The subject matter described herein relates generally to methods and systems for the mounting of wind turbines, and more particularly, to vessels and systems for mounting offshore wind turbines.
At least some known wind turbines include a tower and a nacelle mounted on the tower. A rotor is rotatably mounted to the nacelle and is coupled to a generator by a shaft. A plurality of blades extend from the rotor. The blades are oriented such that wind passing over the blades turns the rotor and rotates the shaft, thereby driving the generator to generate electricity.
In the past, wind turbines have often been installed onshore allowing for well-known construction methods and also easy accessibility and maintenance. However, availability of onshore sites becomes rare in some countries. Furthermore, environmental impact of onshore wind turbines on residents living near the turbine site impose, e.g., size limitations onto onshore turbines. For these and other reasons, offshore wind turbine sites, i.e. sites which are located in a body of water, are attracting more and more interest in recent years. However, offshore wind turbines encounter specific challenges not experienced with onshore wind turbines that pose technical and logistical problems still to be solved. This applies for instance to the transport of the wind turbine, respectively its components, to the erection site, and to the assembly or erection process itself.
A crucial factor during erection of offshore wind turbines is the time needed for mounting the turbine at the site. As the weather conditions at sea change rapidly and often do not allow a safe mounting, quick erection of the turbine is both crucial for keeping to schedules and to spare cost for the equipment involved.
In view of the above, it is desirable to have a method and system for mounting offshore wind turbines which allows for an improved mounting process.
In one aspect, a method for erecting an offshore wind turbine at a wind turbine erection site is provided, wherein the wind turbine includes a rotor, which has, in a fully assembled condition, a predetermined number of rotor blades mounted to a rotor hub. The method comprises transporting the rotor hub to the erection site; transporting rotor blades to the erection site; mounting, on a vessel, rotor blades to the rotor hub so that the rotor is in the fully assembled condition; erecting a wind turbine tower at the wind turbine erection site; mounting a nacelle to the top of the tower; lifting the fully assembled rotor to its position at the tower; and, mounting the fully assembled rotor to the nacelle.
In another aspect, a method for erecting an offshore wind turbine at a wind turbine erection site is provided, wherein the wind turbine includes a rotor, which has, in a fully assembled condition, a predetermined number of rotor blades mounted to a rotor hub. The method comprises transporting the rotor to the erection site, which has a smaller number than the predetermined number of rotor blades mounted to the rotor hub; transporting rotor blades to the erection site; mounting, on a vessel, the rotor by assembling rotor blades to the rotor hub so that the rotor is in the fully assembled condition; erecting a wind turbine tower at the wind turbine erection site; mounting a nacelle to the top of the tower; lifting the fully assembled rotor to its position at the tower; and, mounting the rotor to the nacelle.
In yet another aspect, a vessel is provided. The vessel comprises a vessel deck, and space for mounting a wind turbine rotor on the deck.
Further aspects, advantages and features of the present invention are apparent from the dependent claims, the description and the accompanying drawings.
A full and enabling disclosure including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures wherein:
Reference will now be made in detail to the various embodiments, one or more examples of which are illustrated in each figure. Each example is provided by way of explanation and is not meant as a limitation. For example, features illustrated or described as part of one embodiment can be used on or in conjunction with other embodiments to yield yet further embodiments. It is intended that the present disclosure includes such modifications and variations.
The embodiments described herein include a system and method allowing for improved erection of offshore wind turbines.
As used herein, the term “vessel” is intended to be representative of any floating device suitable for transportation of wind turbine components. As used herein, a “vessel” may also be temporarily connected to, respectively supported by the seabed, as is for instance known from the field of oil rigs. As used herein, the term “blade” is intended to be representative of any device that provides a reactive force when in motion relative to a surrounding fluid. As used herein, the term “wind turbine” is intended to be representative of any device that generates rotational energy from wind energy, and more specifically, converts kinetic energy of wind into mechanical energy. As used herein, the term “wind generator” is intended to be representative of any wind turbine that generates electrical power from rotational energy generated from wind energy, and more specifically, converts mechanical energy converted from kinetic energy of wind to electrical power.
Rotor blades 22 are spaced about hub 20 to facilitate rotating rotor 18 to enable kinetic energy to be transferred from the wind into usable mechanical energy, and subsequently, electrical energy. Rotor blades 22 are mated to hub 20 by coupling a blade root portion 24 to hub 20 at a plurality of load transfer regions 26. Load transfer regions 26 have a hub load transfer region and a blade load transfer region (both not shown in
In one embodiment, rotor blades 22 have a length ranging from about 15 meters (m) to about 91 m. Alternatively, rotor blades 22 may have any suitable length that enables wind turbine 10 to function as described herein. For example, other non-limiting examples of blade lengths include 10 m or less, 20 m, 37 m, or a length that is greater than 91 m. As wind strikes rotor blades 22 from a direction 28, rotor 18 is rotated about an axis of rotation 30. As rotor blades 22 are rotated and subjected to centrifugal forces, rotor blades 22 are also subjected to various forces and moments. As such, rotor blades 22 may deflect and/or rotate from a neutral, or non-deflected, position to a deflected position. Wind turbine 10 may be an upwind turbine or a downwind turbine, depending on the position of the rotor with respect to the nacelle 16.
Moreover, a pitch angle or blade pitch of rotor blades 22, i.e., an angle that determines a perspective of rotor blades 22 with respect to direction 28 of the wind, may be changed by a pitch adjustment system 32 to control the load and power generated by wind turbine 10 by adjusting an angular position of at least one rotor blade 22 relative to wind vectors. Pitch axes 34 for rotor blades 22 are shown. During operation of wind turbine 10, pitch adjustment system 32 may change a blade pitch of rotor blades 22 such that rotor blades 22 are moved to a feathered position, such that the perspective of at least one rotor blade 22 relative to wind vectors provides a minimal surface area of rotor blade 22 to be oriented towards the wind vectors, which facilitates reducing a rotational speed of rotor 18 and/or facilitates a stall of rotor 18.
In the exemplary embodiment, offshore wind turbine 10 is mounted in a body of water 2, e.g. in a lake or in the sea. The body of water 2 has a ground 1, e.g. e lakebed or a seabed, which typically comprises sand and/or gravel. In the exemplary embodiment, support system 14 is a monopole structure anchored in ground 1. In alternative embodiments, support system 14 may include a tripod structure and/or a lattice structure fixed to ground 1. In a still alternative embodiment, support structure 14 may include a buoyant platform on which tower 12 is mounted. Support structure 14 will be designed such that it provides sufficient support to tower 12, nacelle 16 and rotor 18. In the exemplary embodiment, tower 12 is fabricated from tubular steel to define a cavity (not shown in
The body of water 2 has an average water level 4 which may vary with time due to tidal variations in some embodiments. In addition to the tidal variations of the water level, water waves 3 will form at the surface of the body 2 as a result of wind 28 interacting with the water surface. In this context, it is worth noting that the direction vwave of the water waves is not necessarily the same as the direction vwind of the wind. For example, due to the topology of ground 1 the direction of the waves 3 may even be opposite to the direction of the wind (as exemplary illustrated in
Moreover, a pitch angle or blade pitch of rotor blades 22, i.e., an angle that determines a perspective of rotor blades 22 with respect to direction 28 of the wind, may be changed by a pitch adjustment system 32 to control the load and power generated by wind turbine 10 by adjusting an angular position of at least one rotor blade 22 relative to wind vectors. Pitch axes 34 for rotor blades 22 are shown. During operation of wind turbine 10, pitch adjustment system 32 may change a blade pitch of rotor blades 22 such that rotor blades 22 are moved to a feathered position, such that the perspective of at least one rotor blade 22 relative to wind vectors provides a minimal surface area of rotor blade 22 to be oriented towards the wind vectors, which facilitates reducing a rotational speed of rotor 18 and/or facilitates a stall of rotor 18.
In the exemplary embodiment, a blade pitch of each rotor blade 22 is controlled individually by a control system 36. Alternatively, the blade pitch for all rotor blades 22 may be controlled simultaneously by control system 36. Further, in the exemplary embodiment, as direction 28 changes, a yaw direction of nacelle 16 may be controlled about a yaw axis 38 to position rotor blades 22 with respect to direction 28.
Nacelle 16 also includes a yaw drive mechanism 56 that may be used to rotate nacelle 16 and hub 20 on yaw axis 38 (shown in
Forward support bearing 60 and aft support bearing 62 facilitate radial support and alignment of rotor shaft 44. Forward support bearing 60 is coupled to rotor shaft 44 near hub 20. Aft support bearing 62 is positioned on rotor shaft 44 near gearbox 46 and/or generator 42. Alternatively, nacelle 16 includes any number of support bearings that enable wind turbine 10 to function as disclosed herein. Rotor shaft 44, generator 42, gearbox 46, high speed shaft 48, coupling 50, and any associated fastening, support, and/or securing device including, but not limited to, support 52 and/or support 54, and forward support bearing 60 and aft support bearing 62, are sometimes referred to as a drive train 64.
In the exemplary embodiment, hub 20 includes a pitch assembly 66. Pitch assembly 66 includes one or more pitch drive systems 68 and at least one sensor 70. Each pitch drive system 68 is coupled to a respective rotor blade 22 (shown in
In the exemplary embodiment, pitch assembly 66 includes at least one pitch bearing 72 coupled to hub 20 and to respective rotor blade 22 (shown in
Pitch drive system 68 is coupled to control system 36 for adjusting the blade pitch of rotor blade 22 upon receipt of one or more signals from control system 36. In the exemplary embodiment, pitch drive motor 74 is any suitable motor driven by electrical power and/or a hydraulic system that enables pitch assembly 66 to function as described herein. Alternatively, pitch assembly 66 may include any suitable structure, configuration, arrangement, and/or components such as, but not limited to, hydraulic cylinders, springs, and/or servo-mechanisms. Moreover, pitch assembly 66 may be driven by any suitable means such as, but not limited to, hydraulic fluid, and/or mechanical power, such as, but not limited to, induced spring forces and/or electromagnetic forces. In certain embodiments, pitch drive motor 74 is driven by energy extracted from a rotational inertia of hub 20 and/or a stored energy source (not shown) that supplies energy to components of wind turbine 10.
According to embodiments, the erection of the tower 12 with nacelle 16 is typically carried out only after, or at the same time, that the rotor is fully assembled on the deck 126 of vessel 120, which is further described below. In other embodiments, the erection of the tower and nacelle is carried out in a different timely manner with respect to the rotor mounting, i.e., before it.
After a first rotor has been completed as shown in
According to embodiments, a wind turbine tower is erected at the wind turbine erection site in a step 330. The nacelle is positioned and mounted to the top of the tower in step 340. Then, the fully assembled rotor is lifted to its position at the tower, respectively at the nacelle, in step 350. The fully assembled rotor is mounted to the nacelle in step 360.
According to embodiments, the method further includes erecting a wind turbine tower at the wind turbine erection site in a step 430. The nacelle is positioned and mounted to the top of the tower in step 440. Then, the fully assembled rotor is lifted to its position at the tower, respectively at the nacelle, in step 450. The fully assembled rotor is mounted to the nacelle in step 460.
The above-described systems and methods facilitate an improved erection process for an offshore wind turbine.
Exemplary embodiments of systems and methods for erecting offshore wind turbines are described above in detail. The systems and methods are not limited to the specific embodiments described herein, but rather, components of the systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein.
Although specific features of various embodiments of the invention may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the invention, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. While various specific embodiments have been disclosed in the foregoing, those skilled in the art will recognize that the spirit and scope of the claims allows for equally effective modifications. Especially, mutually non-exclusive features of the embodiments described above may be combined with each other. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.