The invention relates to the field of vessel electrical penetration assemblies (V-EPA) passing through nuclear reactor vessels.
The invention finds particularly interesting application in the field of integrated nuclear reactors and Small & Modular Reactors (SMR) comprising numerous in-vessel actuators/sensors creating specific electrical penetration needs. An application in conventional pressurised reactors is possible.
For an application in an SMR using in-vessel actuators, these vessel electrical penetrations have to meet several criteria. They must be able to be dismantled rapidly, be supple in order to be compatible with differential expansions between the vessel and the internals, have a significant useful diameter (diameter typically 30 to 50 mm) in order to be compatible with the number and the power of the electrical connections to ensure for the actuators in the vessel.
In the field of pressurised water reactors, the solutions adopted for instrumentation connections are conventionally:
However, these solutions are not very transposable directly to the SMR field because, in practice, they do not meet the connection needs of a vessel actuator of an SMR. In fact the very principle of the thimble does not able dismantleability at the level of the actuator, these solutions are not very flexible, and have a useful diameter limited to a typical value below 15 mm.
To meet the needs of an SMR, an approach consists in putting in place an extension of the second barrier within the vessel up to each sensor/actuator for all of the electrical penetrations of an SMR. Illustrations of this approach in the particular case of an SMR are notably described in the documents US 20130287157 and US 2014198891. These documents describe the putting in place within the vessel of an instrumentation flange dedicated to electrical penetrations which can be dismantled and which groups together a plurality of thimbles required for the specific needs of an SMR. The dedicated flange thus makes it possible to take down in a single operation all of the electrical penetrations. This approach only partially responds to the problem posed. On the one hand, it may be considered disadvantageous for the overall design of the reactor to add a dismantleable vessel flange with the associated risk of leakage on this large diameter leaktight assembly. On the other hand, the large number of electrical connections required by the putting in place of in-vessel actuators is going to lead to adopting either a very large number of thimbles of limited diameter, or thimbles of significantly larger diameter than those employed to date, said thimbles being dismantleable at the level of the actuators. In each of these alternatives, this is going to complicate the safety demonstration and put constraints on the regulatory inspection of said second barrier extension.
In this context, the invention aims to propose a vessel electrical penetration assembly for a nuclear reactor meeting the electrical connection needs of the numerous actuators of an SMR and making it possible to respect the spirit of the design regulations imposed in the field of pressurised reactors and SMR in particular, namely the prevention of primary leakages and the limitation of the consequences of potential failures.
To this end, the subject matter of the invention is a vessel electrical penetration assembly capable of being installed in a penetration of a vessel of a nuclear reactor, said electrical penetration assembly being characterised in that it comprises:
The electrical penetration assembly according to the invention may also have one or more of the characteristics below taken individually or according to any technically possible combinations thereof:
The subject matter of the invention is also a nuclear reactor vessel characterised in that it comprises at least one electrical penetration assembly according to the invention.
The subject matter of the invention is also a nuclear reactor comprising a vessel according to the invention.
Advantageously, the nuclear reactor is an integrated reactor or a small modular reactor.
Other characteristics and advantages of the invention will become clear on reading the description that follows, with reference to the appended figures.
The terms “upstream” and “downstream” used in the patent application are defined by considering the direction of flow of the primary fluid in the event of leakage, that is to say from the inside to the outside of the vessel 10.
The vessel electrical penetration assembly 100 comprises a docking tube 110. The docking tube 110 has a first end 111, called inner end, intended to be positioned inside the vessel 10 of the nuclear reactor and connected mechanically and in a leaktight manner to the outer envelope 210 of the abuttal (actuator or sensor) 200 positioned inside the vessel 10, and a second end 112, called outer end, intended to be made integral in a leaktight manner with the vessel 10 of the reactor.
In the first exemplary embodiment illustrated in
Obviously, ad-hoc sealing means 115 are provided between the vessel sleeve 30 and the docking tube 110, and more particularly between the outer end 112 of the docking tube 110, making it possible to realise a sealing between the vessel 10 and the docking tube 110 during its mounting.
The docking tube 110 advantageously has a flexible part 113 thus allowing a certain flexibility (for example in the longitudinal direction of the penetration 20) of the docking tube 110 inside the vessel 10 of the nuclear reactor, making it possible notably to compensate differential expansions of the different parts of the mounting.
The docking tube 110 is dimensioned so as to be certified to withstand the temperature and pressure conditions of the primary liquid. The mechanical linkage 220 between the docking tube 110 and the outer envelope 210 of the actuator 200 is also a linkage making it possible to withstand the conditions of the primary liquid. As an example, this mechanical linkage 220 may be realised by a reverse flange mounting tightened via the inside of the docking tube 110 onto a metal joint.
The outer envelope 210 of the actuator 200 is also designed and certified to be leaktight at the temperature and pressure conditions of the primary liquid.
The docking tube 110 has a significant useful diameter, typically greater than 30 mm enabling the passage of an electrical connection constituted of 10 to 20 contact points of which power contacts for the actuators.
The docking tube 110 is thus comparable to an extension of the second containment barrier of the nuclear reactor (represented in dotted lines in
For this reason, the vessel electrical penetration assembly 100 also comprises at its centre an electrical bar 120 extending inside the docking tube 110. The electrical bar 120 can advantageously be dismantled from the docking tube 110 via the outside of the vessel 10.
The function of the electrical bar 120 is to ensure electrical continuity between the actuator 200 and a cable (not represented) situated outside of the vessel 10. The electrical bar 120 comprises an outer envelope 121 forming a tube, for example made of stainless steel, containing a plurality of electrical cables 160 ensuring the electrical connection on either side of the electrical bar 120 and more precisely between a first leaktight connector 130 and a second leaktight connector 150 positioned at the level of the ends of the electrical bar 120. The electrical cables 160 inside the electrical bar 120 are thus made non-dismantleable. The electrical cables 160 are for example mineral cables certified at the temperature conditions of the primary liquid.
The leaktight connectors 130, 150 are made integral, for example by means of leaktight welds, at the level of the ends of the electrical bar 120. Thus, the electrical bar 120 has a longitudinal sealing at the pressure and temperature conditions of the primary liquid.
The diameter of the connectors 130, 150 and the number of pins constituting them are set by the functional need (i.e. as a function of the number of necessary wires and insulation). The leaktight connectors 130, 150 thus used in an integrated nuclear reactor typically have a diameter between 30 mm and 50 mm.
The leaktight connectors 130 and 150 are electrical connectors using ceramic technology or pre-stressed vitroceramic technology to ensure sealing on either side of the electrical bar 120. The leaktight connectors 130, 150 are connectors certified to withstand the conditions of the primary liquid, but they are not subject to the regulations applicable to devices of the second containment barrier because thanks to the vessel electrical penetration assembly 100 according to the invention, they do not participate in the realisation of this second containment barrier and are only called upon in the event of failure of the extension (110 and/or 220 and/or 210).
Apart from the electrical function, the electrical bar 120 also has the function of filling the inner space of the docking tube 110 and thereby limiting the rate of leakage of primary liquid in the event of potential failure of the sealing of the extension of the second containment barrier (represented by the dotted line in
The peripheral boss 123 may be insulated on a part of the outer envelope 121 of the electrical bar 120 as represented in
The different components of the electrical bar 120 described previously are assembled in an indissociable manner (for example by welding) to constitute a single-piece electrical bar and which can be dismantled independently of the docking tube 110.
The electrical bar 120 comprises, at the level of the outer end of the outer envelope 121, an annular ferrule 122 thereby forming a maintaining flange making it possible to make integral the electrical bar 120 by the outside of the vessel 10 via maintaining means 140 ensuring its mechanical maintaining. Advantageously, the mechanical maintaining means 140 are formed by the cooperation of nuts and bolts withstanding the required pressure conditions, thereby forming an anti-ejection device of the electrical bar 120 in the event of leakage of the second barrier extension.
The mechanical maintaining means 116 making the docking tube 110 mechanically integral on the vessel 10 are also formed by the cooperation of nuts and bolts.
According to an alternative embodiment, not represented, it is possible to make the docking tube 110 as well as the electrical bar 120 mechanically integral with common mechanical maintaining means. In this alternative embodiment, the body of the screw of the maintaining means advantageously passes through at one and the same time the annular ferrule 122 of the electrical bar 120, the outer end 112 of the docking tube 110, and the vessel sleeve 30.
The electrical penetration assembly 100 thus described makes it possible to meet the functional needs of an electrical penetration assembly of an integrated reactor while meeting nuclear safety and safety analysis criteria. With the electrical penetration assembly 100 according to the invention, in the event of failure of the extension of the second containment barrier represented by the dotted line in the figures, the second line of defence of the electrical penetration assembly 100 is formed by the inner electrical bar 120 and the leaktight connectors 130, 150 which withstand the conditions of the primary liquid as well as by the limiter of the potential leakage rate formed by the peripheral boss 123 of the outer envelope 121 which makes it possible to minimise and to control the potential rate of leakage of primary liquid.
Such an architecture thus makes it possible to have leaktight connectors 130, 150 withstanding the conditions of the primary liquid (i.e. the temperature and pressure conditions of the primary liquid) without nevertheless responding to the regulations for the design, manufacture and periodic inspection of the elements constituting the second containment barrier, which makes it possible to use advantageously a leaktight connector of simple design, easy to connect and/or to disconnect, and to avoid a periodic inspection of the leaktight connectors 130, 150.
In fact, the continuity of the second containment barrier is ensured by the envelope 210 of the actuator 200 as well as by the docking tube 110 of the electrical penetration assembly 100.
Advantageously, the materials used to realise the sealing of the leaktight connectors 130, 150 are different. Thus, for example, it is possible to use an insulating connector 130 with ceramic technology and an insulating connector 150 using pre-stressed vitroceramic technology.
In this second embodiment, the peripheral boss 123 acting as limiter of the rate of leakage of primary liquid inside the docking tube 110 is replaced by the putting in place on the one hand of a sealing means 125 realising a sealing between the electrical bar 320 and the vessel (or the docking tube 110), and on the other hand a leakage detection cell (not represented), typically formed by a pressure detector 5 inside the docking tube 110. The pressure detector 5 inside the docking tube is thus capable of detecting a sealing failure of the actuator and/or of the leaktight linkage 220 between the actuator 200 and the electrical penetration assembly and/or the electrical penetration assembly 300 itself. This arrangement corresponds to an in-depth defense approach on potential leakages of the V-EPA, for which the second barrier extension 110 is a first monitored sealing line, the sealing means 125 is a second sealing line called upon in the event of failure of the first.
Finally, according to an alternative embodiment, it is also possible to integrate the two architectural arrangements described previously in the two preceding embodiments to limit and more fully control the leakage of primary liquid in the event of failure of the second barrier extension. Thus, the combination of these arrangements makes it possible to have a second barrier extension formed by the docking tube 110 forming a first monitored sealing line, a sealing means 125 forming a second sealing line called upon in the event of failure of the first and finally a leakage limiter 123 constituting a final line of limitation of the consequences of the failure of the first two lines.
In this third embodiment, the vessel electrical penetration assembly 400 comprises a docking tube 410 inserted via the inside of the vessel 10. The docking tube 410 comprises a ferrule 411 capable of being made integral mechanically via maintaining means (not represented) with the inside of the vessel 10. Ad-hoc sealing means 115 are also provided between the inner wall of the vessel 10 and the docking tube 110, and more particularly the ferrule 411, making it possible to realise a sealing between the vessel 10 and the docking tube 110 during its mounting. The mechanical maintaining means and the sealing means are formed for example by a weld, by welding of the ferrule 411 on the inner wall of the vessel 10.
This third embodiment has been illustrated as an example with a peripheral boss 123 at the level of the electrical bar 120 as described previously in
According to another embodiment of the invention (not represented), it is provided that the electrical bar 120, 320 or at least the outer envelope 121 has a flexible part in an identical manner to the docking tube 110, 410 thus allowing a certain flexibility of the electrical bar 120, and thus of the electrical penetration assembly 100, 300, 400 as a whole, inside the vessel 10 of the nuclear reactor.
Number | Date | Country | Kind |
---|---|---|---|
1561112 | Nov 2015 | FR | national |
This application is a divisional of U.S. application Ser. No. 15/777,561, filed May 18, 2018, which is the U.S. National Stage of PCT/EP2016/074704, filed Oct. 14, 2016, which in turn claims priority to French Application No. 1561112, filed Nov. 19, 2015, the entire contents of all applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3520989 | Matthews | Jul 1970 | A |
3780204 | Oliver | Dec 1973 | A |
3801722 | Korner | Apr 1974 | A |
3806167 | Notari | Apr 1974 | A |
3871689 | Zaderei | Mar 1975 | A |
3989100 | McDonald | Nov 1976 | A |
4107456 | Schuster | Aug 1978 | A |
4168394 | Yuey | Sep 1979 | A |
4235674 | Yue | Nov 1980 | A |
4394022 | Gilmore | Jul 1983 | A |
4420456 | Nickel | Dec 1983 | A |
9373945 | Bernauer | Jun 2016 | B2 |
9413152 | Fritz | Aug 2016 | B2 |
9991009 | Berthold | Jun 2018 | B2 |
10910118 | Brun | Feb 2021 | B2 |
20130287157 | Conway | Oct 2013 | A1 |
20130301777 | Berthold | Nov 2013 | A1 |
20140198891 | Harkness | Jul 2014 | A1 |
20150083487 | Leedecke | Mar 2015 | A1 |
20170062081 | Mustafin | Mar 2017 | A1 |
20210210234 | Brun | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
3037531 | May 1982 | DE |
1635099 | Mar 2006 | EP |
1488174 | Oct 1977 | GB |
57-097298 | May 1982 | JP |
58-080736 | May 1983 | JP |
01073296 | Mar 1989 | JP |
S6473296 | Mar 1989 | JP |
2014085242 | May 2014 | JP |
Entry |
---|
International Search Report as issued in International Patent Application No. PCT/EP2016/074704, dated Jan. 18, 2017. |
International Preliminary Report on Patentability and the Written Opinion of the International Searching Authority as issued in International Patent Application No. PCT/EP2016/074704, dated May 22, 2018. |
Number | Date | Country | |
---|---|---|---|
20210210234 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15777561 | US | |
Child | 17089139 | US |