Vessel sealing forceps with disposable electrodes

Information

  • Patent Grant
  • 9107672
  • Patent Number
    9,107,672
  • Date Filed
    Wednesday, July 19, 2006
    18 years ago
  • Date Issued
    Tuesday, August 18, 2015
    9 years ago
Abstract
A removable electrode assembly for use in combination with a forceps having opposing end effectors and a handle for effecting movement of the end effectors relative to one another. The electrode assembly includes a housing which is removably engageable with the forceps and a pair of electrodes which are attachable to a distal end of the housing. The electrodes are removably engageable with the end effectors of the forceps such that the electrodes reside in opposing relation relative to one another. The electrode assembly also includes a cover plate which is removably attachable to the housing and at least one stop member for controlling the distance between the opposing electrodes. The stop member is selectively engageable with the electrodes.
Description
BACKGROUND

The present disclosure relates to electrosurgical forceps used for open surgical procedures and/or laparoscopic surgical procedures. More particularly, the present disclosure relates to a bipolar forceps having a disposable electrode assembly for sealing, cauterizing, coagulating/desiccating and/or cutting vessels and vascular tissue.


TECHNICAL FIELD

A hemostat or forceps is a simple plier-like tool which uses mechanical action between its jaws to constrict tissue and is commonly used in open surgical procedures to grasp, dissect and/or clamp tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize, cut and/or seal tissue.


By utilizing an electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or cut tissue and/or simply reduce or slow bleeding, by controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue. Generally, the electrical configuration of electrosurgical forceps can be categorized in two classifications: 1) monopolar electrosurgical forceps; and 2) bipolar electrosurgical forceps.


Monopolar forceps utilize one active electrode associated with the clamping end effector and a remote patient return electrode or pad which is attached externally to the patient. When the electrosurgical energy is applied, the energy travels from the active electrode, to the surgical site, through the patient and to the return electrode.


Bipolar electrosurgical forceps utilize two generally opposing electrodes which are disposed on the inner opposing surfaces of end effectors and which are both electrically coupled to an electrosurgical generator. Each electrode is charged to a different electric potential. Since tissue is a conductor of electrical energy, when the effectors are utilized to clamp or grasp tissue therebetween, the electrical energy can be selectively transferred through the tissue.


The process of coagulating small vessels is fundamentally different than vessel sealing. For the purposes herein the term coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. Vessel sealing is defined as the process of liquefying the collagen in the tissue so that it cross-links and reforms into a fused mass. Thus, coagulation of small vessels is sufficient to close them, however, larger vessels need to be sealed to assure permanent closure.


In order to effect a proper seal with larger vessels, two predominant mechanical parameters must be accurately controlled—the pressure applied to the vessel and the gap between the electrodes both of which affect thickness of the sealed vessel. More particularly, accurate application of the pressure is important to oppose the walls of the vessel, to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue, to overcome the forces of expansion during tissue heating and to contribute to the end tissue thickness which is an indication of a good seal. In some instances a fused vessel wall is optimum between 0.001 and 0.006 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.


Numerous bipolar electrosurgical forceps have been proposed in the past for various open surgical procedures. However, some of these designs may not provide uniformly reproducible pressure to the blood vessel and may result in an ineffective or non-uniform seal. For example, U.S. Pat. No. 2,176,479 to Willis, U.S. Pat. Nos. 4,005,714 and 4,031,898 to Hiltebrandt, U.S. Pat. Nos. 5,827,274, 5,290,287 and 5,312,433 to Boebel et al., U.S. Pat. Nos. 4,370,980, 4,552,143, 5,026,370 and 5,116,332 to Lottick, U.S. Pat. No. 5,443,463 to Stern et al., U.S. Pat. No. 5,484,436 to Eggers et al. and U.S. Pat. No. 5,951,549 to Richardson et al., all relate to electrosurgical instruments for coagulating, cutting and/or sealing vessels or tissue. However, some of these designs may not provide uniformly reproducible pressure to the blood vessel and may result in an ineffective or non-uniform seal.


Many of these instruments include blade members or shearing members which simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes. Other instruments rely on clamping pressure alone to procure proper sealing thickness and are not designed to take into account gap tolerances and/or parallelism and flatness requirements which are parameters which, if properly controlled, can assure a consistent and effective tissue seal. For example, it is known that it is difficult to adequately control thickness of the resulting sealed tissue by controlling clamping pressure alone for either of two reasons: 1) if too much force is applied, there is a possibility that the two poles will touch and energy will not be transferred through the tissue resulting in an ineffective seal; or 2) if too low a force is applied, a thicker less reliable seal is created.


It has also been found that cleaning and sterilizing many of the prior art bipolar instruments is often impractical as electrodes and/or insulation can be damaged. More particularly, it is known that electrically insulative materials, such as plastics, can be damaged or compromised by repeated sterilization cycles.


Thus, a need exists to develop a bipolar forceps which can seal vessels and tissue consistently and effectively and which will not be damaged by continued use and cleaning.


SUMMARY

The present disclosure relates to a removable electrode assembly for use with a forceps having opposing end effectors and a handle for effecting relative movement of the end effectors with respect to one another. The electrode assembly includes a cover plate having at least one portion which is removably engageable with at least a portion of the forceps and an electrode housing having at least one portion which is removably engageable with at least a portion of the forceps. A pair of electrodes attaches to a distal end of the housing. Preferably, the electrodes are removably engageable with the end effectors of the forceps such that the electrodes are disposed in opposing relation to one another. The instrument also includes at least one stop member which controls the distance between the opposing electrodes. Preferably, the stop members being selectively engageable with the electrodes. The electrode assembly can be employed with both open surgical procedures as well as laparoscopic surgical procedures.


In one embodiment, the electrodes include an electrically conductive sealing surface and an insulating substrate and the stop member is removably attached to the insulating substrate. Preferably, the insulating substrate of each of the electrodes includes at least one mechanical interface, e.g., detent, for engaging a complimentary mechanical interface, e.g., notch, disposed on the corresponding end effector of the forceps.


In another embodiment, the substrate includes at least one detent and the mechanical interface of the corresponding end effector includes at least one complimentary key-like socket for slideably and securely receiving the detent.


In yet another embodiment, the stop member is attached to at least one of the electrodes by thermal spraying and protrudes about 0.001 inches to about 0.005 inches from the inner facing surface of the jaw member. Preferably, the stop member protrudes about 0.002 inches to about 0.003 inches from the inner facing surface of the jaw member.


Another embodiment of the present disclosure relates to a bipolar electrosurgical instrument which includes a forceps having opposing end effectors and a handle for effecting relative movement of the end effectors with respect to one another and an electrode assembly which is removably attached to the forceps. The electrode assembly includes a pair of opposing electrodes attached to a distal end thereof which are removably engageable with one of the end effectors such that the electrodes reside in opposing relation to one another. At least one stop member which is selectively engageable with the electrodes controls the distance between the opposing electrodes.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1 is a perspective view of a bipolar forceps according to the present disclosure;



FIG. 2 is an enlarged, perspective view of a distal end of the bipolar forceps shown in FIG. 1;



FIG. 3 is a perspective view with parts separated of the forceps shown in FIG. 1;



FIG. 4 is an enlarged, side view of a disposable electrode assembly of FIG. 1 shown without a cover plate;



FIG. 5 is an enlarged, perspective view of a distal end of the disposable electrode assembly of FIG. 4;



FIG. 6 is a perspective view with parts separated of an upper electrode of the disposable electrode assembly of FIG. 5;



FIG. 7 is a perspective view with parts separated of a lower electrode of the disposable electrode assembly of FIG. 5;



FIG. 8 is a perspective view of the forceps of the present disclosure showing the operative motion of the forceps to effect sealing of a tubular vessel;



FIG. 9 is an enlarged, partial perspective view of a sealing site of a tubular vessel;



FIG. 10 is a longitudinal cross-section of the sealing site taken along line 10-10 of FIG. 9;



FIG. 11 is a longitudinal cross-section of the sealing site of FIG. 9 after separation of the tubular vessel;



FIG. 12 is a perspective view of another embodiment of the present disclosure;



FIG. 13 is an exploded view of the embodiment of FIG. 12;



FIG. 14 is an enlarged exploded view of a working end of the embodiment of FIGS. 12 and 13;



FIG. 15A-15C show various views of another embodiment according to the present disclosure showing stop members which are configured as plugs to selectively attach to inner facing surfaces of the jaw members; and



FIG. 16A-16B show various views of another embodiment according to the present disclosure wherein the electrode assembly engages the forceps in a slide-like manner.





DETAILED DESCRIPTION

Referring now to FIGS. 1-3, a bipolar forceps 10 for use with open and/or laparoscopic surgical procedures includes a mechanical forceps 20 and an electrode assembly 21. In the drawings and in the description which follows, the term “proximal”, as is traditional, will refer to the end of the forceps 10 which is closer to the user, while the term “distal” will refer to the end which is further from the user.


Mechanical forceps 20 includes first and second members 9 and 11 which each have an elongated shaft 12 and 14, respectively. Shafts 12 and 14 each include a proximal end 13 and 15 and a distal end 17 and 19, respectively. Each proximal end 13, 15 of each shaft portion 12, 14 includes a handle member 16 and 18 attached thereto to allow a user to effect movement of at least one of the shaft portions 12 and 14 relative to one another. Extending from the distal end 17 and 19 of each shaft portion 12 and 14 are end effectors 22 and 24, respectively. The end effectors 22 and 24 are movable relative to one another in response to movement of handle members 16 and 18.


Preferably, shaft portions 12 and 14 are affixed to one another at a point proximate the end effectors 22 and 24 about a pivot 25 such that movement of the handles 16 and 18 impart movement of the end effectors 22 and 24 from an open position wherein the end effectors 22 and 24 are disposed in spaced relation relative to one another to a clamping or closed position wherein the end effectors 22 and 24 cooperate to grasp a tubular vessel 150 therebetween (see FIG. 8). It is envisioned that pivot 25 has a large surface area to resist twisting and movement of forceps 10 during operation. Clearly, the forceps 10 can be designed such that movement of one or both of the handles 16 and 18 will only cause one of the end effectors, e.g., 22, to move with respect to the other end effector, e.g., 24.


As best seen in FIG. 3, end effector 24 includes an upper or first jaw member 44 which has an inner facing surface 45 and a plurality of mechanical interfaces disposed thereon which are dimensioned to releasable engage a portion of a disposable electrode assembly 21 which will be described in greater detail below. Preferably, the mechanical interfaces include sockets 41 which are disposed at least partially through inner facing surface 45 of jaw member 44 and which are dimensioned to receive a complimentary detent attached to upper electrode 120 of the disposable electrode assembly 21. While the term socket is used herein, it is contemplated that either a male or female mechanical interface may be used on jaw member 44 with a mating mechanical interface disposed on the disposable electrode assembly 21.


In some cases, it may be preferable to manufacture mechanical interfaces 41 along another side of jaw member 44 to engage a complimentary mechanical interface of the disposable electrode assembly 21 in a different manner, e.g., from the side. Jaw member 44 also includes an aperture 67 disposed at least partially through inner face 45 of end effector 24 which is dimensioned to receive a complimentary guide pin 124 disposed on electrode 120 of the disposable electrode assembly 21.


End effector 22 includes a second or lower jaw member 42 which has an inner facing surface 47 which opposes inner facing surface 45. Preferably, jaw members 45 and 47 are dimensioned generally symmetrically, however, in some cases it may be preferable to manufacture the two jaw members 42 and 44 asymmetrically depending upon a particular purpose. In much the same fashion as described above with respect to jaw member 44, jaw member 42 also includes a plurality of mechanical interfaces or sockets 43 disposed thereon which are dimensioned to releasable engage a complimentary portion disposed on an electrode 110 of the disposable electrode assembly 21 as described below. Likewise, jaw member 42 also includes an aperture 65 disposed at least partially through inner face 47 which is dimensioned to receive a complimentary guide pin 126 (see FIG. 4) disposed on electrode 110 of the disposable electrode assembly 21.


Preferably, shaft members 12 and 14 of the mechanical forceps 20 are designed to transmit a particular desired force to the opposing inner facing surfaces 47 and 45 of the of the jaw members 22 and 24, respectively, when clamped. In particular, since the shaft members 12 and 14 effectively act together in a spring-like manner (i.e., bending that behaves like a spring), the length, width, height and deflection of the shaft members 12 and 14 will directly effect the overall transmitted force imposed on opposing jaw members 42 and 44. Preferably, jaw members 22 and 24 are more rigid than the shaft members 12 and 14 and the strain energy stored in the shaft members 12 and 14 provides a constant closure force between the jaw members 42 and 44.


Each shaft member 12 and 14 also includes a ratchet portion 32 and 34. Preferably, each ratchet, e.g., 32, extends from the proximal end 13 of its respective shaft member 12 towards the other ratchet 34 in a generally vertically aligned manner such that the inner facing surfaces of each ratchet 32 and 34 abut one another when the end effectors 22 and 24 are moved from the open position to the closed position. Each ratchet 32 and 34 includes a plurality of flanges 31 and 33, respectively, which project from the inner facing surface of each ratchet 32 and 34 such that the ratchets 32 and 34 can interlock in at least one position. In the embodiment shown in FIG. 1, the ratchets 32 and 34 interlock at several different positions. Preferably, each ratchet position holds a specific, i.e., constant, strain energy in the shaft members 12 and 14 which, in turn, transmit a specific force to the end effectors 22 and 24 and, thus, the electrodes 120 and 110. A design without a ratchet system or similar system would require the user to hold the jaw members 42 and 44 together by applying constant force to the handles 16 and 18 which may yield inconsistent results.


In some cases it may be preferable to include other mechanisms to control and/or limit the movement of the jaw members 42 and 44 relative to one another. For example, a ratchet and pawl system could be utilized to segment the movement of the two handles into discrete units which will, in turn, impart discrete movement to the jaw members 42 and 44 relative to one another.


Preferably, at least one of the shaft members, e.g., 14, includes a tang 99 which facilitates manipulation of the forceps 20 during surgical conditions as well as facilitates attachment of electrode assembly 21 on mechanical forceps 20 as will be described in greater detail below.


As best seen in FIGS. 2, 3 and 5, disposable electrode assembly 21 is designed to work in combination with mechanical forceps 20. Preferably, electrode assembly 21 includes housing 71 which has a proximal end 77, a distal end 76 and an elongated shaft plate 78 disposed therebetween. A handle plate 72 is disposed near the proximal end 77 of housing 71 and is sufficiently dimensioned to releasably engage and/or encompass handle 18 of mechanical forceps 20. Likewise, shaft plate 78 is dimensioned to encompass and/or releasably engage shaft 14 and pivot plate 74 disposed near the distal end 76 of housing 71 is dimensioned to encompass pivot 25 and at least a portion of distal end 19 of mechanical forceps 20. It is contemplated that the electrode assembly 21 can be manufactured to engage either the first or second members 9 and 11 of the mechanical forceps 20 and their respective component parts 12, 16 or 14, 18, respectively.


In the embodiment shown in FIG. 2, handle 18, shaft 14, pivot 25 and a portion of distal end 19 are all dimensioned to fit into corresponding channels located in housing 71. For example, a channel 139 is dimensioned to receive handle 18, a channel 137 is dimensioned to receive shaft 14 and a channel 133 is dimensioned to receive pivot 25 and a portion of distal end 19.


Electrode assembly 21 also includes a cover plate 80 which is also designed to encompass and/or engage mechanical forceps 20 in a similar manner as described with respect to the housing 71. More particularly, cover plate 80 includes a proximal end 85, a distal end 86 and an elongated shaft plate 88 disposed therebetween. A handle plate 82 is disposed near the proximal end 85 and is preferably dimensioned to releasable engage and/or encompass handle 18 of mechanical forceps 20. Likewise, shaft plate 88 is dimensioned to encompass and/or releasable engage shaft 14 and a pivot plate 94 disposed near distal end 86 is designed to encompass pivot 25 and distal end 19 of mechanical forceps 20. Preferably, handle 18, shaft 14, pivot 25 and distal end 19 are all dimensioned to fit into corresponding channels (not shown) located in cover plate 80 in a similar manner as described above with respect to the housing 71.


As best seen with respect to FIGS. 3 and 4, housing 71 and cover plate 80 are designed to engage one another over first member 11 of mechanical forceps 20 such that first member 11 and its respective component parts, e.g., handle 18, shaft 14, distal end 19 and pivot 25, are disposed therebetween. Preferably, housing 71 and cover plate 80 include a plurality of mechanical interfaces disposed at various positions along the interior of housing 71 and cover plate 80 to effect mechanical engagement with one another. More particularly, a plurality of sockets 73 are disposed proximate handle plate 72, shaft plate 78 and pivot plate 74 of housing 71 and are dimensioned to releasably engage a corresponding plurality of detents 83 extending from cover plate 80. It is envisioned that either male or female mechanical interfaces or a combination of mechanical interfaces may be disposed within housing 71 with mating mechanical interfaces disposed on or within cover plate 80.


As best seen with respect to FIGS. 5-7, the distal end 76 of electrode assembly 21 is bifurcated such that two prong-like members 103 and 105 extend outwardly therefrom to support an electrode 110 and 120, respectively. More particularly, electrode 120 is affixed at an end 90 of prong 105 and electrode 110 is affixed at an end 91 of prong 103. It is envisioned that the electrodes 110 and 120 can be affixed to the ends 91 and 90 in any known manner such as, e.g., frictional or snap-fit engagement.


A pair of wires 60 and 62 are connected to the electrodes 120 and 110, respectively, as best seen in FIGS. 4 and 5. Preferably, wires 60 and 62 are bundled together and form a wire bundle 28 which runs from a terminal connector 30 (see FIG. 3), to the proximal end 77 of housing 71, along the interior of housing 71, to distal end 76. Wire bundle 28 is separated into wires 60 and 62 proximate distal end 76 and the wires 60 and 62 are connected to each electrode 120 and 110, respectively. In some cases it may be preferable to capture the wires 60 and 62 or the wire bundle 28 at various pinch points along the inner cavity of the electrode assembly 21 and enclosing the wires 60 and 62 within electrode assembly 21 by attaching the cover plate 80.


This arrangement of wires 60 and 62 is designed to be convenient to the user so that there is little interference with the manipulation of bipolar forceps 10. As mentioned above, the proximal end of the wire bundle 28 is connected to a terminal connector 30, however, in some cases it may be preferable to extend wires 60 and 62 to an electrosurgical generator (not shown). Alternatively, wires 60 and 62 can remain separated and extend along the first and second members 9 and 11.


As best seen in FIG. 6, electrode 120 includes an electrically conductive seal surface 126 and an electrically insulative substrate 121 which are attached to one another by snap-fit engagement or some other method of assembly, e.g., substrate 121 is overmolded to capture the electrically conductive seal surface 126. Preferably, substrate 121 is made from an injection molded plastic material and is shaped to mechanically engage a corresponding socket 41 located in jaw member 44 of end effector 24. The substrate 121 not only insulates the electric current but it also aligns electrode 120 both of which contribute to the seal quality and consistency. For example, by overmolding the conductive surface 126 to the substrate 121, the alignment and thickness of the electrode 120 can be controlled.


Preferably, substrate 121 includes a plurality of bifurcated detents 122 which are shaped to compress during insertion into sockets 41 and expand and releasably engage sockets 41 after insertion. It is envisioned that snap-fit engagement of the electrode 120 and the jaw member 44 will accommodate a broader range of manufacturing tolerances. Substrate 121 also includes an alignment or guide pin 124 which is dimensioned to engage aperture 67 of jaw member 44.


Conductive seal surface 126 includes an wire crimp 145 designed to engage the distal end 90 of prong 105 of electrode assembly 21 and electrically engage a corresponding wire connector affixed to wire 60 located within electrode assembly. Seal surface 126 also includes an opposing face 125 which is designed to conduct an electrosurgical current to a tubular vessel or tissue 150 when it is held thereagainst.


Electrode 110 includes similar elements for insulating and conducting electrosurgical current to tissue 150. More particularly, electrode 110 includes an electrically conductive seal surface 116 and an electrically insulative substrate 111 which are attached to one another by snap-fit engagement or some other method of assembly. Substrate 111 includes a plurality of bifurcated detents 112 and an alignment pin 126 (see FIG. 4) which are dimensioned to engage a corresponding plurality of sockets 43 and aperture 65 located in jaw member 42. Conductive seal surface 116 includes an extension 155 having a wire crimp 119 which engages the distal end 91 of prong 103 and electrically engages a corresponding wire connector affixed to wire 62 located in housing 71. Seal surface 116 also includes an opposing face 115 which conducts an electrosurgical current to a tubular vessel or tissue 150 when it is held thereagainst. Alternatively, electrodes 110 and/or 120 can be formed as one piece and include similar components for insulating and conducting electrical energy.


As best seen in FIG. 7, substrate 111 also includes an extension 108 and a stop member 106 which is designed to engage corresponding extension 155 and an interface 107 located on conductive seal 116. To assemble electrode 110, stop member 106 and extension 108 are overmolded onto interface 107 and extension 155 of conductive seal 116. After assembly, wire crimp 119 is then inserted into end 91 of prong member 103 and connected to wire 62.


It is known that as the tissue is compressed and electrosurgical energy is applied to the tissue, the impedance of the tissue decreases as the moisture level decreases. As a result, two mechanical factors play an important role in determining seal thickness and effectiveness, i.e., the pressure applied between opposing faces 47 and 45 and the gap distance between the opposing electrodes 110 and 120 (see FIG. 5). Jaw members 42 and 44 are configured to provide for the opposing electrodes 110 and 120 to be in a desired gap range (e.g., 0.001 and 0.006 inches) at the end of the tissue sealing process (See FIG. 8). The material conditions and components relating to the assembly of the electrode assembly 21 and the mechanical forceps 20 are configured to fall within specific manufacturing tolerances to assure that the gap between electrodes will not vary outside the desired range.


It is also known that tissue thickness is very difficult to control by force alone, i.e., too much force and the two poles would touch and the little energy would travel through the tissue resulting in a bad seal or too little force and the seal would be too thick. Applying the correct force is important for other reasons: to oppose the vessel lumens; reduce the tissue impedance to a low enough value that allows enough current through the tissue; and to overcome the forces of expansion during tissue heating in addition to contributing towards creating the required end tissue thickness which is an indication of a good seal.


It is also known that the size of the gap effects the tissue seal. For example, if a gap is too great, i.e., the jaws do not compress the tissue enough, the tissue does not properly liquefy the collagen for effective sealing. If, on the other hand, the gap is too small, i.e., the jaws compress the tissue too much, the electrosurgical energy effectively severs the tissue which is also undesirous. It has been found that in order to effectively seal tissue and overcome the shortcomings described above, the gap distance (range) 151 (See FIG. 8) between the opposing electrodes 110 and 120 is preferably between about 0.001 inches to about 0.006 inches and more preferably, between about 0.002 inches to about 0.005 inches.


In order to assure that the desired gap range is achieved after assembly and that the correct force is applied to seal the tissue, substrate 111 includes at least one stop member, 106, which is designed to restrict and/or regulate movement of the two electrodes 110 and 120 relative to one another. Preferably, forceps 20 also includes at least one stop member, e.g., 101 (see FIG. 3), for restricting and/or regulating the distance between end effectors 22 and 24 and/or the closure force applied between opposing inner facing surfaces 47 and 45 of end effectors 22 and 24 which will, in turn, regulate the distance between electrodes 110 and 120. Since stop 106 is part of the disposable electrode assembly 21, this stop has the added benefit of being dependent on the material of the disposable electrode assembly 21. Preferably, a “step” stop is utilized due to its ease of manufacture and simplicity.


It is contemplated that the stop member can be positioned at various points along the disposable electrode assembly to achieve the aforedescribed desired gap range and/or the stop member can be positioned on other parts of the instrument, e.g., handles 16, 18, jaws 42, 44, and/or shafts 12, 14.


Preferably, the seal surfaces 115 and 125 are relatively flat to avoid current concentrations at sharp edges and to avoid arcing between high points. In addition and due to the reaction force of the tissue 150 when engaged, jaw members 42 and 44 are preferably manufactured to resist bending. For example and as best seen in FIG. 3, the jaw members 42 and 44 and the corresponding electrodes 110 and 120 are preferably tapered along width “W” which is advantageous for two reasons: 1) the taper will apply constant pressure for a constant tissue thickness at parallel; 2) the thicker proximal portion of the electrode, e.g., 110, will resist bending due to the reaction force of the tissue 150. The tapered shape of the electrode, e.g., 110, is determined by calculating the mechanical advantage variation from the distal to proximal end of the electrode 110 and adjusting the width of the electrode 110 accordingly.


Preferably, at least one of the prong members, e.g., 105, is resilient or includes a flex relief portion 53 which permits movement of the two prong members 105 and 103 and, thus, the two electrodes 120 and 110, relative to one another. As seen best in FIG. 3, the electrode assembly 21 is removably attached to the mechanical forceps 20 by initially moving prong 105 towards prong 103 by bending prong 105 at flex relief portion 53. The electrodes 110 and 120 are then slid between opposing jaw members 42 and 44 in their open position such that detents 112 and 122 and guide pins 126 and 124, respectively, are each disposed in alignment with each corresponding socket 43 and 41 or aperture 65 and 67, respectively. Housing 71 is also positioned accordingly such that shaft 14, handle 18 and pivot 25 are all positioned proximate their corresponding channels 137, 139 and 133 located within housing 71.


When flex relief portion 53 is released, each electrode 110 and 120 is engaged with jaw member 42 and 44, respectively, i.e., detents 112, 122 engage sockets 43, 41, and housing 71 is engaged with mechanical forceps 20. The cover plate 80 is then attached to housing 71 in the manner described above. The bipolar forceps 10 is now ready for operation.


In one embodiment, the electrode assembly 21 is attached to the mechanical forceps 20 in a different manner: For example and as best illustrated in FIG. 3, the electrode assembly 21 can be engaged with the mechanical forceps 20 in the following four-step manner: 1) electrode assembly 21 and cover plate 80 are pivoted backward such that tang 99 engages a slot 100 in electrode assembly 21; 2) electrode assembly 21 and cover plate 80 are then pivoted forward to engage shaft 14 of mechanical forceps 20 therebetween; 3) detents 112 of electrode 110 are then engaged with sockets 43 of jaw member 22; and 4) detents 122 of electrode 120 are engaged with sockets 41 of jaw member 24.


In another embodiment, the electrode assembly 21 engages the forceps 20 by way of a slide-on assembly technique. More particularly, the slide-on version includes a series of keyhole-like apertures 541 disposed in the end effectors 22 and 24 which slidingly engage the corresponding mechanical interfaces 112, 122 and 124 extending from the insulators 111 and 121, respectively. It is envisioned that the slide-on attachment feature facilitates removal and replacement of the electrode assembly 21 and reduces manufacturing costs by minimizing the critical tolerances of the detents 112, 122 and alignment pins 126.


Further, it is contemplated that a slide-on assembly method compared to a snap-on assembly method may improve reliability of the forceps 20 due to less plastic deformation at assembly. For example, the snap-on technique requires deformation of the fork-like detents 112, 122 to promote secure engagement of the electrode assembly 21 with the end effectors 22 and 24. As can be appreciated, the less aggressive, slide-on technique reduces material deformation during assembly which, in turn, may lengthen the overall life of the instrument, prevent slippage of the electrode assembly 21 and prevent separation of the electrode assembly 21 during activation.


Further, it is contemplated that even though the slide-on assembly technique may engage the electrode assembly 21 in a less aggressive manner during assembly, the uniquely-designed key-like interface 541, once engaged, provides a more aggressive connection which contributes to better “seating” of the electrode assembly 21 within the end effectors 22 and 24. Again, the more aggressive seating of the electrode assembly 21 prevents slippage of the electrode assembly 21 and prevents separation of the electrode assembly 21 during activation.



FIG. 8 shows the bipolar forceps 10 during use wherein the handle members 16 and 18 are moved closer to one another to apply clamping force to the tubular tissue 150 to effect a seal 152 as shown in FIGS. 9 and 10. Once sealed, the tubular vessel 150 can be cut along seal 152 to separate the tissue 150 and form gap 154 therebetween as shown in FIG. 11.


After the bipolar forceps 10 is used or if the electrode assembly 21 is damaged, the electrode assembly 21 can be easily removed and/or replaced by reversing the above attachment procedure and a new electrode assembly 21 can be engaged with the mechanical forceps 20 in the same manner. For example, the electrode assembly 21 can be disengaged from the mechanical forceps 20 in the following four-step manner: 1) the detents 122 of electrode 120 are disengaged from the sockets 41 of jaw member 24; 2) the detents 112 of electrode 110 are disengaged from the sockets 43 of jaw member 22; 3) the electrode assembly 21 and cover plate 80 are disengaged from shaft 14 of mechanical forceps 20; and 4) the electrode assembly 21 and cover plate 80 are pivoted such that tang 99 disengages from slot 100 in electrode assembly 21.


It is envisioned that by making the electrode assembly 21 disposable, the electrode assembly 21 is less likely to become damaged since it is only intended for a single use and, therefore, does not require cleaning or sterilization. As a result, the functionality and consistency of the vital sealing components, e.g., the conductive surface 126, 116 and insulating surface 121, 111 will assure a uniform and quality seal.



FIGS. 12-14 show another embodiment of the present disclosure for use with endoscopic surgical procedures and includes a bipolar forceps 210 having a drive rod assembly 211 coupled to a handle assembly 218. The drive rod assembly 211 includes an elongated hollow shaft portion 212 having a proximal end 216 and a distal end 214. An end effector assembly 222 is attached to the distal end 214 of shaft 212 and includes a pair of opposing jaw members 280 and 282. Preferably, handle assembly 218 is attached to the proximal end 216 of shaft 212 and includes an activator 220 for imparting movement of the jaw members 280 and 282 from an open position wherein the jaw members 280 and 282 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 280 and 282 cooperate to grasp tissue 150 therebetween.


As best seen in FIG. 13, activator 220 includes a movable handle 226 having an aperture 234 defined therein for receiving at least one of the operator's fingers and a fixed handle 228 having an aperture 232 defined therein for receiving an operator's thumb. Movable handle 226 is selectively moveable from a first position relative to fixed handle 228 to a second position in closer proximity to the fixed handle 228 to close jaw members 280 and 282. Preferably, fixed handle 228 includes a channel 227 which extends proximally for receiving a ratchet 230 which is coupled to movable handle 226. This structure allows for progressive closure of end effector assembly 222 as well as locking engagement of opposing jaw members 280 and 282. In some cases it may be preferable to include other mechanisms to control and/or limit the movement of handle 226 relative to handle 228 such as, e.g., hydraulic, semi-hydraulic and/or gearing systems.


Fixed handle 228 includes a rotating assembly 223 for controlling the rotational movement of end effector assembly 222 about a longitudinal axis “A” of the elongated shaft 212. Preferably, rotating assembly 223 includes upper and lower knob portions 224a and 224b, respectively, which releasably engage one another about a gear 252 which is attached to shaft 212. A pair of handle sections 228a and 2228b engage one another by way of a plurality of mechanical interfaces to form fixed handle 228. As best seen in FIG. 13, each handle section 228a and 228b is generally hollow such that a cavity 250 is formed therein for housing various internal components which make up the forceps 210. For example, cavity 250 houses a PC board 258 which controls the electrosurgical energy being transmitted from an electrosurgical generator (not shown) to each jaw member 280 and 282. More particularly, electrosurgical energy is generated from an electrosurgical generator and transmitted to the PC board by cable 260 which attached through a wire port 229 disposed in the proximal end of handle assembly 218. The PC board 258 converts the electrosurgical energy from the generator into two different electrical potentials which are transmitted to each jaw member 280 and 282 by a separate terminal clip 264b and 264a, respectively, which will be explained in more detail below with respect to FIG. 14.


Referring to FIG. 14, rod assembly 211 includes a drive rod 270 which has a proximal end 271 and a distal end 272. A piston 238 is attached to the proximal end 271 of drive rod 270 and includes a generally rounded head portion 239 and a notch 241 located between the head portion 239 and the proximal end of piston 238. Preferably, clevis flanges 249a and 249b of arm 240 are dimensioned to receive head 239 therebetween when arm 240 is assembled between handle sections 228a and 228b (see FIG. 6). Movement of the handle 226 towards fixed handle 228 imparts pivotal movement of the upper end 245 of arm 240 at a pivot point 255 which, in turn, imparts movement of the piston 238 from a first position wherein the piston 238 is disposed further from end effector assembly 222 to a second position wherein piston 238 is in closer proximity to end effector assembly 222. As explained in greater detail below, movement of the piston 238 between first and second positions imparts linear movement to drive rod 270 which, in turn, moves jaw members 280 and 282 toward and away from each other.


Seating the generally rounded head 239 between clevis flanges 249a and 249b enables the user to utilize the rotating assembly 223 effectively without interfering with the linear movement of the piston 238.


The end effector assembly 222 includes first jaw 280, second jaw 282 and an electrically insulating yoke 284 disposed therebetween. Preferably, jaw member 280 and jaw member 282 are movable from an open position to a closed position by movement of the handle assembly 218 as described above. It is contemplated that either both or one of the jaw members 280 and 282 can be movable relative to one another. First jaw member 280 has a first flange 281 which extends therefrom and a cam slot 86 located therethrough. Likewise, second jaw 282 has a second flange 283 which extends therefrom and a cam slot 288 located therethrough.


The end effector assembly 222 also includes an outer nose portion 294 and an inner nose portion 296 which engage jaw members 282 and 280, respectively. A first pivot 305 is located on outer nose portion 294 and is dimensioned to engage a corresponding pivot hole 289 located on flange 283. A second pivot 303 is located on inner nose portion 296 and is dimensioned to engage a corresponding pivot hole 287 located on flange 281. The center of rotation for first jaw member 280 is at a first pivot hole 287 and the center of rotation for second jaw member 282 is at a second pivot hole 289. Preferably, each nose portion 294 and 296 is made from an electrically conductive material and transmits electrosurgical energy to a respective jaw member 282 and 280 as described in more detail below.


As mentioned above with respect to FIG. 13, electrosurgical energy is transmitted from the electrosurgical generator to an connector assembly 315 which includes the PC board 258 which converts the energy into first and second poles. A pair of terminal clips 264a and 264b are connected to PC board 258 and transfer the first and second poles of alternating potential, respectively, to the drive rod assembly 211. Clip 264a connects to shaft 212 and conducts the first pole to jaw member 282 and clip 264b connects to piston 238 which is, in turn, connected to drive rod 270. The second pole is conducted along drive rod 270 to jaw member 280. Both the drive rod 270 and the shaft 212 are made from an electrically conductive material and preferably an insulation sleeve 275 is disposed between drive rod 270 and shaft 212 to prevent the forceps 210 from short circuiting.


As best seen in FIG. 14, the inner nose portion 296 is electrically connected with drive rod 270 and the outer nose portion 294 is electrically connected to shaft 212. The inner and outer nose portions 296 and 294 capture yoke 284 along with flanges 283 and 281. Yoke 284 moves axially along axis “A” in a space between inner and outer portions 296 and 294 and a spacer stake 319 maintains the separation of the nose portions 296 and 294 at their distal ends. Stake 319 is dimensioned to engage and lock the inner and outer nose portions 296 and 294 together, which, in turn locks jaw members 280 and 282 atop yoke 284. In some cases it may be preferable to dimension stake 319 such that stake 319 acts as a stop member and controls the gap distance between the opposing jaw members 280 and 282 relative to one another. In this case, stake 319 is formed from an electrically insulative material such as plastic. The nose portions 294 and 296 provide lateral support for the flanges 281 and 283 and help ensure that detents 290 and 292 remain within cam slots 286 and 288, respectively.


End effector assembly 222 also includes an inner insulator 302 and an outer insulator 300 for maintaining electrical insulation between poles. Outer insulator 300 insulates outer nose portion 294 from inner nose portion 296 and drive rod 270 which conduct the second pole of electrical energy. Inner insulator 302 insulates inner nose portion 296 from outer nose portion 294 and shaft 212 which conduct the first pole of electrical energy. In this manner, outer nose portion 294 can provide electrical continuity between shaft 212 and jaw member 282, while inner nose portion 296 can provide electrical continuity between drive rod 270 and jaw member 280.


Preferably, a spring contact 298 is utilized to maintain the electrical connection between drive rod 270 and inner nose portion 296 during axial motion of the drive rod 270. A donut-shaped spacer 308 can also be utilized to assure linear motion of the drive rod 270 within sleeve 275 and to prevent accidental short circuiting of the forceps 210.


Referring back to FIG. 14, yoke 284 is preferably formed from an electrically insulative material such as plastic. A first side 291 of yoke 284 faces first flange 281 and a second side 293 of yoke 284 faces second flange 283. When yoke 84 is positioned between flanges 281 and 283, yoke 284 electrically insulates first jaw member 80 from second jaw member 282. In this manner, bipolar electrosurgical current can be conducted through tissue 350 which is grasped between jaws 280 and 282 without flanges 281 and 283 short circuiting.


In order to achieve a desired gap range (e.g., about 0.001 to about 0.006 inches and, preferably, about 0.002 inches to about 0.003 inches) and apply a desired force to seal the tissue, at least one jaw member 280 and/or 282 includes a stop member 339 which limits the movement of the two opposing jaw members 280 and 282 relative to one another. As explained above, in some cases it may be preferable to dimension stake 319 such that it acts like a stop member and limits the movement of the two opposing jaw members 280 and 282 relative to one another. Preferably, stop member 339 and/or stake 319 is made from an insulative material and is dimensioned to limit opposing movement of the jaw members 280 and 282 to within the above gap range.


In another embodiment, the stop members may be dimensioned for selective and replaceable attachment to the jaw members depending upon a particular purpose. For example and as best shown in FIGS. 15A-15C, the stop members may be dimensioned as plugs 439 which selectively attach to the inner facing surfaces 115 and 125 of the jaw members through a series of apertures 441 and 443 defined through the inner surfaces 115, 125 and insulators 116, 126, respectively. The gap plugs 439 are preferably designed for snap-fit engagement through the apertures 441 and 443 of at least one of the jaw members, e.g., 120, and are dimensioned to protrude a distance “R” from the inner surfaces 125 thereof (FIG. 15C). As can be appreciated, the gap plugs 439 create minimum gap distance “G” (FIG. 8) between opposing inner facing surfaces 115 and 125 when the jaw members 110 and 120 cooperate to grasp tissue therebetween.


It is envisioned that a user may selectively engage one or more gap plugs 439 as needed to create a desired gap distance between the jaw members 110 and 120 during manipulation and/or sealing. As can be appreciated, the overall gap distance “G” is easily and selectively variable through substitution/replacement of a particularly-sized gap plug.


Preferably, the stop members 139, 239, 339 and/or 439 are made from an insulative material, e.g., parylene, nylon and/or ceramic and are dimensioned to limit opposing movement of the jaw members 110 and 120 to within a specified gap range. It is envisioned that the stop members 139, 239, 339 and/or 439 may be disposed one or both of the jaw members 110 and 120 depending upon a particular purpose or to achieve a particular result. Preferably, the stop members 139, 239, 339 and/or 439 may be configured in any known geometric or polynomial configuration, e.g., triangular, rectilinear, circular, ovoid, scalloped, etc., depending upon a particular purpose. Moreover, it is contemplated that any combination of different stop members 139, 239, 339 and/or 439 may be assembled along the sealing surfaces 115 and 125 to achieve a desired gap distance. Preferably, the non-conductive stop members 139, 239, 339 and/or 439 are molded onto the jaw members 110 and 120 (e.g., overmolding, injection molding, etc.), stamped onto the jaw members 110 and 120 or deposited (e.g., deposition) onto the jaw members 110 and 120. The stop members 139, 239, 339 and/or 439 may also be slideably attached to the jaw members and/or attached to the electrically conductive surfaces 115 and 125 in a snap-fit manner.


Other techniques for attaching the stop members 139, 239, 339 and/or 439 are also contemplated. For example, one technique involves thermally spraying a ceramic material onto the surface of the jaw member 110 and 120 to form the stop members 139, 239, 339 and/or 439. Several thermal spraying techniques are contemplated which involve depositing a broad range of heat resistant and insulative materials on the electrically conductive surfaces 115 and 125 to create stop members 139, 239, 339 and/or 439, e.g., High velocity Oxy-fuel deposition, plasma deposition, etc.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the present disclosure. For example, although it is preferable that electrodes 110 and 120 meet in parallel opposition, and, therefore, meet on the same plane, in some cases it may be preferable to slightly bias the electrodes 110 and 120 to meet each other at a distal end such that additional closure force on the handles 16 and 18 is required to deflect the electrodes in the same plane.


Although it is preferable to vertically align electrodes 110 and 120, in some cases it may be preferable to offset the opposing electrodes 110 and 120 relative to one another either longitudinally or transversally to suit a particular purpose.


Although it is preferable that the electrode assembly 21 include housing 71 and cover plate 80 to engage mechanical forceps 20 therebetween, in some cases it may be preferable to manufacture the disposable electrode assembly 21 such that only one piece, e.g., housing 71 is required to engage mechanical forceps 20.


While only one embodiment of the disclosure has been described, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of a preferred embodiment. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A bipolar electrosurgical instrument, comprising: a forceps having opposing end effectors and a handle for effecting relative movement of the end effectors with respect to one another;an electrode assembly removably attachable to the forceps, the electrode assembly including a pair of opposing electrodes attached to a distal end thereof, each electrode of the pair of opposing electrodes removably engageable with one of the end effectors;at least one stop member for controlling the distance between the pair of opposing electrodes, the at least one stop member selectively engageable with and operably coupled to at least one of the electrodes,wherein the at least one electrode that is selectively engageable with and operably coupled to the at least one stop member includes at least one corresponding aperture defined therein dimensioned to selectively engage the at least one stop member, the at least one electrode also including a conductive surface and an insulating substrate, wherein the at least one corresponding aperture is disposed on the insulating substrate and the at least one stop member protrudes from each of the conductive surface and the insulating substrate.
  • 2. The bipolar electrosurgical instrument according to claim 1, wherein each electrode of the pair of opposing electrodes includes at least one mechanical interface dimensioned to engage a corresponding mechanical interface disposed on the corresponding end effector.
  • 3. The bipolar electrosurgical instrument according to claim 2, wherein the at least one mechanical interface of each electrode of the pair of opposing electrodes includes at least one detent and the mechanical interface of the corresponding end effector includes at least one complimentary key-like socket for slideably and securely receiving the detent.
  • 4. The bipolar electrosurgical instrument according to claim 1, wherein the at least one stop member protrudes about 0.001 inches to about 0.005 inches from the conductive surface of the at least one electrode.
  • 5. The bipolar electrosurgical instrument according to claim 1, wherein the at least one stop member protrudes about 0.002 inches to about 0.003 inches from the conductive surface of the at least one electrode.
  • 6. The bipolar electrosurgical instrument according to claim 1, wherein the electrode assembly is bifurcated at a distal end thereof to form two flexible prongs, each of the flexible prongs supporting one of the electrodes of the pair of opposing electrodes at a distal end thereof.
  • 7. The bipolar electrosurgical instrument according to claim 1, wherein the at least one corresponding aperture selectively engages the at least one stop member via a snap-fit engagement.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/474,227 filed on Oct. 3, 2003 by Tetzlaff et al., now U.S. Pat. No. 7,118,570, which is a national stage application of PCT/US01/11218 filed on Apr. 6, 2001, and a continuation-in-part of U.S. application Ser. No. 09/425,696 filed on Oct. 22, 1999 by Tetzlaff et al., now U.S. Pat. No. 6,511,480, which is a continuation-in-part of U.S. application Ser. No. 09/178,027 filed Oct. 23, 1998 by Tetzlaff et al., now U.S. Pat. No. 6,277,117, and a continuation-in-part of U.S. application Ser. No. 09/177,950 filed Oct. 23, 1998 by Frazier et al., now abandoned, the entire contents of all of these applications are hereby incorporated by reference.

US Referenced Citations (903)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
1822330 Ainslie Sep 1931 A
1852542 Sovatkin Apr 1932 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2054149 Wappler Sep 1936 A
2176479 Willis Oct 1939 A
2305156 Grubel Apr 1941 A
2279753 Knopp Apr 1942 A
2327353 Karle Aug 1943 A
2632661 Cristofv Aug 1948 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3073311 Tibbs et al. Jan 1963 A
3372288 Wigington Mar 1968 A
3459187 Pallotta Aug 1969 A
3643663 Sutter Feb 1972 A
3648001 Anderson et al. Mar 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3678229 Osika Jul 1972 A
3720896 Beierlein Mar 1973 A
3763726 Hildebrand Oct 1973 A
3779918 Ikeda et al. Dec 1973 A
3801766 Morrison, Jr. Apr 1974 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4016881 Rioux et al. Apr 1977 A
4041952 Morrison et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4076028 Simmons Feb 1978 A
4080820 Allen Mar 1978 A
4088134 Mazzariello May 1978 A
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4187420 Piber Feb 1980 A
4233734 Bies Nov 1980 A
4236470 Stenson Dec 1980 A
4300564 Furihata Nov 1981 A
4311145 Esty et al. Jan 1982 A
D263020 Rau, III Feb 1982 S
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4443935 Zamba et al. Apr 1984 A
4452246 Bader et al. Jun 1984 A
4470786 Sano et al. Sep 1984 A
4492231 Auth Jan 1985 A
4493320 Treat Jan 1985 A
4503855 Maslanka Mar 1985 A
4506669 Blake, III Mar 1985 A
4509518 McGarry et al. Apr 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4624254 McGarry et al. Nov 1986 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4685459 Xoch et al. Aug 1987 A
4733662 DeSatnick et al. Mar 1988 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
4827929 Hodge May 1989 A
4829313 Taggart May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4938761 Ensslin Jul 1990 A
4947009 Osika et al. Aug 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5026371 Rydell et al. Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5047046 Bodoia Sep 1991 A
5078716 Doll Jan 1992 A
5084057 Green et al. Jan 1992 A
5085659 Rydell Feb 1992 A
5099840 Goble et al. Mar 1992 A
5100430 Avellanet et al. Mar 1992 A
5108392 Spingler Apr 1992 A
5112343 Thornton May 1992 A
5116332 Lottick May 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Xamiyama et al. Sep 1992 A
5151978 Bronikowski et al. Sep 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5209747 Knoepfler May 1993 A
5211655 Hasson May 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5282799 Rydell Feb 1994 A
5282800 Foshee et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5290286 Parins Mar 1994 A
5300082 Sharpe et al. Apr 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308353 Beurrier May 1994 A
5308357 Lichtman May 1994 A
5313027 Inoue et al. May 1994 A
5314445 Degwitz et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
D348930 Olson Jul 1994 S
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5368600 Failla et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5376089 Smith Dec 1994 A
5383875 Bays et al. Jan 1995 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389103 Melzer et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5409763 Serizawa et al. Apr 1995 A
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415656 Tihon et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439478 Palmer Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5449480 Kuriya et al. Sep 1995 A
5451224 Goble et al. Sep 1995 A
5454823 Richardson et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5461765 Linden et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480406 Nolan et al. Jan 1996 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5528833 Sakuma Jun 1996 A
5529067 Larsen et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5562699 Heimberger et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569241 Edwardds Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579781 Cooke Dec 1996 A
5582611 Tsukagoshi et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5591181 Stone et al. Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5601641 Stephens Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5611798 Eggers Mar 1997 A
5611808 Hossain et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620453 Nallakrishnan Apr 1997 A
5620459 Lichtman Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638003 Hall Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5655650 Naitou Aug 1997 A
5658281 Heard Aug 1997 A
D384413 Zlock et al. Sep 1997 S
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5674229 Tovey et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690652 Wurster et al. Nov 1997 A
5690653 Richardson et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5693920 Maeda Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5759188 Yoon Jun 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5766196 Griffiths Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5779646 Koblish et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
H1745 Paraschac Aug 1998 H
5792137 Carr et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5814054 Kortenbach et al. Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820630 Lind Oct 1998 A
5824978 Karasik et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5859527 Cook Jan 1999 A
5860976 Billings et al. Jan 1999 A
5876401 Schulze et al. Mar 1999 A
5876412 Piraka Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5897563 Yoon et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921916 Aeikens et al. Jul 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5928136 Barry Jul 1999 A
5935126 Riza Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944718 Dafforn et al. Aug 1999 A
5951546 Lorentzen Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5954733 Yoon Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
5976132 Morris Nov 1999 A
5984932 Yoon Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
5997565 Inoue Dec 1999 A
6004332 Yoon et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka et al. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6021693 Feng-Sing Feb 2000 A
6024741 Williamson et al. Feb 2000 A
6024743 Edwards Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027522 Palmer Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
6066139 Ryan et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6077287 Taylor et al. Jun 2000 A
6080180 Yoon et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6086601 Yoon Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6106542 Toybin et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6126665 Yoon Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6143005 Yoon et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6162220 Nezhat Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6178628 Clemens et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6190400 Vandemoer et al. Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217602 Redmon Apr 2001 B1
6217615 Sioshansi et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6224614 Yoon May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6248124 Pedros et al. Jun 2001 B1
6248944 Ito Jun 2001 B1
6261307 Yoon et al. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6298550 Kirwan Oct 2001 B1
6302424 Gisinger et al. Oct 2001 B1
6319262 Bates et al. Nov 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358259 Swain et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6461368 Fogarty et al. Oct 2002 B2
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6485489 Teirstein et al. Nov 2002 B2
6494888 Laufer et al. Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514215 Ouchi Feb 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517539 Smith et al. Feb 2003 B1
6527771 Weadock et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6545239 Spedale et al. Apr 2003 B2
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6569105 Kortenbach et al. May 2003 B1
6582450 Ouchi Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6605790 Yoshida Aug 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620184 De Laforcade et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6638287 Danitz et al. Oct 2003 B2
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656175 Francischelli et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6663639 Laufer et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6669696 Bacher et al. Dec 2003 B2
6673092 Bacher Jan 2004 B1
6676660 Wampler et al. Jan 2004 B2
6676676 Danitz et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6693246 Rudolph et al. Feb 2004 B1
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6723092 Brown et al. Apr 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6726694 Blatter et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756553 Yamaguchi et al. Jun 2004 B1
6757977 Dambal et al. Jul 2004 B2
D493888 Reschke Aug 2004 S
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773432 Clayman et al. Aug 2004 B1
6773434 Ciarrocca Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800825 Sasaki et al. Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835200 Laufer et al. Dec 2004 B2
6857357 Fujii Feb 2005 B2
6860880 Treat et al. Mar 2005 B2
6887240 Lands et al. May 2005 B1
6889116 Jinno May 2005 B2
6914201 Van Vooren et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
D509297 Wells Sep 2005 S
6942662 Goble et al. Sep 2005 B2
6943311 Miyako Sep 2005 B2
6953430 Kidooka Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6972017 Smith et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6987244 Bauer Jan 2006 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052489 Griego et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7063715 Onuki et al. Jun 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7179258 Buysse et al. Feb 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7207990 Lands et al. Apr 2007 B2
D541938 Kerr et al. May 2007 S
7223264 Daniel et al. May 2007 B2
7223265 Keppel May 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7244257 Podjahsky et al. Jul 2007 B2
7246734 Shelto, IV Jul 2007 B2
7248944 Green Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7318823 Sharps et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7338526 Steinberg Mar 2008 B2
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jigamian Mar 2008 B2
D567943 Moses et al. Apr 2008 S
7367976 Lawes et al. May 2008 B2
7377920 Buysse et al. May 2008 B2
7384420 Dycus et al. Jun 2008 B2
7384421 Hushka Jun 2008 B2
7396336 Orszulak et al. Jul 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7435249 Buysse et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7458972 Keppel Dec 2008 B2
7473253 Dycus et al. Jan 2009 B2
7481810 Dumbauld et al. Jan 2009 B2
7487780 Hooven Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7500975 Cunningham et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513898 Johnson et al. Apr 2009 B2
7540872 Schechter et al. Jun 2009 B2
7549995 Schultz Jun 2009 B2
7553312 Tetzlaff et al. Jun 2009 B2
20020013583 Camran et al. Jan 2002 A1
20020049442 Roberts et al. Apr 2002 A1
20020099372 Schulze et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018331 Dycus et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030032956 Lands et al. Feb 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078578 Truckai et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030158549 Swanson Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030199869 Johnson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220637 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20030236518 Marchitto et al. Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040073256 Marchitto et al. Apr 2004 A1
20040078035 Kanehira et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040115296 Duffin Jun 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040116979 Truckai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040148035 Barrett et al. Jul 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040176762 Lawes et al. Sep 2004 A1
20040193153 Sarter et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040210282 Flock et al. Oct 2004 A1
20040224590 Rawa et al. Nov 2004 A1
20040225288 Buysse et al. Nov 2004 A1
20040230189 Keppel Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040250419 Sremcich et al. Dec 2004 A1
20040254573 Dycus et al. Dec 2004 A1
20040260281 Baxter, III et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004568 Lawes et al. Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050004570 Chapman et al. Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050059934 Wenchell et al. Mar 2005 A1
20050096645 Wellman et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050107784 Moses et al. May 2005 A1
20050107785 Dycus et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050113827 Dumbauld et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20050119655 Moses et al. Jun 2005 A1
20050149017 Dycus Jul 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20050154387 Moses et al. Jul 2005 A1
20050187547 Sugi Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050240179 Buysse et al. Oct 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060052779 Hammill Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060074417 Cunningham et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060079933 Hushka et al. Apr 2006 A1
20060084973 Hushka Apr 2006 A1
20060089670 Hushka Apr 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060161150 Keppel Jul 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189980 Johnson et al. Aug 2006 A1
20060189981 Dycus et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060224158 Odom et al. Oct 2006 A1
20060229666 Suzuki et al. Oct 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060259036 Tetzlaf et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060271038 Johnson et al. Nov 2006 A1
20060283093 Petrovic et al. Dec 2006 A1
20060287641 Perlin Dec 2006 A1
20070016182 Lipson et al. Jan 2007 A1
20070016187 Weinberg et al. Jan 2007 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070055231 Dycus et al. Mar 2007 A1
20070060919 Isaacson et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070078459 Johnson et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070106297 Dumbauld et al. May 2007 A1
20070118111 Weinberg May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070198011 Sugita Aug 2007 A1
20070203485 Keppel Aug 2007 A1
20070213706 Dumbauld et al. Sep 2007 A1
20070213707 Dumbauld et al. Sep 2007 A1
20070213708 Dumbauld et al. Sep 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070255279 Buysse et al. Nov 2007 A1
20070260235 Podhajsky Nov 2007 A1
20070260238 Guerra Nov 2007 A1
20070260241 Dalla Betta et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080009860 Odom Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080021450 Couture Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080039835 Johnson et al. Feb 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082100 Orton et al. Apr 2008 A1
20080091189 Carlton Apr 2008 A1
20080114356 Johnson et al. May 2008 A1
20080167651 Tetzlaff et al. Jul 2008 A1
20080195093 Couture et al. Aug 2008 A1
20080215051 Buysse et al. Sep 2008 A1
20080243120 Lawes et al. Oct 2008 A1
20080249527 Couture Oct 2008 A1
20080312653 Arts et al. Dec 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090018535 Schechter et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090048596 Shields et al. Feb 2009 A1
20090062794 Buysse et al. Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090082767 Unger et al. Mar 2009 A1
20090082769 Unger et al. Mar 2009 A1
20090088738 Guerra et al. Apr 2009 A1
20090088739 Hushka et al. Apr 2009 A1
20090088740 Guerra et al. Apr 2009 A1
20090088741 Hushka et al. Apr 2009 A1
20090088744 Townsend Apr 2009 A1
20090088745 Hushka et al. Apr 2009 A1
20090088746 Hushka et al. Apr 2009 A1
20090088747 Hushka et al. Apr 2009 A1
20090088748 Guerra et al. Apr 2009 A1
20090088749 Hushka et al. Apr 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090112206 Dumbauld et al. Apr 2009 A1
20090131934 Odom et al. May 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090171350 Dycus et al. Jul 2009 A1
20090171353 Johnson et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090187188 Guerra et al. Jul 2009 A1
Foreign Referenced Citations (174)
Number Date Country
2104423 Feb 1994 CA
2415263 Oct 1975 DE
2514501 Oct 1976 DE
2627679 Jan 1977 DE
3612646 Apr 1987 DE
8712328 Mar 1988 DE
4303882 Aug 1994 DE
4403252 Aug 1995 DE
19515914 Jul 1996 DE
29616210 Jan 1997 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
19738457 Jan 2009 DE
0364216 Apr 1990 EP
0467501 Jan 1992 EP
518230 Dec 1992 EP
0 541 930 May 1993 EP
0572131 Dec 1993 EP
584787 Mar 1994 EP
0589453 Mar 1994 EP
0589555 Mar 1994 EP
0623316 Nov 1994 EP
0624348 Nov 1994 EP
0650701 May 1995 EP
0694290 Mar 1996 EP
0717966 Jun 1996 EP
0754437 Mar 1997 EP
0517243 Sep 1997 EP
853922 Jul 1998 EP
0875209 Nov 1998 EP
0878169 Nov 1998 EP
0887046 Jan 1999 EP
0923907 Jun 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
1025807 Oct 2000 EP
1034746 Oct 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1159926 Dec 2001 EP
1177771 Feb 2002 EP
1301135 Apr 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
1472984 Nov 2004 EP
0774232 Jan 2005 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1632192 Mar 2006 EP
1642543 Apr 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1649821 Apr 2006 EP
1707143 Oct 2006 EP
1769765 Apr 2007 EP
1769766 Apr 2007 EP
1929970 Jun 2008 EP
1683496 Dec 2008 EP
623316 May 1949 GB
1490585 Nov 1977 GB
2214430 Jun 1989 GB
2213416 Aug 1989 GB
501068 Sep 1984 JP
502328 Mar 1992 JP
5-5106 Jan 1993 JP
5-40112 Feb 1993 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09010223 Jan 1997 JP
2010258063 Sep 1998 JP
11244298 Sep 1999 JP
2000051227 Feb 2000 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
2001515751 Sep 2001 JP
2001522632 Nov 2001 JP
2002531215 Sep 2002 JP
401367 Nov 1974 SU
WO8900757 Jan 1989 WO
WO 9204873 Apr 1992 WO
WO 9206642 Apr 1992 WO
WO 9321845 Nov 1993 WO
WO 9408524 Apr 1994 WO
WO9420025 Sep 1994 WO
WO 9502369 Jan 1995 WO
WO9507662 Mar 1995 WO
WO 9507662 Mar 1995 WO
WO9515124 Jun 1995 WO
WO9605776 Feb 1996 WO
WO 9622056 Jul 1996 WO
WO 9613218 Sep 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO9710764 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9827880 Jul 1998 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912488 Mar 1999 WO
WO9923933 May 1999 WO
WO 9923933 May 1999 WO
WO 9940857 Aug 1999 WO
WO 9940861 Aug 1999 WO
WO 9951158 Oct 1999 WO
WO 9966850 Dec 1999 WO
WO 0024330 May 2000 WO
WO 0024331 May 2000 WO
WO0024331 May 2000 WO
WO 0036986 Jun 2000 WO
WO 0041638 Jul 2000 WO
WO0047124 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0117448 Mar 2001 WO
WO 0154604 Aug 2001 WO
WO0207627 Jan 2002 WO
WO 0207627 Jan 2002 WO
WO 02067798 Sep 2002 WO
WO02080783 Oct 2002 WO
WO 02080783 Oct 2002 WO
WO 02080784 Oct 2002 WO
WO02080784 Oct 2002 WO
WO 02080785 Oct 2002 WO
WO02080785 Oct 2002 WO
WO 02080786 Oct 2002 WO
WO02080786 Oct 2002 WO
WO 02080793 Oct 2002 WO
WO02080793 Oct 2002 WO
WO02080794 Oct 2002 WO
WO 02080794 Oct 2002 WO
WO 02080795 Oct 2002 WO
WO 02080796 Oct 2002 WO
WO02080797 Oct 2002 WO
WO 02080797 Oct 2002 WO
WO 02080798 Oct 2002 WO
WO 02080799 Oct 2002 WO
WO02081170 Oct 2002 WO
WO 02081170 Oct 2002 WO
WO 03061500 Jul 2003 WO
WO 03090630 Nov 2003 WO
WO 03101311 Dec 2003 WO
WO 2004032776 Apr 2004 WO
WO 2004032777 Apr 2004 WO
WO2004032777 Apr 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004073488 Sep 2004 WO
WO2004073490 Sep 2004 WO
WO 2004073490 Sep 2004 WO
WO2004073753 Sep 2004 WO
WO 2004082495 Sep 2004 WO
WO 2004098383 Nov 2004 WO
WO 2004103156 Dec 2004 WO
WO 2005004734 Jan 2005 WO
WO2005004735 Jan 2005 WO
WO 2005110264 Nov 2005 WO
WO 2008045348 Apr 2008 WO
WO 2008045350 Apr 2008 WO
Non-Patent Literature Citations (121)
Entry
International Search Report PCT/US98/24281 dated Feb. 22, 1999.
International Search Report EP05 00 2671 dated Dec. 11, 2008.
Int'l Search Report EP 05016399 dated Jan. 5, 2006.
Int'l Search Report EP 06005185.1 dated Apr. 18, 2006.
Int'l Search Report EP 06008779.8 dated Jun. 13, 2006.
Int'l Search Report EP 1683496 dated Jun. 13, 2006.
Int'l Search Report EP 04013772 dated Apr. 1, 2005.
Int'l Search Report EP 05013895 dated Oct. 14, 2005.
Int'l Search Report EP 05017281 dated Nov. 16, 2005.
Int'l Search Report EP 06006716 dated Aug. 4, 2006.
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001.
Int'l Search Report EP 06014461.5 dated Oct. 20, 2006.
Int'l Search Report EP 06020584.6 dated Jan. 12, 2007.
Int'l Search Report EP 06020583.8 dated Jan. 30, 2007.
Int'l Search Report EP 06020756.0 dated Feb. 5, 2007.
Int'l Search Report EP 06024123.9 dated Feb. 26, 2007.
Int'l Search Report EP 06 020574.7 dated Sep. 21, 2007.
Int'l Search Report EP 07 010672.9 dated Oct. 1, 2007.
Int'l Search Report EP 07 013779.9 dated Oct. 18, 2007.
Int'l Search Report EP 07 009026.1 dated Sep. 12, 2007.
Int'l Search Report EP 07 015601.3 dated Dec. 6, 2007.
Int'l Search Report EP 07 015191.5 dated Dec. 19, 2007.
Int'l Search Report EP 07 020283.3 dated Jan. 16, 2008.
Int'l Search Report EP 04 752343.6 dated Jul. 20, 2007.
Int'l Search Report EP 06 024122.1 dated Mar. 19, 2007.
Int'l Search Report EP 07 001480.8 dated Apr. 12, 2007.
Int'l Search Report EP 07 001488.1 dated May 29, 2007.
Int'l Search Report—Extended EP 07 009029.5 dated Jul. 12, 2007.
Int'l Search Report EP 07 009321.6 dated Aug. 17, 2007.
Sigel et al “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology 8 Obstetrics. Oct. 1965 pp. 823-831.
Bergdahl et al “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J.Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Kennedy et al “High-burst-strength, feedback-controlled bipolar vessel seating” Surgical Endoscopy (1998) 12: 876-878.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
Linehan et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger. Washington University School of Medicine. St. Louis MO, Presented at AHPBA, Feb. 2001.
Johnson et al “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Sayfan et al “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001 pp. 21-24.
Heniford et al “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
Levy et al “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Crawford et al “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Rothenberg et al “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Palazzo et al “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002. 89, 154-157.
“Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery Sales/Product Literature; Jan. 2004.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries”, Carolinas Laparoscopic and Advanced Surgery Program. Carolinas Medical Center, Charlotte, NC 2003.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001.
Chung et al . “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Strasberg et al . “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Paul G Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181. No. 3, Apr. 2001 pp. 236-237.
W Scott Helton, “LigaSure Vessel Seating System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature 1999.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
Levy et al., “Update an Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
McLellan et al “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Olsson et al “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
E David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
E David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Koyle et al., “Laparoscopic Palomo Varicocole Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
Dulemba et al “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature, Jan. 2004.
Johnson et al “Evaluation of a Bipolar electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature: Jan. 2004.
Int'l Search Report PCT/US98/18640 dated Dec. 17, 1998.
Int'l Search Report PCT/US98/23950 dated Dec. 29, 1998.
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000.
Int'l Search Report PCT/US01/11218 dated Aug. 3, 2001.
International Search Report PCT/US01/11224 dated Nov. 13, 2001.
Int'l Search Report PCT/US01/11340 dated Aug. 7, 2001.
Int'l Search Report PCT/US01/11420 dated Oct. 8, 2001.
Int'l Search Report PCT/US02/01890 dated Jul. 17, 2002.
Int'l Search Report PCT/US02/11100 dated Jul. 9, 2002.
Int'l Search Report PCT/US04/03436 dated Oct. 5, 2004.
Int'l Search Report PCT/US04/13273 dated Nov. 22, 2004.
Int'l Search Report PCT/US04/15311 dated Nov. 18, 2004.
Int'l Search Report EP 98944778 dated Oct. 31, 2000.
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002.
Int'l Search Report EP 04027314 dated Mar. 10, 2005.
Int'l Search Report EP 04027479 dated Mar. 8, 2005.
Int'l Search Report EP 04027705 dated Feb. 3, 2005.
Int'l Search Report EP 05013463.4 dated Sep. 28, 2005.
Int'l Search Report EP 05019130.3 dated Oct. 18, 2005.
Int'l Search Report EP 05020665.5 dated Feb. 16, 2006.
Int'l Search Report EP 05020666.3 dated Feb. 17, 2006.
Int'l Search Report EP 05021779.3 dated Jan. 18, 2006.
Int'l Search Report EP 05021197.8 dated Jan. 31, 2006.
Int'l Search Report EP 05021937.7 dated Jan. 13, 2006.
Int'l Search Report—extended—EP 05021937.7 dated Mar. 6, 2006.
Int'l Search Report EP 05023017.6 dated Feb. 16, 2006.
Int'l Search Report EP 05021780.1 dated Feb. 9, 2006.
Int'l Search Report EP 06002279.5 dated Mar. 22, 2006.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
Int'l Search Report EP 98957771 dated Aug. 9, 2001.
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008.
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009.
Int'l Search Report EP 05019429.9 dated May 6, 2008.
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009.
Int'l Search Report EP 07 014016 dated Jan. 28, 2008.
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008.
Int'l Search Report EP 07 021647.8 dated May 2, 2008.
Int'l Search Report EP 08 02692.5 dated Dec. 12, 2008.
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008.
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008.
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008.
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009.
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009.
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009.
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999.
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003.
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008.
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008.
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008.
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009.
Translation of Japanese Office Action mailed May 28, 2012, in counterpart Japanese Application No. 2010-151311 (3 pp).
Related Publications (1)
Number Date Country
20060259036 A1 Nov 2006 US
Continuations (1)
Number Date Country
Parent 10474227 US
Child 11489319 US
Continuation in Parts (3)
Number Date Country
Parent 09425696 Oct 1999 US
Child 10474227 US
Parent 09178027 Oct 1998 US
Child 09425696 US
Parent 09177950 Oct 1998 US
Child 09178027 US