The present application is a national stage of and claims priority of International patent application Serial No. PCT/EP2019/053837, filed Feb. 15, 2019, and published in English as WO 2019/158702.
Aspects of the present invention relate to a vessel for towing another vessel.
An aspect of the disclosure provides a vessel which has a simple and robust system for fastening a tow cable of the vessel to a tow rope of a vessel to be towed.
The vessel comprises a hull, a tow cable which is coupled to the hull, a V-shaped hook having a first leg which is fixed to a free end of the tow cable, a second leg including a free end and a hook bottom where the first leg meets the second leg at a distance from the free end of the second leg, hence forming an opening between the legs at the free end of the second leg for receiving a tow rope that is located at the vessel and launched from another vessel, wherein the first and second legs extend in a main plane, and wherein the vessel further comprises a hook support to which the hook is linkable, a rope positioning system for positioning a tow rope and the hook support with respect to each other such that the tow rope extends in transverse direction of the main plane at the opening of the hook when the hook is linked to the hook support, and a rope pressing system for pressing a tow rope positioned at the opening of the hook towards the hook bottom when the hook is linked to the hook support, hence creating a clamping force between the legs and the tow rope under operating conditions.
The vessel may be a tugboat which receives a tow rope that is launched from a vessel to be towed. The rope positioning system is able to bring the tow rope and the hook in a mutual position such that the tow rope is located at the opening of the hook and the rope pressing system can press the rope between the legs of the hook. After pressing the tow rope between the legs, the tow rope is sufficiently fixed to the hook by the clamping force between the legs and the tow rope such that the hook can be released from the hook support without keeping a pressing force on the rope by the pressing system. The hook including the tow cable can be simply pulled upwardly by pulling the clamped tow rope by the vessel to be towed.
The clamping force may be caused by elastic properties of at least one of the tow rope and the hook. In practice the tow rope can be made of relatively thin braided rope which may be more flexible than the hook. Usually, the tow rope is only used for pulling the tow cable of the tugboat towards the vessel to be towed where the tow cable is fixed to a haul point, for example, such that the tow rope itself is not used during towing.
It is noted that the tow cable may be coupled to the hull through a winch.
In a particular embodiment, the hook support has a carrier, wherein when the hook is linked to the hook support the hook is supported by the hook support via its first leg and moveable with respect to the carrier in longitudinal direction of the first leg between a rope receiving position for receiving a tow rope at the opening and a rope clamping position for clamping a tow rope between the legs, wherein the rope pressing system comprises a pressing member which has a fixed position at the carrier and a driving mechanism for moving the hook from its rope receiving position to its rope clamping position during which the hook bottom moves towards the pressing member. This means that the pressing member may stay at the vessel when the hook including the tow cable are pulled upwardly by the vessel to be towed.
In a more particular embodiment the rope positioning system is formed by the carrier which is movable with respect to the hull in a direction parallel to the main plane and transversely to the first leg when the hook is linked to the hook support. This provides the opportunity to move the hook support with respect to the hull until the hook contacts the tow rope and the tow rope tends to bend about the first leg of the hook. In this condition the tow rope may automatically extend in transverse direction of the main plane of the hook at the opening of the hook.
The pressing member may be located next to the hook at the opening in transverse direction of the main plane when the hook is linked to the hook support. In this case the pressing member pulls the tow rope between the legs of the hook.
In order to create a pulling force at both sides of the main plane the pressing member may be located at opposite sides of the hook at the opening in transverse direction of the main plane when the hook is linked to the hook support.
In a practical embodiment the carrier has a tow rope receiving surface including a slot for receiving at least a part of the second leg upon moving the hook from its rope receiving position to its rope clamping position, wherein at least one of the edges of the slot forms the pressing member, and wherein in the rope receiving position the free end of the second leg is remote from the tow rope receiving surface. Before a clamping action is started a tow rope of a vessel to be towed can be positioned on the tow rope receiving surface such that the tow rope extends transversely to the slot on the slot. In this case the edges of the slot create a pulling force on the tow rope when moving the second leg into the slot. In the rope receiving position the tow rope can slide between the free end of the second leg and the tow rope receiving surface to the opening of the hook.
The free end of the second leg may be directed downwardly when the hook is in the rope receiving position. This means that the hook is moved downwardly from the rope receiving position to the rope clamping position in which the tow rope is clamped between the legs of the hook. The tow rope receiving surface may be a horizontal upper surface of the carrier.
In an advantageous embodiment the hook support is provided with a tow cable catcher for catching and guiding the tow cable when the hook is at a distance from the hook support and drawn by the tow cable towards the hook support, which tow cable catcher is mounted to the carrier and movable with respect thereto in the same direction as the hook between a catching position in which it projects from the rope receiving surface and a guiding position in which it is located beyond the hook as seen in a direction along the first leg from the hook to the tow cable when the hook is in its rope receiving position, such that in the rope receiving position the tow cable extends successively in one direction from the first leg of the hook to the tow cable catcher and via the tow cable catcher in opposite direction.
The tow cable catcher may comprise a T-shaped element. On the one hand, each of the lateral parts of the T-shaped element can be used for guiding the tow cable when the cable catcher guides the tow cable as described above. On the other hand, each of the lateral parts can function as a catching hook when the T-shaped element projects from the tow rope receiving surface. The catching hook can be moved with respect to the hull by moving the carrier. This provides the opportunity of contacting and catching the tow cable when this is launched from the towed vessel after a towing operation. After catching the tow cable the tow cable catcher can also be moved with respect to the carrier to its guiding position whereas the tow cable can be drawn, for example by a towing winch, in order to pull the hook towards the hook support.
In a practical embodiment the hook support is provided with a tube in which a portion of the first leg fits against an abutment and in which the tow cable catcher fits, wherein the first leg and the tow cable catcher are movable with respect to the tube in longitudinal direction thereof, wherein the tube is mounted to the carrier and movable with respect to the carrier in a direction parallel to the first leg, wherein the tube is lockable with respect to the carrier and the tow cable catcher is lockable with respect to the tube. In the rope receiving position the free end of the second leg may lie at a distance from the tube as seen along the tube. When the hook must be moved from its rope receiving position towards its rope clamping position the tube and the hook must be moved together with respect to the carrier during which the tow cable catcher may be locked with respect to the tube. When the hook is moved in opposite direction from its rope clamping position the tube can be locked with respect to the carrier and the tow cable catcher can be de-locked with respect to the tube such that upon pulling the clamped tow rope the hook moves out of the tube and may take the tow cable catcher to a position where the T-shaped element projects from the tow rope receiving surface of the carrier such that the tow cable can be released from the cable catcher.
After finalizing a towing operation the tow cable including the hook is dropped by the towed vessel and can be drawn back. The T-shaped element can be positioned in its catching position and the tube can be positioned to a location in which the T-shaped element also projects from the tube. When the tube is locked in this position and the T-shaped element catches the tow cable the T-shaped element can be moved into the tube. It can be locked with respect to the tube in its guiding position and the hook can be moved towards the tube by drawing the tow cable, for example by a towing winch. During the latter operation the T-shaped element guides the tow cable.
The lateral parts of the T-shaped element preferably fit inside the tube such that the tow cable cannot escape between the lateral parts and the tube when the T-shaped element is in its guiding position.
The hook support and the first leg may be adapted such that the hook has a final number of discrete positions in rotational direction about the first leg in its rope receiving position. This provides one or more predefined orientations of the hook with respect to the hook support.
In a specific embodiment one of the first leg and the hook support has a protrusion and the other one of the first leg and the hook support has a guiding surface for guiding the protrusion upon linking the first leg to the hook support. This is a simple structure for bringing the hook in a desired orientation with respect to the hook support.
At least one of the first leg and the second leg may have a decreasing thickness in transverse direction of the main plane as seen in a direction towards each other. This provides an appropriate clamping force on a tow rope.
The distance between the first leg and the second leg may decrease progressively in a direction from the opening to the hook bottom, for example substantially exponentially, which results in reliable clamping performance of the tow rope.
At least a portion of the tow cable may be resilient, for example a portion at or close to the hook. Such a resilient portion of the tow cable may have a lower elastic modulus than the remainder of the tow cable. This avoids excessive forces between the hook member and the hook support upon linking the hook to the hook support. This might typically occur in case the tow cable is drawn by a heavy-duty towing winch which may not stop immediately upon switching it off.
Aspects of the invention will hereafter be elucidated with reference to very schematic drawings showing an embodiment of the invention by way of example.
The first leg 7 of the hook member 6 has a through-hole 15 through which a shackle of the tow cable 5 passes, see
The hook member 6 is linkable to a hook support 16 such that it is supported by the hook support 16. The hook support 16 comprises a carrier 27 which is movable on two parallel rails along the gunwale 2. The hook support as shown in the figures comprises an upwardly directed tube 17 in which a portion of the first leg 7 of the hook member 6 fits against an abutment. The tube 17 is mounted to the carrier 27 and moveable with respect thereto in longitudinal direction of the first leg 7.
The tube 17 and the first leg 7 are adapted such that the hook member 6 has two discrete positions with respect to the tube 17 in rotational direction about the first leg 7 in its rope receiving position. Hence, the upper end of the tube 17 is able to bring the hook member 6 in a predetermined orientation upon moving it into the tube 17.
The tube 17 is displaceable in vertical direction with respect to the carrier 27 by a first hydraulic cylinder 25 between an upper position in which the hook member 6 is in the rope receiving position and the tube 17 projects upwardly from the upper surface 19 and a lower position in which the hook member 6 is in the rope clamping position and the upper end of the tube 17 is located below the upper surface 19. It is also conceivable that the upper end of the tube 17 is located at substantially the same level as the upper surface 19.
The tow cable catcher 18 is displaceable with respect to the tube 17 in vertical direction of the tube 17 by a second hydraulic cylinder 26. In the situation as shown in
In order to fix the tow rope 14 to the hook member 6 the hook member 6 has temporarily a fixed position with respect to the tube 17, after which the tube 17 including the hook member 6 is moved downwardly with respect to the upper surface 19 from the rope receiving position downwardly by the first hydraulic cylinder 25, but alternative driving mechanisms are conceivable. The upper surface 19 is provided with two slots 21 which extend at opposite sides of the tube 17 in the main plane of the hook member 6 when this is in the rope receiving position. The second and third legs 8, 9 of the hook member 6 fit in the respective slots 21. Hence, when the tow rope 14 is located at the opening 12 and the hook member 6 is moved downwardly the tow rope 14 is pressed towards the hook bottom 10 by opposite edges of one of the slots 21 by moving the tube 17 including the hook member 6 downwardly with respect to the carrier 27. This is illustrated in
After the towing operation is finished the vessel which was towed will detach the tow cable 5 including the hook member 6 and launch it back to the tugboat 1. The towing winch 4 will draw the tow cable 5 until it is located at the gunwale 2 as illustrated in
The upper end of the tube 17 and the hook member 6 are shaped such that the hook member 6 is forced in a predefined rotational position with respect to the tube 17 when entering the tube 17.
The exterior side of the carrier 27 is provided with curved edges in order to facilitate guidance of the tow rope 14 and the tow cable 5 towards the hook member 6 and the cable catcher 18, respectively, upon moving the carrier 27 along the gunwale 2.
The invention is not limited to the embodiment shown in the drawings and described hereinbefore, which may be varied in different manners within the scope of the claims and their technical equivalents. For example, the hydraulic cylinders may be replaced by electrically operated cylinders or alternative drive devices.
Number | Date | Country | Kind |
---|---|---|---|
18156858 | Feb 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/053837 | 2/15/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/158702 | 8/22/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
86737 | De Mesnil et al. | Feb 1869 | A |
124326 | Buchanan | Mar 1872 | A |
20060102060 | Vila Boixadera et al. | May 2006 | A1 |
Number | Date | Country |
---|---|---|
1535831 | Jun 2005 | EP |
1010650 | May 2000 | NL |
Entry |
---|
International Search Report dated Mar. 6, 2019, for corresponding International Patent Application No. PCT/EP2019/053837, filed Feb. 15, 2019. |
Written Opinion of the International Searching Authority dated Mar. 6, 2019, for corresponding international Patent Application No. PCT/EP2019/053837, filed Feb. 15, 2019. |
Number | Date | Country | |
---|---|---|---|
20200398942 A1 | Dec 2020 | US |