials, such as machined metal or pressed metal powder. In some embodiments, portions of the housing may be formed of metal or other conductive material with dielectric members spacing signal conductors from the conductive portions. In the embodiment illustrated, for example, a housing of backplane connector 200 may have regions formed of a conductive material with insulative members separating the intermediate portions of signal conductors from the conductive portions of the housing.
The housing of daughtercard connector 600 may also be formed in any suitable way. In the embodiment illustrated, daughtercard connector 600 may be formed from multiple subassemblies, referred to herein as “wafers.” Each of the wafers (700,
Other members that may form a portion of the connector housing may provide mechanical integrity for daughtercard connector 600 and/or hold the wafers in a desired position. For example, a front housing portion 640 (
In some embodiments, each wafer may hold a column of conductive elements forming signal conductors. These signal conductors may be shaped and spaced to form single ended signal conductors. However, in the embodiment illustrated in
Conductive elements may be made of metal or any other material that is conductive and provides suitable mechanical properties for conductive elements in an electrical connector. Phosphor-bronze, beryllium copper and other copper alloys are non-limiting examples of materials that may be used. The conductive elements may be formed from such materials in any suitable way, including by stamping and/or forming.
The spacing between adjacent columns of conductors is not critical. However, a higher density may be achieved by placing the conductors closer together. As a non-limiting example, the conductors may be stamped from 0.4 mm thick copper alloy, and the conductors within each column may be spaced apart by 2.25 mm and the columns of conductors may be spaced apart by 2 mm. However, in other embodiments, smaller dimensions may be used to provide higher density, such as a thickness between 0.2 and 0.4 mm or spacing of 0.7 to 1.85 mm between columns or between conductors within a column. Moreover, each column may include four pairs of signal conductors, such that it density of 60 or more pairs per linear inch is achieved for the interconnection system illustrated in
The wafers may be formed any suitable way. In some embodiments, the wafers may be formed by stamping columns of conductive elements from a sheet of metal and over molding dielectric portions on the intermediate portions of the conductive elements. In other embodiments, wafers may be assembled from modules each of which including a single, single-ended signal conductor, a single pair of differential signal conductors or any suitable number of single ended or differential pairs.
The inventors have recognized and appreciated that assembling wafers from modules may aid in reducing “skew” in signal pairs at higher frequencies, such as between about 25 GHz and 40 GHz, or higher. Skew, in this context, refers to the difference in electrical propagation time between signals of a pair that operates as a differential signal. Modular construction that reduces skew is designed described, for example in co-pending US application, Publication Number 2015/0236452, which is incorporated herein by reference.
In accordance with techniques described in that co-pending application, in some embodiments, connectors may be formed of modules, each carrying a signal pair. The modules may be individually shielded, such as by attaching shield members to the modules and/or inserting the modules into an organizer or other structure that may provide electrical shielding between pairs and/or ground structures around the conductive elements carrying signals.
In some embodiments, signal conductor pairs within each module may be broadside coupled over substantial portions of their lengths. Broadside coupling enables the signal conductors in a pair to have the same physical length. To facilitate routing of signal traces within the connector footprint of a printed circuit board to which a connector is attached and/or constructing of mating interfaces of the connectors, the signal conductors may be aligned with edge to edge coupling in one or both of these regions. As a result, the signal conductors may include transition regions in which coupling changes from edge-to-edge to broadside or vice versa. As described below, these transition regions may be designed to prevent mode conversion or suppress undesired propagation modes that can interfere with signal integrity of the interconnection system.
The modules may be assembled into wafers or other connector structures. In some embodiments, a different module may be formed for each row position at which a pair is to be assembled into a right angle connector. These modules may be made to be used together to build up a connector with as many rows as desired. For example, a module of one shape may be formed for a pair to be positioned at the shortest rows of the connector, sometimes called the a-b rows. A separate module may be formed for conductive elements in the next longest rows, sometimes called the c-d rows. The inner portion of the module with the c-d rows may be designed to conform to the outer portion of the module with the a-b rows.
This pattern may be repeated for any number of pairs. Each module may be shaped to be used with modules that carry pairs for shorter and/or longer rows. To make a connector of any suitable size, a connector manufacturer may assemble into a wafer a number of modules to provide a desired number of pairs in the wafer. In this way, a connector manufacturer may introduce a connector family for a widely used connector size—such as 2 pairs. As customer requirements change, the connector manufacturer may procure tools for each additional pair, or, for modules that contain multiple pairs, group of pairs to produce connectors of larger sizes. The tooling used to produce modules for smaller connectors can be used to produce modules for the shorter rows even of the larger connectors. Such a modular connector is illustrated in
Further details of the construction of the interconnection system of
In the embodiment illustrated, backplane connector 200 also has a modular construction. Multiple pin modules 300 are organized to form an array of conductive elements. Each of the pin modules 300 may be designed to mate with a module of daughtercard connector 600.
In the embodiment illustrated, four rows and eight columns of pin modules 300 are shown. With each pin module having two signal conductors, the four rows 230A, 230B, 230C and 230D of pin modules create columns with four pairs or eight signal conductors, in total. It should be appreciated, however, that the number of signal conductors per row or column is not a limitation of the invention. A greater or lesser number of rows of pin modules may be include within housing 222. Likewise, a greater or lesser number of columns may be included within housing 222. Alternatively or additionally, housing 222 may be regarded as a module of a backplane connector, and multiple such modules may be aligned side to side to extend the length of a backplane connector.
In the embodiment illustrated in
In some embodiments, housing 222 may contain both conductive and lossy portions. For example, a shroud including walls 226 and a floor 228 may be pressed from a powdered metal or formed from conductive material in any other suitable way. Pin modules 300 may be inserted into openings within floor 228.
Lossy or conductive members may be positioned adjacent rows 230A, 230B, 230C and 230D of pin modules 300. In the embodiment of
In some embodiments, other lossy or conductive members may extend into mating interface 220, perpendicular to floor 228. Members 240 are shown adjacent to end-most rows 230A and 230D. In contrast to separators 224A, 224B and 224C, which extend across the mating interface 220, separator members 240, approximately the same width as one column, are positioned in rows adjacent row 230A and row 230D. Daughtercard connector 600 may include, in its mating interface 620, slots to receive, separators 224A, 224B and 224C. Daughtercard connector 600 may include openings that similarly receive members 240. Members 240 may have a similar electrical effect to separators 224A, 224B and 224C, in that both may suppress resonances, crosstalk or other undesired electrical effects. Members 240, because they fit into smaller openings within daughtercard connector 600 than separators 224A, 224B and 224C, may enable greater mechanical integrity of housing portions of daughtercard connector 600 at the sides where members 240 are received.
Conductive elements serving as reference conductors 320A and 320B are attached at opposing exterior surfaces of pin module 300. Each of the reference conductors has contact tails 328, shaped for making electrical connections to vias within a printed circuit board. The reference conductors also have making contact portions. In the embodiment illustrated, two types of mating contact portions are illustrated. Compliant member 322 may serve as a mating contact portion, pressing against a reference conductor in daughtercard connector 600. In some embodiments, surfaces 324 and 326 alternatively or additionally may serve as mating contact portions, where reference conductors from the mating conductor may press against reference conductors 320A or 320B. However, in the embodiment illustrated, the reference conductors may be shaped such that electrical contact is made only at compliant member 322.
As can be seen, the surface 428 is substantially unbroken. Attachment features, such as tab 432 may be formed in the surface 428. Such a tab may engage an opening (not visible in the view shown in
In the embodiment illustrated, compliant member 322 is not cut from the planar portion of the reference conductor 320B that presses against the surface 412 of the insulative member 410. Rather, compliant member 322 is formed from a different portion of a sheet of metal and folded over to be parallel with the planar portion of the reference conductor 320B. In this way, no opening is left in the planar portion of the reference conductor 320B from forming compliant member 322. Moreover, as shown, compliant member 322 has two compliant portions 424A and 424B, which are joined together at their distal ends but separated by an opening 426. This configuration may provide mating contact portions with a suitable mating force in desired locations without leaving an opening in the shielding around pin module 300. However, a similar effect may be achieved in some embodiments by attaching separate compliant members to reference conductors 320A and 320B.
The reference conductors 320A and 320B may be held to pin module 300 in any suitable way. As noted above, tabs 432 may engage an opening 434 in the housing portion of backplane connector 200. Additionally or alternatively, straps or other features may be used to hold other portions of the reference conductors. As shown each reference conductor includes straps 430A and 430B. Straps 430A include tabs while straps 430B include openings adapted to receive those tabs. Here reference conductors 320A and 320B have the same shape, and may be made with the same tooling, but are mounted on opposite surfaces of the pin module 300. As a result, a tab 430A of one reference conductor aligns with a tab 430B of the opposing reference conductor such that the tab 430A and the tab 430B interlock and hold the reference conductors in place. These tabs may engage in an opening 448 in the insulative member, which may further aid in holding the reference conductors in a desired orientation relative to signal conductors 314A and 314B in pin module 300.
In accordance with some embodiments, some or all of the adjacent surfaces in mating connectors may be tapered. Accordingly, though not shown in
As is described in greater detail below, tapered surfaces in the mating interfaces may avoid abrupt changes in impedance as a function of connector separation. Accordingly, other surfaces designed to be adjacent a mating connector may be similarly tapered.
In the illustrated embodiment, the signal conductors 314A and 314B are symmetrical with respect to an axis 500 of the signal conductor pair. Each has a mating contact portion, 510A or 510B shaped as a pin. Each also has an intermediate portion 512A or 512B, and 514A or 514B. Here, different widths are provided to provide for matching impedance to a mating connector and a printed circuit board, despite different materials or construction techniques in each. A transition region may be included, as illustrated, to provide a gradual transition between regions of different width. Contact tails 516A or 516B may also be included.
In the embodiment illustrated, intermediate portions 512A, 512B, 514A and 514B may be flat, with broadsides and narrower edges. The signal conductors of the pairs are, in the embodiment illustrated, aligned edge-to-edge and are thus configured for edge coupling. In other embodiments, some or all of the signal conductor pairs may alternatively be broadside coupled.
Mating contact portions may be of any suitable shape, but in the embodiment illustrated, they are cylindrical. The cylindrical portions may be formed by rolling portions of a sheet of metal into a tube or in any other suitable way. Such a shape may be created, for example, by stamping a shape from a sheet of metal that includes the intermediate portions. A portion of that material may be rolled into a tube to provide the mating contact portion. Alternatively or additionally, a wire or other cylindrical element may be flattened to form the intermediate portions, leaving the mating contact portions cylindrical. One or more openings (not numbered) may be formed in the signal conductors. Such openings may ensure that the signal conductors are securely engaged with the insulative member 410.
Turning to
Conductive elements within the wafers 700A may include mating contact portions and contact tails. Contact tails 610 are shown extending from a surface connector 600 adapted for mounting against a printed circuit board. In some embodiments, contact tails 610 may pass through a member 630. Member 630 may include insulative, lossy or conductive portions. In some embodiments, contact tails associated with signal conductors may pass through insulative portions of member 630. Contact tails associated with reference conductors may pass through lossy or conductive portions.
In some embodiments, the conductive portions may be compliant, such as may result from a conductive elastomer or other material that may be known in the art for forming a gasket. The compliant material may be thicker than the insulative portions of member 630. Such compliant material may be positioned to align with pads on a surface of a daughtercard to which connector 600 is to be attached. Those pads may be connected to reference structures within the printed circuit board such that, when connector 600 is attached to the printed circuit board, the compliant material makes contact with the reference pads on the surface of the printed circuit board.
The conductive or lossy portions of member 630 may be positioned to make electrical connection to reference conductors within connector 600. Such connections may be formed, for example, by contact tails of the reference conductors passing through the lossy of conductive portions. Alternatively or additionally, in embodiments in which the lossy or conductive portions are compliant, those portions may be positioned to press against the mating reference conductors when the connector is attached to a printed circuit board.
Mating contact portions of the wafers 700A are held in a front housing portion 640. The front housing portion may be made of any suitable material, which may be insulative, lossy or conductive or may include any suitable combination or such materials. For example the front housing portion may be molded from a filled, lossy material or may be formed from a conductive material, using materials and techniques similar to those described above for the housing walls 226. As shown, the wafers are assembled from modules 810A, 810B, 810C and 810D (
In the embodiment illustrated, each of the modules includes reference conductors that at least partially enclose the signal conductors. The reference conductors may similarly have mating contact portions and contact tails.
The modules may be held together in any suitable way. For example, the modules may be held within a housing, which in the embodiment illustrated is formed with members 900A and 900B. Members 900A and 900B may be formed separately and then secured together, capturing modules 810A . . . 810D between them. Members 900A and 900B may be held together in any suitable way, such as by attachment members that form an interference fit or a snap fit. Alternatively or additionally, adhesive, welding or other attachment techniques may be used.
Members 900A and 900B may be formed of any suitable material. That material may be an insulative material. Alternatively or additionally, that material may be or may include portions that are lossy or conductive. Members 900A and 900B may be formed, for example, by molding such materials into a desired shape. Alternatively, members 900A and 900B may be formed in place around modules 810A . . . 810D, such as via an insert molding operation. In such an embodiment, it is not necessary that members 900A and 900B be formed separately. Rather, a housing portion to hold modules 810A . . . 810D may be formed in one operation.
Though the reference conductors may substantially enclose each pair, it is not a requirement that the enclosure be without openings. In the embodiment illustrated, the reference conductors may be shaped to leave openings 832. These openings may be in the narrower wall of the enclosure. Such openings may suppress undesired modes of energy propagation. In embodiments in which members 900A and 900B are formed by over molding lossy material on the modules, lossy material may be allowed to fill openings 832, which may further suppress propagation of undesired modes of signal propagation, that can decrease signal integrity.
Members 900A and 900B may be molded from or include a lossy material. Any suitable lossy material may be used for these and other structures that are “lossy.” Materials that conduct, but with some loss, or material which by other physical mechanisms absorb electromagnetic energy over the frequency range of interest are referred to herein generally as “lossy” materials. Electrically lossy materials can be formed from lossy dielectric and/or poorly conductive and/or lossy magnetic materials. Magnetically lossy material can be formed, for example, from materials traditionally regarded as ferromagnetic materials, such as those that have a magnetic loss tangent greater than approximately 0.05 in the frequency range of interest. The “magnetic loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permeability of the material. Practical lossy magnetic materials or mixtures containing lossy magnetic materials may also exhibit useful amounts of dielectric loss or conductive loss effects over portions of the frequency range of interest. Electrically lossy material can be formed from material traditionally regarded as dielectric materials, such as those that have an electric loss tangent greater than approximately 0.05 in the frequency range of interest. The “electric loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permittivity of the material. Electrically lossy materials can also be formed from materials that are generally thought of as conductors, but are either relatively poor conductors over the frequency range of interest, contain conductive particles or regions that are sufficiently dispersed that they do not provide high conductivity or otherwise are prepared with properties that lead to a relatively weak bulk conductivity compared to a good conductor such as copper over the frequency range of interest. Electrically lossy materials typically have a bulk conductivity of about 1 siemen/meter to about 100,000 siemens/meter and preferably about 1 siemen/meter to about 10,000 siemens/meter. In some embodiments material with a bulk conductivity of between about 10 siemens/meter and about 200 siemens/meter may be used. As a specific example, material with a conductivity of about 50 siemens/meter may be used. However, it should be appreciated that the conductivity of the material may be selected empirically or through electrical simulation using known simulation tools to determine a suitable conductivity that provides both a suitably low crosstalk with a suitably low signal path attenuation or insertion loss.
Electrically lossy materials may be partially conductive materials, such as those that have a surface resistivity between 1 Ω/square and 100,000 Ω/square. In some embodiments, the electrically lossy material has a surface resistivity between 10 Ω/square and 1000 Ω/square. As a specific example, the material may have a surface resistivity of between about 20 Ω/square and 80 Ω/square.
In some embodiments, electrically lossy material is formed by adding to a binder a filler that contains conductive particles. In such an embodiment, a lossy member may be formed by molding or otherwise shaping the binder with filler into a desired form. Examples of conductive particles that may be used as a filler to form an electrically lossy material include carbon or graphite formed as fibers, flakes, nanoparticles, or other types of particles. Metal in the form of powder, flakes, fibers or other particles may also be used to provide suitable electrically lossy properties. Alternatively, combinations of fillers may be used. For example, metal plated carbon particles may be used. Silver and nickel are suitable metal plating for fibers. Coated particles may be used alone or in combination with other fillers, such as carbon flake. The binder or matrix may be any material that will set, cure, or can otherwise be used to position the filler material. In some embodiments, the binder may be a thermoplastic material traditionally used in the manufacture of electrical connectors to facilitate the molding of the electrically lossy material into the desired shapes and locations as part of the manufacture of the electrical connector. Examples of such materials include liquid crystal polymer (LCP) and nylon. However, many alternative forms of binder materials may be used. Curable materials, such as epoxies, may serve as a binder. Alternatively, materials such as thermosetting resins or adhesives may be used.
Also, while the above described binder materials may be used to create an electrically lossy material by forming a binder around conducting particle fillers, the invention is not so limited. For example, conducting particles may be impregnated into a formed matrix material or may be coated onto a formed matrix material, such as by applying a conductive coating to a plastic component or a metal component. As used herein, the term “binder” encompasses a material that encapsulates the filler, is impregnated with the filler or otherwise serves as a substrate to hold the filler.
Preferably, the fillers will be present in a sufficient volume percentage to allow conducting paths to be created from particle to particle. For example, when metal fiber is used, the fiber may be present in about 3% to 40% by volume. The amount of filler may impact the conducting properties of the material.
Filled materials may be purchased commercially, such as materials sold under the trade name Celestran® by Celanese Corporation which can be filled with carbon fibers or stainless steel filaments. A lossy material, such as lossy conductive carbon filled adhesive preform, such as those sold by Techfilm of Billerica, Mass., US may also be used. This preform can include an epoxy binder filled with carbon fibers and/or other carbon particles. The binder surrounds carbon particles, which act as a reinforcement for the preform. Such a preform may be inserted in a connector wafer to form all or part of the housing. In some embodiments, the preform may adhere through the adhesive in the preform, which may be cured in a heat treating process. In some embodiments, the adhesive may take the form of a separate conductive or non-conductive adhesive layer. In some embodiments, the adhesive in the preform alternatively or additionally may be used to secure one or more conductive elements, such as foil strips, to the lossy material.
Various forms of reinforcing fiber, in woven or non-woven form, coated or non-coated may be used. Non-woven carbon fiber is one suitable material. Other suitable materials, such as custom blends as sold by RTP Company, can be employed, as the present invention is not limited in this respect.
In some embodiments, a lossy member may be manufactured by stamping a preform or sheet of lossy material. For example, an insert may be formed by stamping a preform as described above with an appropriate pattern of openings. However, other materials may be used instead of or in addition to such a preform. A sheet of ferromagnetic material, for example, may be used.
However, lossy members also may be formed in other ways. In some embodiments, a lossy member may be formed by interleaving layers of lossy and conductive material such as metal foil. These layers may be rigidly attached to one another, such as through the use of epoxy or other adhesive, or may be held together in any other suitable way. The layers may be of the desired shape before being secured to one another or may be stamped or otherwise shaped after they are held together.
In the embodiment illustrated, module 1000 includes a pair of signal conductors 1310A and 1310B (
The exploded view of
The impedance of the signal conductors in subregion 1040 will be largely defined by the structure of module 1000. The separation of signal conductors of the pair as well as the separation of the signal conductors from reference conductors 1010A and 1010B will set the impedance. The dielectric constant of the material surrounding the signal conductors, which in this embodiment is air, will also impact the impedance. In accordance with some embodiments, design parameters of module 1000 may be selected to provide a nominal impedance within region 1040. That impedance may be designed to match the impedance of other portions of module 1000, which in turn may be selected to match the impedance of a printed circuit board or other portions of the interconnection system such that the connector does not create impedance discontinuities.
If the modules 300 and 1000 are in their nominal mating position, which in this embodiment is fully pressed together, the pins will be within mating contact portions of the signal conductors of module 1000. The impedance of the signal conductors in subregion 1040 will still be driven largely by the configuration of subregion 1040, providing a matched impedance to the rest of module 1000.
A subregion 340 (
The impedance in subregions 340 and 1040, being dictated by construction of the modules, is largely independent of any separation between the modules during mating. However, modules 300 and 1000 have, respectively, subregions 342 and 1042 in which the components from that module interact with components from the mating module in a way that could influence impedance. Because the positioning of components in two modules could influence impedance, the impedance could vary as a function of separation of the mating modules. In some embodiments, these components are shaped or positioned to reduce changes of impedance, regardless of separation distance, or to reduce the impact of changes of impedance by distributing the change across the mating region.
When pin module 300 is pressed fully against module 1000, the components in subregions 342 and 1042 may combine to provide the nominal mating impedance. Because the modules are designed to provide a functional mating range, signal conductors within pin module 300 and module 1000 may mate, even if those modules are separated by an amount up to the functional mating range, such that separation between the modules can lead to changes in impedance, relative to the nominal value, at one or more places along the signal conductors in the mating region. Appropriate shape and positioning of these members can reduce that change or reduce the effect of the change by distributing it over portions of the mating region.
In the embodiments illustrated in
As described in greater detail below, these components also may be sized and may have material properties that provide impedance control as a function of separation of modules 300 and 1000. Impedance control may be achieved by providing approximately the same impedance through subregions 342 and 1042, even if those subregions do not fully overlap, or by providing gradual impedance transitions, regardless of separation of the modules.
In the illustrated embodiment, this impedance control is provided in part by projecting insulative members 1042A and 1042B, which fully or partially overlap module 300, depending on separation between modules 300 and 1000. These projecting insulative members can reduce the magnitude of changes in relative dielectric constant of material surrounding pins from pin module 300.
Impedance control may also be provided by the shape or position of conductive elements. Impedance control is also provided by projections 1020A and 1022A and 1020B and 1022B in the reference conductors 1010A and 1010B. These projections impact the separation, in a direction perpendicular to the axis of the signal conductor pair, between portions of the signal conductors of the pair and the reference conductors 1010A and 1010B. This separation, in combination with other characteristics, such as the width of the signal conductors in those portions, may control the impedance in those portions such that it approximates the nominal impedance of the connector or does not change abruptly in a way that may cause signal reflections. Other parameters of either or both mating modules may be configured for such impedance control.
Turning to
Covers 1112 and 1114 may be attached to opposing sides of central member 1110. Covers 1112 and 1114 may aid in holding conductive elements 1310A and 1310B within grooves 1212A and 1212B and with a controlled separation from reference conductors 1010A and 1010B. In the embodiment illustrated, covers 1112 and 1114 may be formed of the same material as central member 1110. However, it is not a requirement that the materials be the same, and in some embodiments, different materials may be used, such as to provide different relative dielectric constants in different regions to provide a desired impedance of the signal conductors.
In the embodiment illustrated, grooves 1212A and 1212B are configured to hold a pair of signal conductors for edge coupling at the contact tails and mating contact portions. Over a substantial portion of the intermediate portions of the signal conductors, the pair is held for broadside coupling. To transition between edge coupling at the ends of the signal conductors to broadside coupling in the intermediate portions, a transition region may be included in the signal conductors. Grooves in central member 1110 may be shaped to provide this transition region. Projections 1122, 1124, 1126 and 1128 on covers 1112 and 1114 may press the conductive elements against central portion 1110 in these transition regions.
The mating contact portions 1318A and 1318 B may be formed from the same sheet of metal as the conductive elements. However, it should be appreciated that, in some embodiments, conductive elements may be formed by attaching separate mating contact portions to other conductors to form the intermediate portions. For example, in some embodiments, intermediate portions may be cables such that the conductive elements are formed by terminating the cables with mating contact portions.
In the embodiment illustrated, the mating contact portions are tubular. Such a shape may be formed by stamping the conductive element from a sheet of metal and then forming to roll the mating contact portions into a tubular shape. The circumference of the tube may be large enough to accommodate a pin from a mating pin module, but may conform to the pin. The tube may be split into two or more segments, forming compliant beams. Two such beams are shown in
When conductive elements 1310A and 1310B are mounted in central member 1110, mating contact portions 1318A and 1318B fit within openings 1220A 1220B. The mating contact portions are separated by wall 1230. The distal ends 1320A and 1320B of mating contact portions 1318A and 1318 B may be aligned with openings, such as opening 1222B, in platform 1232. These openings may be positioned to receive pins from the mating pin module 300. Wall 1230, platform 1232 and insulative projecting members 1042A and 1042B may be formed as part of portion 1110, such as in one molding operation. However, any suitable technique may be used to form these members.
In contrast, intermediate portions 1314A and 1314B are aligned with their broader sides facing each other. The intermediate portions are aligned in the direction of row 1342. In the example of
In a conventional right angle connector in which edge coupled pairs are used within a wafer, within each pair the conductive element in the outer row at the daughtercard is longer. In
Moreover, in
Additional details of mating contact portions such as 1318A and 1318B are also visible. The tubular portion of mating contact portion 1318A is visible in the view shown in
Turning to
Projections 1022A and 1022B may nonetheless be electrically connected to reference conductors 320A and 320B. Electrical connection may be made through compliant members or in any other suitable way. For example, compliant members 322 (
Other parameters may also impact impedance in this region, including the thickness of intermediate portions 512A and 512B, separation between intermediate portions 512A and 512B and width of intermediate portions 512A and 512B. The effective dielectric constant of the material surrounding the signal conductors may also impact the impedance. In some embodiments, these parameters may be set to provide a desired nominal impedance to signal conductors within region 1040. That nominal impedance may be any suitable value, but may be selected to match impedance of a printed circuit board to which the connector is to be attached.
In region 1040, these connector design parameters that affect impedance are substantially independent of the separation between modules 300 and 1000. Because mating contacts 510A and 510B fit inside mating contacts 1318A and 1318B, the separation between the signal conductors and the closest reference conductor will be dictated by the shape and position of mating contacts 1318A and 1318B. Inserting mating contacts 510A and 510B further or a shorter distance into mating contacts 1318A and 1318B does not change the distance S2. Rather, the amount of insertion only changes the location on mating contacts 510A and 510B at which the signal conductors make contact, which does not have a material impact on impedance. Therefore within region 1040, the impedance is substantially independent of the separation between modules 300 and 1000.
Pin module 300 similarly includes a region 340 in which the impedance of the signal path is independent of the separation between modules 300 and 1000. In region 340, the impedance is determined by parameters of pin module 300. Because parameters of mating module 1000 do not have a substantial impact on the impedance, the impedance in region 340 is independent of the separation between modules 300 and 1000. Rather, the shape and separation between portions 514A and 514B as well as separation between portions 514A and 514B and reference conductors 320A and 320B all contribute to the impedance in region 340. Values of these parameters may be selected to provide a desired or nominal impedance. In some embodiments, the desired or nominal impedance may match that in region 1040.
However, as shown by a comparison of
For example, projections 1042A and 1042B are in an impedance affecting position because they are between one of the signal conductors and a closest reference conductor. For example, projection 1042A is between signal conductor 314A and the reference conductors formed by the combination of reference conductors 1010A and 1010B (not shown in
As shown in
The length of that sub-region 1562 may depend on separation between modules 300 and 1000. Projections 1042A and 1042B may be on the order of the functional working range of the connector such that, in some operating states of the connector, sub-region 1562 may have a length on the order of the functional working range.
While potentially increasing impedance over such a large distance may be counter to a desire to provide a connector that provides an impedance that is independent of separation of modules 300 and 1000, projections 1042A and 1042B provide a compensating advantage of distributing the change of impedance over a longer distance. Because gradual changes in impedance provide less impact on signal integrity than abrupt changes of the same magnitude, distributing the impedance change over a longer distance has less impact on signal integrity.
Moreover, projections 1042A and 1042B, in the embodiment illustrated, are configured to reduce the increase in impedance that might otherwise occur in sub-region 1564 as a result of separation between modules 300 and 1000. Sub-region 1564, shown in
However, as the separation between modules 300 and 1000 increases, larger portions of mating contact portions 510A and 510B extending from insulative member 410 are outside region 1040. With this separation, air that might otherwise surround portions of mating contact portions 510A and 510B extending from insulative member 410 is displaced by projections 1042A and 1042B. As shown, these projections occupy a portion of the space between mating contact portions 510A and 510B and adjacent reference conductors 1010A and 1010B (not shown in
Plot 1730A shows impedance as a function of distance X through the mating region of the connectors. Plot 1730A is an idealized impedance plot, discounting the effects of impedance discontinuities associated with compliant members that provide for mating between the conductive elements in modules 1710 and 1720 or other impedance artifacts. However, it shows a uniform impedance through modules 1710 and 1720.
Plot 1730B, at each end, shows an impedance approximately equal to the uniform impedance of plot 1730A. This impedance reflects that, within each of the modules, the impedance of the signal path is dictated by values of structural parameters such as width and thickness of the signal conductors and separation between the signal conductors and a nearest reference conductor in the same module. Other parameters include the effective dielectric constant of the material separating the signal conductors and reference conductors. For signal conductors carrying differential signals, these parameters may also include the separation between signal conductors of a pair and the effective dielectric constant between the signal conductors of a pair. The values of these parameters do not depend on separation of the connector modules such that the impedance through these portions of the connector is the same regardless of separation.
The separation between modules does, however, create a sub-region in which the relative dielectric constant, rather than being dictated by the dielectric constant of the material of the connector, is dictated by the dielectric constant of the air filling the space 1722B between modules 1710 and 1720. When the separation is less than the functional mating range of the connector, there will still be an electrical connection between the conductive elements in modules 1710 and 1720 such that a signal path is formed through space 1722B. Because the relative dielectric constant is lower in this region than within modules 1710 and 1720, the impedance is higher, as shown by spike 1732B in plot 1730B. For very high frequency signals, spike 1732B may impact signal integrity.
This pattern continues in
The inventors have recognized and appreciated, however, that the impact of an impedance spike on signal integrity may depend on the distance over which that impedance spike exists. Moreover, the magnitude of the impedance spike may depend on the frequency of the signals passing through the connector. Higher frequencies may lead to lager magnitude changes in impedance. Thus, impedance spikes as illustrated in
As shown, the impedance at each end of the plot is at the same level as the baseline shown in plot 1830A. This impedance corresponds to an amount of dielectric material adjacent the signal conductors that occupies the space adjacent the signal conductors. However, as a result of space 1822B, though modules 1810 and 1820 overlap, the overlapping dielectric materials do not fully occupy the impedance affecting positions. Rather, air introduced as a result of space 1822B lowers the effective dielectric constant, thereby raising the impedance.
Space 1822B is on the same order as space 1722B. However, by comparison of
A similar pattern can be seen in
In
As illustrated by
While the tapers 450 and 1550 and 452 and 1552 do not extend over the full mating range, they can lessen the impact of impedance discontinuities associated with separation of the connector modules, by providing gradual transitions in the same way as in
Further, projection 1042A, in the illustrated embodiment, has a length that is comparable to the functional mating range. Regardless of the separation between module 300 and 1000 (e.g., even when separated by the full functional mating range), projection 1042A will be adjacent signal conductor 314A. In this way, even when modules 300 and 1000 are separated by the full mating range, there is no portion of signal conductor 314A that is fully surrounded by air. This makes the effective dielectric constant of material in an impedance affection position for signal conductor 314A more uniform, and more similar to the effective dielectric constant of regions 1040 and 340 (
The construction of the reference conductors may also provide a desired impedance profile as a function of separation of modules 300 and 1000. Projections 1020A, 1020B, 1022A and 1022B, for example, may be shaped and position to provide a more uniform impedance across region 1542. In some embodiments, projections 1020A, 1020B, 1022A and 1022B may reduce the impedance in sub-region 1564, which, as shown in
In the nominal mating position of modules 300 and 1000 shown in
In region 1040, for example, the impedance is dictated by dimensions such as T2, representing the thickness of the signal conductor in that region and S2, representing separation between the signal conductor and the nearest reference conductor. Though not visible in the view of
In region 1640, impedance is dictated by dimensions such as T1, representing the thickness of the signal conductor in that region and S1, representing the position of the reference conductor relative to the axis of the signal conductor. The values of these, and possibly other parameters, may be selected to provide an impedance that is substantially the same in regions 1040 and 1640, so as to provide a uniform impedance through the connector.
The dimensions are different in regions 1040 and 1640. However, at least in part because different combinations of materials are present in those regions, the impedance may nonetheless be substantially the same despite different dimensions. For example, region 1040 is predominantly filled with air while region 1640 is predominantly filled with insulative member 410. Moreover, the signal conductors are wider in region 1040 than in region 1640. In addition to the greater diameter of mating contact portion 510B relative to intermediate portion 512B, mating contact portion 1318B (not visible in the cross section of
The dimensions established for regions 1040 and 1640 when modules 300 and 1000 are pressed together may not provide the same desired impedance in sub-region 1564, which forms when the modules are separated. For example, where the separation between modules is a distance D, as shown in
As shown, distance S3 is determined by projections 1022A and 1022B. The distance S3 equals S2, less the height of projections 1022A and 1022B. Accordingly, the distance S3 may be set independently of S2. Also, because projections 1022A and 1022B are not required to contact reference conductors 320A and 320B, the distance S3 may also be set independent of the distance S1. As shown, projections 1022A and 1022B extend along the entire length of sub-region 1564. In the illustrated embodiment, projections 1022A and 1022B have a length that approximates the functional mating range of modules 300 and 1000. As a result, so long as the modules are separated by less than the functional mating range, the position of projections 1022A and 1022B will define the separation between the mating contact portion 510B and the nearest reference conductor. Accordingly, the dimensions of projections 1022A and 1022B may be selected to control that portion of the impedance impacted by separation between the reference conductor and the signal conductor in sub-region 1564, and this impedance may be provided regardless of where in the functional mating range modules 300 and 1000 mate.
Turning now to
In the simulation depicted in
Trace 2010B in
Trace 2010C in
Trace 2010D in
The models used in generating
Moreover, design techniques as described herein may result in a connector providing, in operation, predictable impedance for signal paths through a connector. A designer of an electronic system may design other portions of the system based on a nominal impedance of the connector. Deviations from this nominal impedance that occur in operation because the connector is not fully mated can impact the performance of the entire electronic system. Accordingly, it is desirable for the connector to provide an impedance that deviates as little as possible over specified operating conditions. In some embodiments, the deviation in impedance across the mating region, in either the fully mated or partially de-mated configuration, may be, in some embodiments, 3 Ohms or less at frequencies up to 60 GHz. In other embodiments, the change may be 4 Ohms or less or may 2 Ohms or less. In yet other embodiments, the deviation from the nominal impedance across the mating region may be in a range of 1-4 Ohms or 1-3 Ohms.
A further benefit may result from providing gradual changes in impedance. Gradual changes may have less of an impact on signal integrity than an abrupt change of similar magnitude. For example, the impact of impedance spikes may be lessened using techniques as described herein, providing, in some embodiments, no segment of the mating region of 0.5 mm in which the impedance changes more than 1 Ohm. In other embodiments, the change may be 2 Ohms or less or 0.5 Ohms or less. In other embodiments, the impedance change may be in the range of 0.5 to 2 Ohms or 0.1 to 1 Ohm.
It should be appreciated that other structures may be designed, according to the principles described herein, that provide impedance control.
Tubes 2118A and 2118B form a pair of mating contact portions for two conductive elements. The intermediate portions of those conductive elements are not visible, but they may be shaped as described above, or in any other suitable way. In the illustrated embodiment, tubes 2118A and 2118B may form a portion of a header designed for attachment to a backplane, like backplane connector 200 (
Tubes 2138A and 2138B may form the mating contact portions of a mating connector such as daughtercard connector 600 (
In the embodiment illustrated, tubes 2138A and 2138B, are held at a proximal end within housing portion 2134. The rest of tubes 2138A and 2138B extend from housing portion 2134. As a result, the material surrounding both mating contact portions is air, which will define the effective dielectric constant in the impedance affecting positions for the mating contact portions of the pair, regardless of separation of the connectors.
The pairs of signal conductors in each connector are adjacent reference conductors. In some embodiments, each pair is surrounded by a reference conductor or combination of reference conductors. Pair of tubes 2118A and 2118B in the header, for example, may be surrounded by reference conductor 2110. Pair of tubes 2138A and 2138B is surrounded by reference conductor 2130. In the example illustrated, each reference conductor is indicated as a single structure. Such structures may be formed by rolling a sheet of metal into a tube or box or other suitable shape. In some embodiments, the ends of that sheet of metal may not be secured such that the dimensions of the structure may increase or decrease, which may provide compliance for mating. Alternatively or additionally, some or all of the structures may be formed from multiple pieces. For example, in the embodiment of
To provide mating between conductive elements in mating connectors, tubes 2138A and 2138B fit within tubes 2118A and 2118B, respectively. Reference conductor 2110 fits within reference conductor 2130. To provide compliance between mating structures to ensure that a normal force is generated to provide sufficient contact force for reliable mating, these tubes and reference conductors may be split. For example, tubes 2138A and 2138B and tubes 2118A and 2118B may be formed by rolling sheets of conductive material into a tubular shape. The ends (not shown) of that material may be left unattached such that the ends may move to compress or expand the diameter of the tube.
Other techniques to provide compliance may alternatively or additionally be used. For example, portions of the reference conductors may be separated from the body of the reference conductor to be similarly compliant. In the embodiment illustrated, projections 2114 are provided on reference conductors 2110 for making electrical connection to reference conductors 2130 in a mating connector. Those projections may be formed adjacent one or more slits (not shown) cut in the body of reference conductor 2110. The slits may be arranged to separate the portion of the reference conductor 2110 carrying projection 2114 from the body of the reference conductor to form a cantilevered beam. Alternatively, the slits separating portions of the reference conductor may be sufficient to make the portion of the reference conductor containing the projection yieldable. Alternatively or additionally, compliant contact may be provided by yield of the projections 2114, themselves.
Regardless of the manner in which the projections have compliance,
Likewise, if connectors are close enough to be within the functional mating range, a tube forming the mating contact portion of a signal conductor for one connector will enter a tube forming the mating contact portion of a signal conductor in the other connector. For example, tube 2138B is shown entering tube 2118B, which serve as the mating contact portions. As with the reference conductors, projections and compliance may be provided to ensure sufficient mating force between the mating contact portions to provide a reliable connection. In the embodiment illustrated, tube 2138B has outwardly directed projections, and tube 2118B has inwardly directed projections. Moreover, one or both of the tubes may be formed by rolling a sheet of metal without securing the ends of the sheet such that the tube may be expended or compressed when tube 2138B is pressed into tube 2118B, generating compliance and a corresponding force for reliable mating.
In the embodiment illustrated, each of the tubes 2138B and 2118B has two projections, forming four points of contact between tubes 2138B and 2118B. Outwardly directed projections 2132 are formed on tube 2138B and inwardly directed projections 2112 are formed on tube 2118B. However, it should be appreciated that any suitable number of projections may be used to form any suitable number of contact points.
This configuration of mating contact portions and reference conductors provides a mating interface in which the impedance is largely independent of separation distance between the mating connectors. For example, in the configuration shown in
When the connectors mate and a reference conductor 2110 enters gap 2150, the displacement of air from that gap may have only a negligible impact on the effective dielectric constant of the material separating intermediate portions 2136A and 2136B from reference conductor 2130. Thus, in the embodiment of
When reference conductor 2110 enters 2150, reference conductor 2110 is closer to intermediate portions 2136A and 2136B than reference conductor 2130 when the connectors are fully mated. However, the change in distance between intermediate portions 2136A and 2136B and a nearest reference conductor, as between a fully mated and partially de-mated position is relatively small as a percentage of that separation, such that any change in impedance between the fully mated and partially de-mated position is likewise small.
In region 2140, the impedance is dictated, in part, by the spacing between reference conductor 2110 and the signal conductors, such as signal conductor 2118B. As additionally, the dielectric constant of the material separating the signal conductors and the reference conductors may also impact the impedance in that region. In this embodiment, those conductors are separated by air. By comparing
Region 2152, which forms between regions 2140 and 2160 in a partially de-mated position, may be designed to have an impedance that approximates the impedance in either or both of regions 2140 and 2160. In some embodiments, the impedance in region 2152 may be between the impedance in regions 2140 and 2160 in a partially de-mated position. That value, for example, may be intermediate the impedance in region 2140 and in region 2160, when the connectors are separated by the functional working range of the connector.
In the embodiment illustrated, such as in
Although details of specific configurations of conductive elements, housings, and shield members are described above, it should be appreciated that such details are provided solely for purposes of illustration, as the concepts disclosed herein are capable of other manners of implementation. In that respect, various connector designs described herein may be used in any suitable combination, as aspects of the present disclosure are not limited to the particular combinations shown in the drawings.
Having thus described several embodiments, it is to be appreciated various alterations, modifications, and improvements may readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.
Various changes may be made to the illustrative structures shown and described herein. For example, examples of techniques are described for improving signal quality at the mating interface of an electrical interconnection system. These techniques may be used alone or in any suitable combination. Furthermore, the size of a connector may be increased or decreased from what is shown. Also, it is possible that materials other than those expressly mentioned may be used to construct the connector. As another example, connectors with four differential signal pairs in a column are used for illustrative purposes only. Any desired number of signal conductors may be used in a connector.
Problems associated with changes in impedance across the mating interface region or deviations from a nominal or designed value as a function of separation of mating components may arise for many types of components that form a separable interface within an interconnection system. Separable connectors, such as those used to connect a daughtercard to a backplane in an electronic system, are used as an example of where this problem may arise. It should be appreciated, however, that use of connectors is exemplary rather than limiting of the invention. Similar techniques may be used with sockets, which may be mounted to a printed circuit board and form separable interfaces to components, such as semiconductor chips. Alternatively or additionally, these techniques may be applied where connectors, sockets or other components are attached to a printed circuit board. While such components are not intended to be separated from a printed circuit board during normal operation of an electronic system, separation of the components during operation is impacted by the relative positioning of the components that arise from their manufacture as separate components that are then brought together at an interface.
Manufacturing techniques may also be varied. For example, embodiments are described in which the daughtercard connector 600 is formed by organizing a plurality of wafers onto a stiffener. It may be possible that an equivalent structure may be formed by inserting a plurality of shield pieces and signal receptacles into a molded housing.
Further, changes of impedance between a fully mated position and a partially separated position of two mating components have been described. In some instances, that fully mated position has the housing of one component butted against the housing of the mating component. It should be appreciated that the principles described herein are applicable regardless of the designed separation between components in the designed mated position. For example, connector components may be designed to have a mated position in which the components are separated by 2 mm. If the separation is more or less, without techniques as described herein, the impedance may be different than in the designed mating position, leading to impedance discontinuities that impact performance.
As another example, connectors are described that are formed of modules, each of which contains one pair of signal conductors. It is not necessary that each module contain exactly one pair or that the number of signal pairs be the same in all modules in a connector. For example, a 2-pair or 3-pair module may be formed. Moreover, in some embodiments, a core module may be formed that has two, three, four, five, six, or some greater number of rows in a single-ended or differential pair configuration. Each connector, or each wafer in embodiments in which the connector is waferized, may include such a core module. To make a connector with more rows than are included in the base module, additional modules (e.g., each with a smaller number of pairs such as a single pair per module) may be coupled to the core module.
Furthermore, although many inventive aspects are shown and described with reference to a daughterboard connector having a right angle configuration, it should be appreciated that aspects of the present disclosure is not limited in this regard, as any of the inventive concepts, whether alone or in combination with one or more other inventive concepts, may be used in other types of electrical connectors, such as backplane connectors, cable connectors, stacking connectors, mezzanine connectors, I/O connectors, chip sockets, etc.
In some embodiments, contact tails were illustrated as press fit “eye of the needle” compliant sections that are designed to fit within vias of printed circuit boards. However, other configurations may also be used, such as surface mount elements, spring contacts, solderable pins, etc., as aspects of the present disclosure are not limited to the use of any particular mechanism for attaching connectors to printed circuit boards.
The present disclosure is not limited to the details of construction or the arrangements of components set forth in the following description and/or the drawings. Various embodiments are provided solely for purposes of illustration, and the concepts described herein are capable of being practiced or carried out in other ways. Also, the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” or “involving,” and variations thereof herein, is meant to encompass the items listed thereafter (or equivalents thereof) and/or as additional items.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 16/235,683, filed Dec. 28, 2018, entitled “VERY HIGH SPEED, HIGH DENSITY ELECTRICAL INTERCONNECTION SYSTEM WITH IMPEDANCE CONTROL IN MATING REGION,” which is a continuation of and claims priority to U.S. patent application Ser. No. 15/627,063, filed Jun. 19, 2017, entitled “VERY HIGH SPEED, HIGH DENSITY ELECTRICAL INTERCONNECTION SYSTEM WITH IMPEDANCE CONTROL IN MATING REGION,” which is a continuation of and claims priority to U.S. patent application Ser. No. 14/940,049, filed on Nov. 12, 2015, entitled “VERY HIGH SPEED, HIGH DENSITY ELECTRICAL INTERCONNECTION SYSTEM WITH IMPEDANCE CONTROL IN MATING REGION,” which claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/078,945, filed on Nov. 12, 2014, entitled “VERY HIGH SPEED, HIGH DENSITY ELECTRICAL INTERCONNECTION SYSTEM WITH IMPEDANCE CONTROL IN MATING REGION,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2124207 | Carl | Jul 1938 | A |
2996710 | Pratt | Aug 1961 | A |
3002162 | Garstang | Sep 1961 | A |
3007131 | Dahlgren et al. | Oct 1961 | A |
3134950 | Cook | May 1964 | A |
3229240 | Harrison et al. | Jan 1966 | A |
3322885 | May et al. | May 1967 | A |
3594613 | Prietula | Jul 1971 | A |
3715706 | Michel et al. | Feb 1973 | A |
3786372 | Epis et al. | Jan 1974 | A |
3825874 | Peverill | Jul 1974 | A |
3863181 | Glance et al. | Jan 1975 | A |
4083615 | Volinskie | Apr 1978 | A |
4155613 | Brandeau | May 1979 | A |
4157612 | Rainal | Jun 1979 | A |
4195272 | Boutros | Mar 1980 | A |
4276523 | Boutros et al. | Jun 1981 | A |
4307926 | Smith | Dec 1981 | A |
4371742 | Manly | Feb 1983 | A |
4408255 | Adkins | Oct 1983 | A |
4447105 | Ruehl | May 1984 | A |
4471015 | Ebneth et al. | Sep 1984 | A |
4484159 | Whitley | Nov 1984 | A |
4490283 | Kleiner | Dec 1984 | A |
4518651 | Wolfe, Jr. | May 1985 | A |
4519664 | Tillotson | May 1985 | A |
4519665 | Althouse et al. | May 1985 | A |
4615578 | Stadler et al. | Oct 1986 | A |
4632476 | Schell | Dec 1986 | A |
4636752 | Saito | Jan 1987 | A |
4639054 | Kersbergen | Jan 1987 | A |
4682129 | Bakermans et al. | Jul 1987 | A |
4697862 | Hasircoglu | Oct 1987 | A |
4708660 | Claeys et al. | Nov 1987 | A |
4724409 | Lehman | Feb 1988 | A |
4728762 | Roth et al. | Mar 1988 | A |
4751479 | Parr | Jun 1988 | A |
4761147 | Gauthier | Aug 1988 | A |
4795375 | Williams | Jan 1989 | A |
4806107 | Arnold et al. | Feb 1989 | A |
4826443 | Lockard | May 1989 | A |
4846724 | Sasaki et al. | Jul 1989 | A |
4846727 | Glover et al. | Jul 1989 | A |
4871316 | Herrell et al. | Oct 1989 | A |
4878155 | Conley | Oct 1989 | A |
4889500 | Lazar et al. | Dec 1989 | A |
4913667 | Muz | Apr 1990 | A |
4924179 | Sherman | May 1990 | A |
4948922 | Varadan et al. | Aug 1990 | A |
4949379 | Cordell | Aug 1990 | A |
4970354 | Iwasa et al. | Nov 1990 | A |
4975084 | Redder et al. | Dec 1990 | A |
4990099 | Marin et al. | Feb 1991 | A |
4992060 | Meyer | Feb 1991 | A |
5000700 | Masubuchi et al. | Mar 1991 | A |
5066236 | Broeksteeg | Nov 1991 | A |
5141454 | Garrett et al. | Aug 1992 | A |
5150086 | Ito | Sep 1992 | A |
5168252 | Naito | Dec 1992 | A |
5168432 | Murphy et al. | Dec 1992 | A |
5176538 | Hansell, III et al. | Jan 1993 | A |
5197893 | Morlion et al. | Mar 1993 | A |
5266055 | Naito et al. | Nov 1993 | A |
5280257 | Cravens et al. | Jan 1994 | A |
5287076 | Johnescu et al. | Feb 1994 | A |
5306171 | Marshall | Apr 1994 | A |
5332979 | Roskewitsch et al. | Jul 1994 | A |
5334050 | Andrews | Aug 1994 | A |
5340334 | Nguyen | Aug 1994 | A |
5346410 | Moore, Jr. | Sep 1994 | A |
5387130 | Redder et al. | Feb 1995 | A |
5402088 | Pierro et al. | Mar 1995 | A |
5429520 | Morlion et al. | Jul 1995 | A |
5429521 | Morlion et al. | Jul 1995 | A |
5433617 | Morlion et al. | Jul 1995 | A |
5433618 | Morlion et al. | Jul 1995 | A |
5435757 | Fedder et al. | Jul 1995 | A |
5441424 | Morlion et al. | Aug 1995 | A |
5456619 | Belopolsky et al. | Oct 1995 | A |
5461392 | Mott et al. | Oct 1995 | A |
5484310 | McNamara et al. | Jan 1996 | A |
5487673 | Hurtarte | Jan 1996 | A |
5496183 | Soes et al. | Mar 1996 | A |
5499935 | Powell | Mar 1996 | A |
5509827 | Huppenthal et al. | Apr 1996 | A |
5551893 | Johnson | Sep 1996 | A |
5554038 | Morlion et al. | Sep 1996 | A |
5562497 | Yagi et al. | Oct 1996 | A |
5597328 | Mouissie | Jan 1997 | A |
5598627 | Saka et al. | Feb 1997 | A |
5632634 | Soes | May 1997 | A |
5651702 | Hanning et al. | Jul 1997 | A |
5669789 | Law | Sep 1997 | A |
5691506 | Miyazaki et al. | Nov 1997 | A |
5702258 | Provencher et al. | Dec 1997 | A |
5733148 | Kaplan et al. | Mar 1998 | A |
5743765 | Andrews et al. | Apr 1998 | A |
5781759 | Kashiwabara | Jul 1998 | A |
5796323 | Uchikoba et al. | Aug 1998 | A |
5831491 | Buer et al. | Nov 1998 | A |
5924899 | Paagman | Jul 1999 | A |
5981869 | Kroger | Nov 1999 | A |
5982253 | Perrin et al. | Nov 1999 | A |
6019616 | Yagi et al. | Feb 2000 | A |
6053770 | Blom | Apr 2000 | A |
6083046 | Wu et al. | Jul 2000 | A |
6095825 | Liao | Aug 2000 | A |
6095872 | Lang et al. | Aug 2000 | A |
6116926 | Ortega et al. | Sep 2000 | A |
6144559 | Johnson et al. | Nov 2000 | A |
6146202 | Ramey et al. | Nov 2000 | A |
6152747 | McNamara | Nov 2000 | A |
6168466 | Chiou | Jan 2001 | B1 |
6168469 | Lu | Jan 2001 | B1 |
6174203 | Asao | Jan 2001 | B1 |
6174944 | Chiba et al. | Jan 2001 | B1 |
6203376 | Magajne et al. | Mar 2001 | B1 |
6217372 | Reed | Apr 2001 | B1 |
6273753 | Ko | Aug 2001 | B1 |
6273758 | Lloyd et al. | Aug 2001 | B1 |
6285542 | Kennedy, III et al. | Sep 2001 | B1 |
6293827 | Stokoe | Sep 2001 | B1 |
6299438 | Sahagian et al. | Oct 2001 | B1 |
6299483 | Cohen et al. | Oct 2001 | B1 |
6322379 | Ortega et al. | Nov 2001 | B1 |
6328601 | Yip et al. | Dec 2001 | B1 |
6347962 | Kline | Feb 2002 | B1 |
6350134 | Fogg et al. | Feb 2002 | B1 |
6364711 | Berg et al. | Apr 2002 | B1 |
6364718 | Polgar et al. | Apr 2002 | B1 |
6366471 | Edwards et al. | Apr 2002 | B1 |
6371788 | Bowling et al. | Apr 2002 | B1 |
6375510 | Asao | Apr 2002 | B2 |
6379188 | Cohen et al. | Apr 2002 | B1 |
6398588 | Bickford | Jun 2002 | B1 |
6409543 | Astbury, Jr. et al. | Jun 2002 | B1 |
6452789 | Pallotti et al. | Sep 2002 | B1 |
6482017 | Van Doorn | Nov 2002 | B1 |
6489563 | Zhao et al. | Dec 2002 | B1 |
6503103 | Cohen et al. | Jan 2003 | B1 |
6506076 | Cohen et al. | Jan 2003 | B2 |
6517360 | Cohen | Feb 2003 | B1 |
6530790 | McNamara et al. | Mar 2003 | B1 |
6535367 | Carpenter et al. | Mar 2003 | B1 |
6537086 | Mac Mullin | Mar 2003 | B1 |
6537087 | McNamara et al. | Mar 2003 | B2 |
6551140 | Billman et al. | Apr 2003 | B2 |
6554647 | Cohen et al. | Apr 2003 | B1 |
6565387 | Cohen | May 2003 | B2 |
6574115 | Asano et al. | Jun 2003 | B2 |
6575772 | Soubh et al. | Jun 2003 | B1 |
6579116 | Brennan et al. | Jun 2003 | B2 |
6582244 | Fogg et al. | Jun 2003 | B2 |
6592390 | Davis et al. | Jul 2003 | B1 |
6592401 | Gardner et al. | Jul 2003 | B1 |
6595802 | Watanabe et al. | Jul 2003 | B1 |
6602095 | Astbury, Jr. et al. | Aug 2003 | B2 |
6607402 | Cohen et al. | Aug 2003 | B2 |
6616864 | Jiang et al. | Sep 2003 | B1 |
6652296 | Kuroda et al. | Nov 2003 | B2 |
6652318 | Winings et al. | Nov 2003 | B1 |
6655966 | Rothermel et al. | Dec 2003 | B2 |
6685501 | Wu et al. | Feb 2004 | B1 |
6692262 | Loveless | Feb 2004 | B1 |
6705893 | Ko | Mar 2004 | B1 |
6709294 | Cohen et al. | Mar 2004 | B1 |
6713672 | Stickney | Mar 2004 | B1 |
6743057 | Davis et al. | Jun 2004 | B2 |
6776659 | Stokoe et al. | Aug 2004 | B1 |
6786771 | Gailus | Sep 2004 | B2 |
6797891 | Blair et al. | Sep 2004 | B1 |
6814619 | Stokoe et al. | Nov 2004 | B1 |
6824426 | Spink, Jr. | Nov 2004 | B1 |
6830489 | Aoyama | Dec 2004 | B2 |
6843657 | Driscoll et al. | Jan 2005 | B2 |
6872085 | Cohen et al. | Mar 2005 | B1 |
6903934 | Lo et al. | Jun 2005 | B2 |
6916183 | Alger et al. | Jul 2005 | B2 |
6932649 | Rothermel et al. | Aug 2005 | B1 |
6955565 | Lloyd et al. | Oct 2005 | B2 |
6971887 | Trobough | Dec 2005 | B1 |
6979226 | Otsu et al. | Dec 2005 | B2 |
7044794 | Consoli et al. | May 2006 | B2 |
7056128 | Driscoll et al. | Jun 2006 | B2 |
7057570 | Irion, II et al. | Jun 2006 | B2 |
7070446 | Henry et al. | Jul 2006 | B2 |
7074086 | Cohen et al. | Jul 2006 | B2 |
7077658 | Ashman et al. | Jul 2006 | B1 |
7094102 | Cohen et al. | Aug 2006 | B2 |
7108556 | Cohen et al. | Sep 2006 | B2 |
7148428 | Meier et al. | Dec 2006 | B2 |
7163421 | Cohen et al. | Jan 2007 | B1 |
7214097 | Hsu et al. | May 2007 | B1 |
7223915 | Hackman | May 2007 | B2 |
7234944 | Nordin et al. | Jun 2007 | B2 |
7244137 | Renfro et al. | Jul 2007 | B2 |
7267515 | Lappohn | Sep 2007 | B2 |
7280372 | Grundy et al. | Oct 2007 | B2 |
7285018 | Kenny et al. | Oct 2007 | B2 |
7307293 | Fjelstad et al. | Dec 2007 | B2 |
7331816 | Krohn et al. | Feb 2008 | B2 |
7331830 | Minich | Feb 2008 | B2 |
7335063 | Cohen et al. | Feb 2008 | B2 |
7354274 | Minich | Apr 2008 | B2 |
7371117 | Gailus | May 2008 | B2 |
7384275 | Ngo | Jun 2008 | B2 |
7402048 | Meier et al. | Jul 2008 | B2 |
7422483 | Avery et al. | Sep 2008 | B2 |
7431608 | Sakaguchi et al. | Oct 2008 | B2 |
7445471 | Scherer et al. | Nov 2008 | B1 |
7462942 | Tan et al. | Dec 2008 | B2 |
7485012 | Daugherty et al. | Feb 2009 | B2 |
7494383 | Cohen et al. | Feb 2009 | B2 |
7534142 | Avery et al. | May 2009 | B2 |
7540781 | Kenny et al. | Jun 2009 | B2 |
7549897 | Fedder et al. | Jun 2009 | B2 |
7581990 | Kirk et al. | Sep 2009 | B2 |
7588464 | Kim | Sep 2009 | B2 |
7613011 | Grundy et al. | Nov 2009 | B2 |
7621779 | Laurx et al. | Nov 2009 | B2 |
7652381 | Grundy et al. | Jan 2010 | B2 |
7654831 | Wu | Feb 2010 | B1 |
7658654 | Ohyama et al. | Feb 2010 | B2 |
7686659 | Peng | Mar 2010 | B2 |
7690930 | Chen et al. | Apr 2010 | B2 |
7690946 | Knaub et al. | Apr 2010 | B2 |
7713077 | McGowan et al. | May 2010 | B1 |
7719843 | Dunham | May 2010 | B2 |
7722401 | Kirk et al. | May 2010 | B2 |
7731537 | Amleshi et al. | Jun 2010 | B2 |
7744414 | Scherer et al. | Jun 2010 | B2 |
7753731 | Cohen et al. | Jul 2010 | B2 |
7771233 | Gailus | Aug 2010 | B2 |
7775802 | Defibaugh et al. | Aug 2010 | B2 |
7789676 | Morgan et al. | Sep 2010 | B2 |
7794240 | Cohen et al. | Sep 2010 | B2 |
7794278 | Cohen et al. | Sep 2010 | B2 |
7811129 | Glover et al. | Oct 2010 | B2 |
7819675 | Ko et al. | Oct 2010 | B2 |
7824197 | Westman et al. | Nov 2010 | B1 |
7857630 | Hermant et al. | Dec 2010 | B2 |
7862344 | Morgan et al. | Jan 2011 | B2 |
7871296 | Fowler et al. | Jan 2011 | B2 |
7874873 | Do et al. | Jan 2011 | B2 |
7887371 | Kenny et al. | Feb 2011 | B2 |
7906730 | Atkinson et al. | Mar 2011 | B2 |
7914304 | Cartier et al. | Mar 2011 | B2 |
7967637 | Fedder et al. | Jun 2011 | B2 |
7976318 | Fedder et al. | Jul 2011 | B2 |
7985097 | Gulla | Jul 2011 | B2 |
8002581 | Whiteman, Jr. et al. | Aug 2011 | B1 |
8016616 | Glover et al. | Sep 2011 | B2 |
8018733 | Jia | Sep 2011 | B2 |
8036500 | McColloch | Oct 2011 | B2 |
8057267 | Johnescu | Nov 2011 | B2 |
8083553 | Manter et al. | Dec 2011 | B2 |
8100699 | Costello | Jan 2012 | B1 |
8157573 | Tanaka | Apr 2012 | B2 |
8162675 | Regnier et al. | Apr 2012 | B2 |
8167651 | Glover et al. | May 2012 | B2 |
8182289 | Stokoe et al. | May 2012 | B2 |
8192222 | Kameyama | Jun 2012 | B2 |
8197285 | Farmer | Jun 2012 | B2 |
8210877 | Droesbeke | Jul 2012 | B2 |
8215968 | Cartier et al. | Jul 2012 | B2 |
8226441 | Regnier et al. | Jul 2012 | B2 |
8251745 | Johnescu | Aug 2012 | B2 |
8272877 | Stokoe et al. | Sep 2012 | B2 |
8308491 | Nichols et al. | Nov 2012 | B2 |
8308512 | Ritter et al. | Nov 2012 | B2 |
8337243 | Elkhatib et al. | Dec 2012 | B2 |
8338713 | Fjelstad et al. | Dec 2012 | B2 |
8371875 | Gailus | Feb 2013 | B2 |
8371876 | Davis | Feb 2013 | B2 |
8382524 | Khilchenko et al. | Feb 2013 | B2 |
8398433 | Yang | Mar 2013 | B1 |
8419472 | Swanger et al. | Apr 2013 | B1 |
8439704 | Reed | May 2013 | B2 |
8449312 | Lang et al. | May 2013 | B2 |
8449329 | Schroll | May 2013 | B1 |
8449330 | Schroll | May 2013 | B1 |
8465302 | Regnier et al. | Jun 2013 | B2 |
8469745 | Davis et al. | Jun 2013 | B2 |
8475209 | Whiteman, Jr. et al. | Jul 2013 | B1 |
8535065 | Costello | Sep 2013 | B2 |
8540525 | Regnier et al. | Sep 2013 | B2 |
8550861 | Cohen et al. | Oct 2013 | B2 |
8553102 | Yamada | Oct 2013 | B2 |
8556657 | Nichols | Oct 2013 | B1 |
8588561 | Zbinden et al. | Nov 2013 | B2 |
8588562 | Zbinden et al. | Nov 2013 | B2 |
8597055 | Regnier et al. | Dec 2013 | B2 |
8657627 | McNamara et al. | Feb 2014 | B2 |
8662924 | Davis et al. | Mar 2014 | B2 |
8672707 | Nichols et al. | Mar 2014 | B2 |
8678860 | Minich et al. | Mar 2014 | B2 |
8690604 | Davis | Apr 2014 | B2 |
8715003 | Buck et al. | May 2014 | B2 |
8740644 | Long | Jun 2014 | B2 |
8753145 | Lang et al. | Jun 2014 | B2 |
8758051 | Nonen et al. | Jun 2014 | B2 |
8771016 | Atkinson et al. | Jul 2014 | B2 |
8787711 | Zbinden et al. | Jul 2014 | B2 |
8804342 | Behziz et al. | Aug 2014 | B2 |
8814595 | Cohen et al. | Aug 2014 | B2 |
8845364 | Wanha et al. | Sep 2014 | B2 |
8864521 | Atkinson et al. | Oct 2014 | B2 |
8888531 | Jeon | Nov 2014 | B2 |
8888533 | Westman et al. | Nov 2014 | B2 |
8911255 | Scherer et al. | Dec 2014 | B2 |
8926377 | Kirk et al. | Jan 2015 | B2 |
8944831 | Stoner et al. | Feb 2015 | B2 |
8992236 | Wittig et al. | Mar 2015 | B2 |
8992237 | Regnier et al. | Mar 2015 | B2 |
8998642 | Manter et al. | Apr 2015 | B2 |
9004942 | Paniauqa | Apr 2015 | B2 |
9011177 | Lloyd et al. | Apr 2015 | B2 |
9022806 | Cartier, Jr. et al. | May 2015 | B2 |
9028201 | Kirk et al. | May 2015 | B2 |
9028281 | Kirk et al. | May 2015 | B2 |
9035183 | Kodama et al. | May 2015 | B2 |
9040824 | Guetig et al. | May 2015 | B2 |
9071001 | Scherer et al. | Jun 2015 | B2 |
9118151 | Tran et al. | Aug 2015 | B2 |
9119292 | Gundel | Aug 2015 | B2 |
9124009 | Atkinson et al. | Sep 2015 | B2 |
9142921 | Wanha et al. | Sep 2015 | B2 |
9203171 | Yu et al. | Dec 2015 | B2 |
9214768 | Pao et al. | Dec 2015 | B2 |
9219335 | Atkinson et al. | Dec 2015 | B2 |
9225085 | Cartier, Jr. et al. | Dec 2015 | B2 |
9232676 | Sechrist et al. | Jan 2016 | B2 |
9246251 | Regnier et al. | Jan 2016 | B2 |
9257794 | Wanha et al. | Feb 2016 | B2 |
9312618 | Regnier et al. | Apr 2016 | B2 |
9350108 | Long | May 2016 | B2 |
9356401 | Horning et al. | May 2016 | B1 |
9362678 | Wanha et al. | Jun 2016 | B2 |
9373917 | Sypolt et al. | Jun 2016 | B2 |
9374165 | Zbinden et al. | Jun 2016 | B2 |
9385455 | Regnier et al. | Jul 2016 | B2 |
9391407 | Bucher et al. | Jul 2016 | B1 |
9413112 | Helster et al. | Aug 2016 | B2 |
9450344 | Cartier, Jr. et al. | Sep 2016 | B2 |
9490558 | Wanha et al. | Nov 2016 | B2 |
9509101 | Cartier, Jr. et al. | Nov 2016 | B2 |
9520689 | Cartier, Jr. et al. | Dec 2016 | B2 |
9531133 | Horning et al. | Dec 2016 | B1 |
9553381 | Regnier | Jan 2017 | B2 |
9559446 | Wetzel et al. | Jan 2017 | B1 |
9564696 | Gulla | Feb 2017 | B2 |
9608348 | Wanha et al. | Mar 2017 | B2 |
9651752 | Zbinden et al. | May 2017 | B2 |
9660364 | Wig et al. | May 2017 | B2 |
9666961 | Horning et al. | May 2017 | B2 |
9685736 | Gailus et al. | Jun 2017 | B2 |
9774144 | Cartier, Jr. et al. | Sep 2017 | B2 |
9801301 | Costello | Oct 2017 | B1 |
9841572 | Zbinden et al. | Dec 2017 | B2 |
9843135 | Guetig et al. | Dec 2017 | B2 |
9876319 | Zhao et al. | Jan 2018 | B2 |
9929512 | Trout et al. | Mar 2018 | B1 |
9985367 | Wanha et al. | May 2018 | B2 |
9985389 | Morgan et al. | May 2018 | B1 |
10056706 | Wanha et al. | Aug 2018 | B2 |
10062984 | Regnier | Aug 2018 | B2 |
10069225 | Wanha et al. | Sep 2018 | B2 |
10096945 | Cartier, Jr. et al. | Oct 2018 | B2 |
10170869 | Gailus | Jan 2019 | B2 |
10181663 | Regnier | Jan 2019 | B2 |
10205286 | Provencher et al. | Feb 2019 | B2 |
RE47342 | Lloyd et al. | Apr 2019 | E |
10305224 | Girard, Jr. | May 2019 | B2 |
RE48230 | Lloyd et al. | Sep 2020 | E |
10840649 | Gailus et al. | Nov 2020 | B2 |
10855034 | Gailus et al. | Dec 2020 | B2 |
10931062 | Cohen et al. | Feb 2021 | B2 |
20010012730 | Ramey et al. | Aug 2001 | A1 |
20010042632 | Manov et al. | Nov 2001 | A1 |
20010046810 | Cohen et al. | Nov 2001 | A1 |
20020042223 | Belopolsky et al. | Apr 2002 | A1 |
20020088628 | Chen | Jul 2002 | A1 |
20020089464 | Joshi | Jul 2002 | A1 |
20020098738 | Astbury et al. | Jul 2002 | A1 |
20020111068 | Cohen et al. | Aug 2002 | A1 |
20020111069 | Astbury et al. | Aug 2002 | A1 |
20020157865 | Noda | Oct 2002 | A1 |
20020187688 | Marvin et al. | Dec 2002 | A1 |
20030073331 | Peloza et al. | Apr 2003 | A1 |
20030119362 | Nelson et al. | Jun 2003 | A1 |
20040005815 | Mizumura et al. | Jan 2004 | A1 |
20040018757 | Lang et al. | Jan 2004 | A1 |
20040020674 | McFadden et al. | Feb 2004 | A1 |
20040094328 | Fjelstad et al. | May 2004 | A1 |
20040110421 | Broman et al. | Jun 2004 | A1 |
20040115968 | Cohen | Jun 2004 | A1 |
20040121633 | David et al. | Jun 2004 | A1 |
20040121652 | Gailus | Jun 2004 | A1 |
20040155328 | Kline | Aug 2004 | A1 |
20040196112 | Welbon et al. | Oct 2004 | A1 |
20040224559 | Nelson et al. | Nov 2004 | A1 |
20040229510 | Lloyd et al. | Nov 2004 | A1 |
20040259419 | Payne et al. | Dec 2004 | A1 |
20040264894 | Cooke et al. | Dec 2004 | A1 |
20050006126 | Aisenbrey | Jan 2005 | A1 |
20050032430 | Otsu et al. | Feb 2005 | A1 |
20050070160 | Cohen et al. | Mar 2005 | A1 |
20050093127 | Fjelstad et al. | May 2005 | A1 |
20050118869 | Evans | Jun 2005 | A1 |
20050133245 | Katsuyama et al. | Jun 2005 | A1 |
20050142944 | Ling et al. | Jun 2005 | A1 |
20050176835 | Kobayashi et al. | Aug 2005 | A1 |
20050233610 | Tutt et al. | Oct 2005 | A1 |
20050239339 | Pepe | Oct 2005 | A1 |
20050283974 | Richard et al. | Dec 2005 | A1 |
20050287869 | Kenny et al. | Dec 2005 | A1 |
20060001163 | Kolbehdari et al. | Jan 2006 | A1 |
20060068640 | Gailus | Mar 2006 | A1 |
20060079119 | Wu | Apr 2006 | A1 |
20060091507 | Fjelstad et al. | May 2006 | A1 |
20060216969 | Bright et al. | Sep 2006 | A1 |
20060228922 | Morriss | Oct 2006 | A1 |
20070004282 | Cohen et al. | Jan 2007 | A1 |
20070021001 | Laurx et al. | Jan 2007 | A1 |
20070021002 | Laurx et al. | Jan 2007 | A1 |
20070032104 | Yamada et al. | Feb 2007 | A1 |
20070037419 | Sparrowhawk | Feb 2007 | A1 |
20070042639 | Manter et al. | Feb 2007 | A1 |
20070054554 | Do et al. | Mar 2007 | A1 |
20070059961 | Cartier et al. | Mar 2007 | A1 |
20070155241 | Lappohn | Jul 2007 | A1 |
20070197095 | Feldman et al. | Aug 2007 | A1 |
20070207641 | Minich | Sep 2007 | A1 |
20070218765 | Cohen et al. | Sep 2007 | A1 |
20070243741 | Yang | Oct 2007 | A1 |
20070254517 | Olson et al. | Nov 2007 | A1 |
20080026638 | Cohen et al. | Jan 2008 | A1 |
20080194146 | Gailus | Aug 2008 | A1 |
20080200955 | Tepic | Aug 2008 | A1 |
20080207023 | Tuin et al. | Aug 2008 | A1 |
20080246555 | Kirk et al. | Oct 2008 | A1 |
20080248658 | Cohen et al. | Oct 2008 | A1 |
20080248659 | Cohen et al. | Oct 2008 | A1 |
20080248660 | Kirk et al. | Oct 2008 | A1 |
20080264673 | Chi et al. | Oct 2008 | A1 |
20080267620 | Cole et al. | Oct 2008 | A1 |
20080297988 | Chau | Dec 2008 | A1 |
20080305689 | Zhang et al. | Dec 2008 | A1 |
20090011641 | Cohen et al. | Jan 2009 | A1 |
20090011645 | Laurx et al. | Jan 2009 | A1 |
20090011664 | Laurx et al. | Jan 2009 | A1 |
20090017682 | Amleshi et al. | Jan 2009 | A1 |
20090023330 | Stoner et al. | Jan 2009 | A1 |
20090051558 | Dorval | Feb 2009 | A1 |
20090098767 | Long | Apr 2009 | A1 |
20090117386 | Vacanti et al. | May 2009 | A1 |
20090130913 | Yi et al. | May 2009 | A1 |
20090130918 | Nguyen et al. | May 2009 | A1 |
20090166082 | Liu et al. | Jul 2009 | A1 |
20090176400 | Davis et al. | Jul 2009 | A1 |
20090205194 | Semba et al. | Aug 2009 | A1 |
20090215309 | Mongold et al. | Aug 2009 | A1 |
20090227141 | Pan | Sep 2009 | A1 |
20090239395 | Cohen et al. | Sep 2009 | A1 |
20090247012 | Pan | Oct 2009 | A1 |
20090291593 | Atkinson et al. | Nov 2009 | A1 |
20090305533 | Feldman et al. | Dec 2009 | A1 |
20090311908 | Fogg et al. | Dec 2009 | A1 |
20100009571 | Scherer et al. | Jan 2010 | A1 |
20100029105 | Knaub et al. | Feb 2010 | A1 |
20100081302 | Atkinson et al. | Apr 2010 | A1 |
20100099299 | Moriyama et al. | Apr 2010 | A1 |
20100112850 | Rao et al. | May 2010 | A1 |
20100144167 | Fedder et al. | Jun 2010 | A1 |
20100144168 | Glover et al. | Jun 2010 | A1 |
20100144175 | Heister et al. | Jun 2010 | A1 |
20100144201 | Defibaugh et al. | Jun 2010 | A1 |
20100144203 | Glover et al. | Jun 2010 | A1 |
20100144204 | Knaub et al. | Jun 2010 | A1 |
20100177489 | Yagisawa | Jul 2010 | A1 |
20100183141 | Arai et al. | Jul 2010 | A1 |
20100203768 | Kondo et al. | Aug 2010 | A1 |
20100221951 | Pepe et al. | Sep 2010 | A1 |
20100291806 | Minich et al. | Nov 2010 | A1 |
20100294530 | Atkinson et al. | Nov 2010 | A1 |
20100330851 | Costello | Dec 2010 | A1 |
20110003509 | Gailus | Jan 2011 | A1 |
20110074213 | Schaffer et al. | Mar 2011 | A1 |
20110104948 | Girard, Jr. et al. | May 2011 | A1 |
20110130038 | Cohen et al. | Jun 2011 | A1 |
20110177699 | Crofoot et al. | Jul 2011 | A1 |
20110212632 | Stokoe et al. | Sep 2011 | A1 |
20110212633 | Regnier et al. | Sep 2011 | A1 |
20110212649 | Stokoe et al. | Sep 2011 | A1 |
20110212650 | Amleshi et al. | Sep 2011 | A1 |
20110223807 | Jeon et al. | Sep 2011 | A1 |
20110230095 | Atkinson et al. | Sep 2011 | A1 |
20110230096 | Atkinson et al. | Sep 2011 | A1 |
20110230104 | Lang et al. | Sep 2011 | A1 |
20110263156 | Ko | Oct 2011 | A1 |
20110287663 | Gailus et al. | Nov 2011 | A1 |
20110300757 | Regnier et al. | Dec 2011 | A1 |
20120003848 | Casher et al. | Jan 2012 | A1 |
20120034820 | Lang et al. | Feb 2012 | A1 |
20120077369 | Andersen | Mar 2012 | A1 |
20120077380 | Minich et al. | Mar 2012 | A1 |
20120094536 | Khilchenko et al. | Apr 2012 | A1 |
20120135643 | Lange et al. | May 2012 | A1 |
20120156929 | Manter et al. | Jun 2012 | A1 |
20120184136 | Ritter | Jul 2012 | A1 |
20120202363 | McNamara et al. | Aug 2012 | A1 |
20120202386 | McNamara et al. | Aug 2012 | A1 |
20120214344 | Cohen et al. | Aug 2012 | A1 |
20120329294 | Raybold et al. | Dec 2012 | A1 |
20130012038 | Kirk et al. | Jan 2013 | A1 |
20130017715 | Laarhoven et al. | Jan 2013 | A1 |
20130017733 | Kirk et al. | Jan 2013 | A1 |
20130078870 | Milbrand, Jr. | Mar 2013 | A1 |
20130092429 | Ellison | Apr 2013 | A1 |
20130109232 | Paniaqua | May 2013 | A1 |
20130143442 | Cohen et al. | Jun 2013 | A1 |
20130178107 | Costello et al. | Jul 2013 | A1 |
20130196553 | Gailus | Aug 2013 | A1 |
20130210246 | Davis et al. | Aug 2013 | A1 |
20130223036 | Herring et al. | Aug 2013 | A1 |
20130225006 | Khilchenko et al. | Aug 2013 | A1 |
20130273781 | Buck et al. | Oct 2013 | A1 |
20130288521 | McClellan et al. | Oct 2013 | A1 |
20130288525 | McClellan et al. | Oct 2013 | A1 |
20130288539 | McClellan et al. | Oct 2013 | A1 |
20130340251 | Regnier et al. | Dec 2013 | A1 |
20140004724 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004726 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140004746 | Cartier, Jr. et al. | Jan 2014 | A1 |
20140041937 | Lloyd et al. | Feb 2014 | A1 |
20140057493 | De Geest et al. | Feb 2014 | A1 |
20140057494 | Cohen | Feb 2014 | A1 |
20140057498 | Cohen | Feb 2014 | A1 |
20140065883 | Cohen et al. | Mar 2014 | A1 |
20140073174 | Yang | Mar 2014 | A1 |
20140073181 | Yang | Mar 2014 | A1 |
20140194004 | Picket et al. | Jul 2014 | A1 |
20140242844 | Wanha et al. | Aug 2014 | A1 |
20140273551 | Resendez et al. | Sep 2014 | A1 |
20140273557 | Cartier, Jr. et al. | Sep 2014 | A1 |
20140273627 | Cartier, Jr. et al. | Sep 2014 | A1 |
20140287627 | Cohen | Sep 2014 | A1 |
20140308852 | Gulla | Oct 2014 | A1 |
20140335707 | Johnescu et al. | Nov 2014 | A1 |
20140335736 | Regnier et al. | Nov 2014 | A1 |
20150031238 | Davis et al. | Jan 2015 | A1 |
20150056856 | Atkinson et al. | Feb 2015 | A1 |
20150079829 | Brodsgaard | Mar 2015 | A1 |
20150079845 | Wanha et al. | Mar 2015 | A1 |
20150180578 | Leigh et al. | Jun 2015 | A1 |
20150194751 | Herring | Jul 2015 | A1 |
20150200496 | Simpson et al. | Jul 2015 | A1 |
20150207247 | Regnier et al. | Jul 2015 | A1 |
20150236450 | Davis | Aug 2015 | A1 |
20150236451 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150236452 | Cartier, Jr. et al. | Aug 2015 | A1 |
20150255926 | Paniagua | Sep 2015 | A1 |
20150280351 | Bertsch | Oct 2015 | A1 |
20150303608 | Zerebilov et al. | Oct 2015 | A1 |
20150357736 | Tran et al. | Dec 2015 | A1 |
20150357761 | Wanha et al. | Dec 2015 | A1 |
20160013594 | Costello et al. | Jan 2016 | A1 |
20160013596 | Regnier | Jan 2016 | A1 |
20160028189 | Resendez et al. | Jan 2016 | A1 |
20160104956 | Santos et al. | Apr 2016 | A1 |
20160111825 | Wanha et al. | Apr 2016 | A1 |
20160141807 | Gailus et al. | May 2016 | A1 |
20160149343 | Atkinson et al. | May 2016 | A1 |
20160149362 | Ritter et al. | May 2016 | A1 |
20160150633 | Cartier, Jr. | May 2016 | A1 |
20160150639 | Gailus et al. | May 2016 | A1 |
20160150645 | Gailus et al. | May 2016 | A1 |
20160181713 | Peloza et al. | Jun 2016 | A1 |
20160181732 | Laurx et al. | Jun 2016 | A1 |
20160190747 | Regnier et al. | Jun 2016 | A1 |
20160197423 | Regnier | Jul 2016 | A1 |
20160218455 | Sayre et al. | Jul 2016 | A1 |
20160233598 | Wittig | Aug 2016 | A1 |
20160240946 | Evans et al. | Aug 2016 | A1 |
20160268714 | Wanha et al. | Sep 2016 | A1 |
20160274316 | Verdiell | Sep 2016 | A1 |
20160308296 | Pitten et al. | Oct 2016 | A1 |
20160322770 | Zerebilov | Nov 2016 | A1 |
20160344141 | Cartier, Jr. et al. | Nov 2016 | A1 |
20170025783 | Astbury et al. | Jan 2017 | A1 |
20170033478 | Wanha et al. | Feb 2017 | A1 |
20170042070 | Baumler et al. | Feb 2017 | A1 |
20170047692 | Cartier, Jr. et al. | Feb 2017 | A1 |
20170077643 | Zbinden et al. | Mar 2017 | A1 |
20170093093 | Cartier, Jr. et al. | Mar 2017 | A1 |
20170098901 | Regnier | Apr 2017 | A1 |
20170162960 | Wanha et al. | Jun 2017 | A1 |
20170294743 | Gailus | Oct 2017 | A1 |
20170302011 | Wanha et al. | Oct 2017 | A1 |
20170338595 | Girard, Jr. | Nov 2017 | A1 |
20170365942 | Regnier | Dec 2017 | A1 |
20170365943 | Wanha et al. | Dec 2017 | A1 |
20180006416 | Lloyd et al. | Jan 2018 | A1 |
20180034175 | Lloyd et al. | Feb 2018 | A1 |
20180034190 | Ngo | Feb 2018 | A1 |
20180040989 | Chen | Feb 2018 | A1 |
20180109043 | Provencher et al. | Apr 2018 | A1 |
20180145438 | Cohen | May 2018 | A1 |
20180219331 | Cartier, Jr. et al. | Aug 2018 | A1 |
20180219332 | Brungard et al. | Aug 2018 | A1 |
20180366880 | Zerebilov et al. | Dec 2018 | A1 |
20190013625 | Gailus et al. | Jan 2019 | A1 |
20190020155 | Trout et al. | Jan 2019 | A1 |
20190044284 | Dunham | Feb 2019 | A1 |
20190044285 | Dunham | Feb 2019 | A1 |
20190157812 | Gailus et al. | May 2019 | A1 |
20190173236 | Provencher et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
2519434 | Oct 2002 | CN |
1127783 | Nov 2003 | CN |
101124697 | Feb 2008 | CN |
101164204 | Apr 2008 | CN |
101312275 | Nov 2008 | CN |
101667686 | Mar 2010 | CN |
101752700 | Jun 2010 | CN |
101783449 | Jul 2010 | CN |
201562814 | Aug 2010 | CN |
101958477 | Jan 2011 | CN |
102509956 | Jun 2012 | CN |
102570105 | Jul 2012 | CN |
102598430 | Jul 2012 | CN |
202678544 | Jan 2013 | CN |
103915727 | Jul 2014 | CN |
3447556 | Jul 1986 | DE |
1 207 587 | May 2002 | EP |
1 779 472 | May 2007 | EP |
2 169 770 | Mar 2010 | EP |
1272347 | Apr 1972 | GB |
02-079571 | Jun 1990 | JP |
7302649 | Nov 1995 | JP |
2000-311749 | Nov 2000 | JP |
2006-108115 | Apr 2006 | JP |
2011-018651 | Jan 2011 | JP |
2012-516021 | Jul 2012 | JP |
2016-528688 | Sep 2016 | JP |
M357771 | May 2009 | TW |
WO 8805218 | Jul 1988 | WO |
WO 9956352 | Nov 1999 | WO |
WO 2004059794 | Jul 2004 | WO |
WO 2004059801 | Jul 2004 | WO |
WO 2006002356 | Jan 2006 | WO |
WO 2006039277 | Apr 2006 | WO |
WO 2007005597 | Jan 2007 | WO |
WO 2007005599 | Jan 2007 | WO |
WO 2008072322 | Jun 2008 | WO |
WO 2008124057 | Oct 2008 | WO |
WO 2010039188 | Apr 2010 | WO |
WO 2012078434 | Jun 2012 | WO |
WO 2013006592 | Jan 2013 | WO |
WO 2015013430 | Jan 2015 | WO |
WO 2015112717 | Jul 2015 | WO |
Entry |
---|
CN 201580069567.7, Jun. 17, 2019, Chinese Office Action. |
CN 201580069567.7, Oct. 9, 2019, Chinese Office Action. |
CN 202010397391.0, Apr. 1, 2021, Chinese Office Action. |
CN 202010397224.6, Apr. 28, 2021, Chinese Office Action. |
EP 11166820.8, Jan. 24, 2012, Extended European Search Report. |
PCT/US2005/034605, Jan. 26, 2006, International Search Report and Written Opinion. |
PCT/US2006/025562, Oct. 31, 2007, International Search Report and Written Opinion. |
PCT/US2010/056482, Mar. 14, 2011, International Search Report and Written Opinion. |
PCT/US2010/056495, Jan. 25, 2011, International Search Report and Written Opinion. |
PCT/US2011/026139, Nov. 22, 20211, International Search Report and Written Opinion. |
PCT/US2011/034747, Jul. 28, 2011, International Search Report and Written Opinion. |
PCT/US2012/023689, Sep. 12, 2012, International Search Report and Written Opinion. |
PCT/US2012/060610, Mar. 29, 2013, International Search Report and Written Opinion. |
PCT/US2014/026381, Aug. 12, 2014, International Search Report and Written Opinion. |
PCT/US2014/026381, Sep. 24, 2015, International Preliminary Report on Patentability. |
PCT/US2015/012463, May 13, 2015, International Search Report and Written Opinion. |
PCT/US2015/012542, Apr. 30, 2015, International Search Report and Written Opinion. |
PCT/US2015/060472, May 26, 2017, International Preliminary Report on Patentability. |
PCT/US2015/060472, Mar. 11, 2016, International Search Report and Written Opinion. |
PCT/US2016/043358, Nov. 3, 2016, International Search Report and Written Opinion. |
PCT/US2017/033122, Aug. 8, 2017, International Search Report and Written Opinion. |
PCT/US2017/033122, Nov. 29, 2018, International Preliminary Report on Patentability. |
PCT/US2017/057402, Jan. 19, 2018, International Search Report and Written Opinion. |
PCT/US2017/057402, May 2, 2019, International Preliminary Report on Patentability. |
PCT/US2018/045207, Nov. 29, 2018, International Search Report and Written Opinion. |
Chinese Office Action for Application No. CN201580069567.7 dated Jun. 17, 2019. |
Chinese Office Action for Application No. CN201580069567.7 dated Oct. 9, 2019. |
Chinese Office Action for Chinese Application No. 202010397391.0 dated Apr. 1, 2021. |
Chinese Office Action for Chinese Application No. 202010397224.6 dated Apr. 28, 2021. |
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012. |
International Preliminary Report on Patentability for International Application No. PCT/US2014/026381 dated Sep. 24, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/US2015/060472 dated May 26, 2017. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/033122 dated Nov. 29, 2018. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/057402 dated May 2, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006. |
International Search Report and Written Opinion for International Application No. PCT/US2006/25562 dated Oct. 31, 2007. |
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2010/056495 dated Jan. 25, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013. |
International Search Report and Written Opinion for International Application No. PCT/US2014/026381 dated Aug. 12, 2014. |
International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2015/012542 dated Apr. 30, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US2015/060472 dated Mar. 11, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2016/043358 dated Nov. 3, 2016. |
International Search Report and Written Opinion for International Application No. PCT/US2017/033122 dated Aug. 8, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2017/057402 dated Jan. 19, 2018. |
International Search Report and Written Opinion for International Application No. PCT/US2018/045207 dated Nov. 29, 2018. |
[No Author Listed], Amphenol TCS expands the Xcede Platform with 85 Ohm Connectors and High-Speed Cable Solutions. Press Release. Published Feb. 25, 2009. http://www.amphenol.com/about/news_archive/2009/58 [Retrieved on Mar. 26, 2019 from Wayback Machine]. 4 pages. |
[No Author Listed], Agilent. Designing Scalable 10G Backplane Interconnect Systems Utilizing Advanced Verification Methodologies. White Paper, Published May 5, 2012. 24 pages. |
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013. 2 pages. |
[No Author Listed], File:Wrt54gl-layout.jpg Sep. 8, 2006. Retrieved from the Internet: https://xinu.mscs.mu.edU/File:Wrt54gl-layout.jpg [retrieved on Apr. 9, 2019]. 2 pages. |
[No Author Listed], Hitachi Cable America Inc. Direct Attach Cables. 8 pages. Retrieved Aug. 10, 2017 from http://www.hca.hitachi-cable.com/products/hca/catalog/pdfs/direct-attach-cable-assemblies.pdf [last accessed Mar. 6, 2019]. |
[No Author Listed], Size 8 High Speed Quadrax and Differential Twinax Contacts for Use in MIL-DTL-38999 Special Subminiature Cylindrical and ARINC 600 Rectangular Connectors. Published May 2008. 10 pages. Retrieved from https://www.peigenesis.com/images/content/news/amphenol_quadrax.pdf. |
Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7. |
Fjelstad, Flexible Circuit Technology. Third Edition. BR Publishing, Inc. Sep. 2006. 226 pages. ISBN 0-9667075-0-8. |
Shi et al., Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56. |
Number | Date | Country | |
---|---|---|---|
20210083434 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62078945 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16235683 | Dec 2018 | US |
Child | 17107761 | US | |
Parent | 15627063 | Jun 2017 | US |
Child | 16235683 | US | |
Parent | 14940049 | Nov 2015 | US |
Child | 15627063 | US |