Claims
- 1. A bipolar electrosurgical instrument for use in open surgery, comprising:
first and second shafts each having a jaw member extending from a distal end thereof and a handle disposed at a proximal end thereof for effecting movement of the jaw members relative to one another from a first position wherein the jaw members are disposed in opposable, spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween, each of the jaw members including an electrically conductive sealing surface; a source of electrical energy having first and second electrical potentials, the first electrical potential being connected to one of the jaw members and a second electrical potential being connected to the other of the jaw members such that the jaw members are capable of selectively conducting energy through tissue held therebetween to effect a seal, wherein the first electrical potential is transmitted through the first shaft by a lead having a terminal end which electrically interfaces with a distal connector which connects one of the jaw members to the first electrical potential; and at least one non-conductive stop member disposed on the electrically conductive sealing surface of at least one of the jaw members which controls the distance between the electrically conductive sealing surfaces when tissue is held therebetween.
- 2. A bipolar electrosurgical instrument for use in open surgery according to claim 1 wherein the at least one non-conductive stop creates a gap between the electrically conductive sealing surfaces within the range of about 0.001 inches to about 0.006 inches.
- 3. A bipolar electrosurgical instrument for use in open surgery according to claim 1 wherein the non-conductive stop creates a gap between the electrically conductive sealing surfaces within the range of about 0.002 inches to about 0.003 inches.
- 4. A bipolar electrosurgical instrument for use in open surgery, comprising:
first and second shafts each having a jaw member extending from a distal end thereof and a handle disposed at a proximal end thereof for effecting movement of the jaw members relative to one another from a first position wherein the jaw members are disposed in opposable, spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween, each of the jaw members including an electrically conductive sealing surface; a source of electrical energy having first and second electrical potentials, the first electrical potential being connected to one of the jaw members and a second electrical potential being connected to the other of the jaw members such that the jaw members are capable of selectively conducting energy through tissue held therebetween to effect a seal, wherein the first electrical potential is transmitted through the first shaft by a lead having a terminal end which electrically interfaces with a distal connector which connects one of the jaw members to the first electrical potential; at least one non-conductive stop member disposed on the electrically conductive sealing surface of at least one of the jaw members which controls the distance between the electrically conductive sealing surfaces when tissue is held therebetween; and a ratchet disposed on the first shaft and at least one complimentary interlocking mechanical interface disposed on the second shaft, the ratchet and the complimentary interlocking mechanical interface providing at least one interlocking position to maintain a closure pressure in the range of about 3 kg/cm2 to about 16 kg/cm2 between the electrically conductive sealing surfaces.
- 5. A bipolar electrosurgical instrument according to claim 4 wherein the ratchet and the complimentary interlocking mechanical interface provide at least one interlocking position to maintain a closure pressure in the range of about 7 kg/cm2 to about 13 kg/cm2 between the electrically conductive sealing surfaces.
- 6. A bipolar electrosurgical instrument according to claim 4 further comprising a non-stick material disposed on the electrically conductive sealing surfaces.
- 7. A bipolar electrosurgical instrument according to claim 4 wherein the nonconductive stop member is disposed adjacent the electrically conductive sealing surfaces.
- 8. A bipolar electrosurgical instrument according to claim 6 wherein the nonstick material is a coating which is deposited on the electrically conductive sealing surfaces.
- 9. A bipolar electrosurgical instrument according to claim 8 wherein the nonstick coating is selected from a group of materials consisting of: nitrides and nickel/chrome alloys.
- 10. A bipolar electrosurgical instrument according to claim 8 wherein the nonstick coating includes one of TiN, ZrN, TiAlN, CrN, nickel/chrome alloys with a Ni/Cr ratio of approximately 5:1, Inconel 600, Ni200 and Ni201.
- 11. A bipolar electrosurgical instrument according to claim 6 wherein the electrically conductive sealing surfaces are manufactured from a non-stick material.
- 12. A bipolar electrosurgical instrument for use in open surgery, comprising:
first and second shafts each having a jaw member extending from a distal end thereof and a handle disposed at a proximal end thereof for effecting movement of the jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween, each of the jaw members including an electrically conductive sealing surface; a source of electrical energy having a first electrical potential connected to one of the jaw members and a second electrical potential connected to the other of the jaw members such that the jaw members are capable of selectively conducting energy through tissue held therebetween to effect a seal; the first and second electrical potentials being transmitted to the jaw members through the first shaft wherein the first electrical potential is transmitted by a lead having a terminal end which electrically interfaces with a spring washer, the spring washer acting as an electrical intermediary between the terminal end and the jaw member; at least one non-conductive stop member disposed on the electrically conductive sealing surface of at least one of the jaw members which controls the distance between the jaw members when tissue is held therebetween, wherein the at least one non-conductive stop creates a gap between the electrically conductive surfaces within the range of about 0.001 inches to about 0.006 inches; and a ratchet disposed on the first shaft and at least one complimentary interlocking mechanical interface disposed on the second shaft, the ratchet and the complimentary interlocking mechanical interface providing at least one interlocking position to maintain a closure pressure in the range of about 3 kg/cm2 to about 16 kg/cm2 between the electrically conductive sealing surfaces.
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part of PCT Application Serial No. PCT/US01/11420 filed on Apr. 6, 2001 which is a continuation-in-part of U.S. application Ser. No. 09/425,696 filed Oct. 22, 1999 by Philip Mark Tetzlaff et al. which is a continuation-in-part of U.S. application Ser. No. 09/178,027 filed Oct. 23, 1998 by Philip Mark Tetzlaff et al., the entire contents of each of these applications are hereby incorporated by reference.
Continuation in Parts (3)
|
Number |
Date |
Country |
Parent |
PCT/US01/11420 |
Apr 2001 |
US |
Child |
10116824 |
Apr 2002 |
US |
Parent |
09425696 |
Oct 1999 |
US |
Child |
PCT/US01/11420 |
Apr 2001 |
US |
Parent |
09178027 |
Oct 1998 |
US |
Child |
09425696 |
Oct 1999 |
US |