Vessel sealing instrument

Information

  • Patent Grant
  • 7553312
  • Patent Number
    7,553,312
  • Date Filed
    Friday, December 21, 2007
    17 years ago
  • Date Issued
    Tuesday, June 30, 2009
    15 years ago
Abstract
A bipolar electrosurgical instrument for clamping, grasping, manipulating, and sealing tissue includes first and second shafts each having a jaw member extending from a distal end thereof and a handle disposed at a proximal end thereof. The handle being operable to effect movement of the jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. The bipolar instrument is connectable to a source of electrical energy having a first electrical potential connected to one of the jaw members and a second electrical potential connected to the other of the jaw members such that the jaw members are capable of selectively conducting energy through tissue held therebetween to effect a seal. Both the first and second electrical potentials are transmitted to the jaw members through the first shaft.
Description
BACKGROUND

The present disclosure relates to forceps used for open surgical procedures. More particularly, the present disclosure relates to a forceps which applies a combination of mechanical clamping pressure and electrosurgical current to seal tissue.


TECHNICAL FIELD

A hemostat or forceps is a simple plier-like tool which uses mechanical action between its jaws to constrict vessels and is commonly used in open surgical procedures to grasp, dissect and/or clamp tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue.


Certain surgical procedures require sealing and cutting blood vessels or vascular tissue. Several journal articles have disclosed methods for sealing small blood vessels using electrosurgery. An article entitled Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator, J. Neurosurg., Volume 75, July 1991, describes a bipolar coagulator which is used to seal small blood vessels. The article states that it is not possible to safely coagulate arteries with a diameter larger than 2 to 2.5 mm. A second article is entitled Automatically Controlled Bipolar Electrocoagulation—“COA-COMP”, Neurosurg. Rev. (1984), pp. 187-190, describes a method for terminating electrosurgical power to the vessel so that charring of the vessel walls can be avoided.


By utilizing an electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate, reduce or slow bleeding and/or seal vessels by controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue. Generally, the electrical configuration of electrosurgical forceps can be categorized in two classifications: 1) monopolar electrosurgical forceps; and 2) bipolar electrosurgical forceps.


Monopolar forceps utilize one active electrode associated with the clamping end effector and a remote patient return electrode or pad which is typically attached externally to the patient. When the electrosurgical energy is applied, the energy travels from the active electrode, to the surgical site, through the patient and to the return electrode.


Bipolar electrosurgical forceps utilize two generally opposing electrodes which are disposed on the inner opposing surfaces of the end effectors and which are both electrically coupled to an electrosurgical generator. Each electrode is charged to a different electric potential. Since tissue is a conductor of electrical energy, when the effectors are utilized to grasp tissue therebetween, the electrical energy can be selectively transferred through the tissue.


In order to effect a proper seal with larger vessels, two predominant mechanical parameters must be accurately controlled—the pressure applied to the vessel and the gap between the electrodes both of which affect thickness of the sealed vessel. More particularly, accurate application of the pressure is important to oppose the walls of the vessel, to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue, to overcome the forces of expansion during tissue heating and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a fused vessel wall is optimum between 0.001 and 0.005 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.


With respect to smaller vessel, the pressure applied to the tissue tends to become less relevant whereas the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as the vessels become smaller.


Electrosurgical methods may be able to seal larger vessels using an appropriate electrosurgical power curve, coupled with an instrument capable of applying a large closure force to the vessel walls. It is thought that the process of coagulating small vessels is fundamentally different than electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried and vessel sealing is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Thus, coagulation of small vessels is sufficient to permanently close them. Larger vessels need to be sealed to assure permanent closure.


Numerous bipolar electrosurgical forceps have been proposed in the past for various open surgical procedures. However, some of these designs may not provide uniformly reproducible pressure to the blood vessel and may result in an ineffective or non-uniform seal. For example, U.S. Pat. No. 2,176,479 to Willis, U.S. Pat. Nos. 4,005,714 and 4,031,898 to Hiltebrandt, U.S. Pat. Nos. 5,827,274, 5,290,287 and 5,312,433 to Boebel et al., U.S. Pat. Nos. 4,370,980, 4,552,143, 5,026,370 and 5,116,332 to Lottick, U.S. Pat. No. 5,443,463 to Stern et al., U.S. Pat. No. 5,484,436 to Eggers et al. and U.S. Pat. No. 5,951,549 to Richardson et al., all relate to electrosurgical instruments for coagulating, cutting and/or sealing vessels or tissue.


Many of these instruments include blade members or shearing members which simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes. Other instruments rely on clamping pressure alone to procure proper sealing thickness and are not designed to take into account gap tolerances and/or parallelism and flatness requirements which are parameters which, if properly controlled, can assure a consistent and effective tissue seal. For example, it is known that it is difficult to adequately control thickness of the resulting sealed tissue by controlling clamping pressure alone for either of two reasons: 1) if too much force is applied, there is a possibility that the two poles will touch and energy will not be transferred through the tissue resulting in an ineffective seal; or 2) if too low a force is applied, a thicker less reliable seal is created.


As mentioned above, in order to properly and effectively seal larger vessels, a greater closure force between opposing jaw members is required. It is known that a large closure force between the jaws typically requires a large moment about the pivot for each jaw. This presents a challenge because the jaw members are typically affixed with pins which are positioned to have a small moment arms with respect to the pivot of each jaw member. A large force, coupled with a small moment arm, is undesirable because the large forces may shear the pins. As a result, designers must compensate for these large closure forces by either designing instruments with metal pins and/or by designing instruments which at least partially offload these closure forces to reduce the chances of mechanical failure. As can be appreciated, if metal pivot pins are employed, the metal pins must be insulated to avoid the pin acting as an alternate current path between the jaw members which may prove detrimental to effective sealing.


Increasing the closure forces between electrodes may have other undesirable effects, e.g., it may cause the opposing electrodes to come into close contact with one another which may result in a short circuit and a small closure force may cause pre-mature movement of the issue during compression and prior to activation.


Thus, a need exists to develop a bipolar forceps which effectively seals vascular tissue and solves the aforementioned problems by providing an instrument which enables a large closure force between the opposing jaws members, reduces the chances of short circuiting the opposing jaws during activation and assists in manipulating, gripping and holding the tissue prior to and during activation.


SUMMARY

The present disclosure relates to a bipolar electrosurgical instrument for use in open surgery which includes first and second shafts one of which is connectable to a source of electrosurgical energy. Each shaft includes a jaw member extending from a distal end thereof and a handle disposed at a proximal end thereof for effecting movement of the jaw members relative to one another from a first, open position wherein the jaw members are disposed in spaced relation relative to one another to a second, closed position wherein the jaw members cooperate to grasp tissue therebetween. The source of electrical energy effects first and second electrical potentials in the respective jaw members such that the jaw members are capable of selectively conducting energy through tissue held therebetween to effect a seal.


Preferably, the first and second electrical potentials are created at the jaw members through the first shaft. For example, in one embodiment, the first electrical potential is transmitted through the first shaft by a lead having a terminal end which electrically interfaces with a distal connector which connects a first jaw member to the first electrical potential. The second electrical potential is transmitted through the first shaft by a tube disposed within the first shaft which connects the second jaw member to the second electrical potential.


The first and second jaw members are connected about a pivot pin. The distal connector is preferably interposed between the jaw members and includes a series of flanges which are dimensioned to prevent the emanation of stray currents from the electrically conductive sealing surfaces of the jaw members during activation.


Preferably, the distal connector includes a spring washer or wave washer which acts as an electrical intermediary between the terminal end and the jaw member. In one embodiment, the spring washer is beveled to enhance the electrical interface between the terminal end and the jaw member, i.e., beveling causes the spring washer to rotate relative the terminal end during movement of the jaw members from the first to second positions which provides a self-cleaning, enhanced running electrical contact between the terminal end and the jaw member.


Preferably, the distal connector is made from an insulative substrate and is disposed between the jaw members for electrically isolating the first and second potentials. In one embodiment, the distal connector includes a first surface having at least one recess defined therein which is dimensioned to receive at least a portion of the terminal end of the lead.


In yet another embodiment, one of the jaw members includes a skirt which is dimensioned to prevent exposure of the terminal end during all angles of operation, i.e., when the jaw members are disposed in the first position, the second position and/or during operative movement therebetween.


The lead preferably includes a inner core made from a solid or multi-strand electrically conductive material, e.g., copper/aluminum wire, which is surrounded by an insulative, non-conductive coating, e.g., plastic. In one embodiment, the terminal or distal end of the electrically conductive material is flattened, i.e., “flat-formed”, and is dimensioned to substantially encircle a boss which extends from the surface of the distal connector. Preferably, the boss is designed to electrically insulate the terminal end of the lead from the pivot pin.


In another embodiment, at least one non-conductive stop member is disposed on an electrically conductive sealing surface of one of the jaw members. The stop members are designed to control/regulate the distance, i.e., gap, between the jaw members when tissue is held therebetween during activation





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1 is a left, perspective view of a forceps according to the present disclosure;



FIG. 2 is an enlarged, perspective view of an end effector assembly of the forceps of FIG. 1 shown in open configuration;



FIG. 3 is an enlarged, perspective view of the end effector assembly of the forceps of FIG. 1 shown in closed configuration;



FIG. 4A is an exploded view of the forceps according to the present disclosure;



FIG. 4B is an enlarged, exploded view of the end effector assembly of FIG. 4A showing the electrical connection of a distal electrical connector for supplying electrical energy to the end effector assembly;



FIG. 5 is an enlarged, top perspective view of a lower jaw member of forceps with the distal connector seated thereon;



FIG. 6 is a right, perspective view of the forceps of FIG. 1 shown grasping a tissue structure;



FIG. 7 is a enlarged view of the indicated area of detail in FIG. 4A showing a proximal electrical interface/connector for supplying electrical energy to the end effector assembly; and



FIG. 8 is a cross section of the forceps of FIG. 6 showing the electrical feed path of a first lead having a first electrical potential and showing the electrical connection of the proximal electrical interface of FIG. 7 with a second lead having a second electrical potential.





DETAILED DESCRIPTION

Referring now to FIGS. 1-4, a forceps 10 for use with open surgical procedures includes elongated shaft portions 12a and 12b each having a proximal end 16a and 16b, respectively, and a distal end 14a and 14b, respectively. In the drawings and in the descriptions which follow, the term “proximal”, as is traditional, will refer to the end of the forceps 10 which is closer to the user, while the term “distal” will refer to the end which is further from the user.


The forceps 10 includes an end effector assembly 100 which attaches to distal ends 14a and 14b of shafts 12a and 12b, respectively. As explained in more detail below, the end effector assembly 100 includes pair of opposing jaw members 110 and 120 which are pivotably connected about a pivot pin 150.


Preferably, each shaft 12a and 12b includes a handle 17a and 17b disposed at the proximal end 16a and 16b thereof which each define a finger hole 18a and 18b, respectively, therethrough for receiving a finger of the user. As can be appreciated, finger holes 18a and 18b facilitate movement of the shafts 12a and 12b relative to one another which, in turn, pivot the jaw members 110 and 120 from an open position (FIG. 2) wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another to a clamping or closed position (FIG. 3) wherein the jaw members 110 and 120 cooperate to grasp tissue 400 (FIG. 6) therebetween.


A ratchet 30 is preferably included for selectively locking the jaw members 110 and 120 relative to one another at various positions during pivoting. As best shown in FIG. 6, a first ratchet interface, e.g., 30a, extends from the proximal end 16a of shaft member 12a towards a second ratchet interface 30b in a generally vertically aligned manner such that the inner facing surfaces of each ratchet 30a and 30b abut one another upon closure about the tissue 400. Preferably, each ratchet interface 30a and 30b includes a plurality of flanges 32a and 32b, respectively, which projects from the inner facing surface of each ratchet interface 30a and 30b such that the ratchet interfaces 30a and 30b interlock in at least one position. In the embodiment shown in FIG. 6, the ratchet interfaces 30a and 30b interlock at several different positions.


Preferably, each position associated with the cooperating ratchet interfaces 30a and 30b holds a specific, i.e., constant, strain energy in the shaft members 12a and 12b which, in turn, transmits a specific closing force to the jaw members 110 and 120. It is envisioned that the ratchet 30 may include graduations or other visual markings which enable the user to easily and quickly ascertain and control the amount of closure force desired between the jaw members. A design without a ratchet system or similar system would require the user to hold the jaw members 110 and 120 together by applying constant force to the handles 17a and 17b which may yield inconsistent results.


As best illustrated in FIG. 1, one of the shafts, e.g., 12b, includes a proximal shaft connector 19 which is designed to connect the forceps 10 to a source of electrosurgical energy such as an electrosurgical generator (not shown). More particularly, proximal shaft connector 19 is formed by a cover 19a and a flange 19b which extends proximally from shaft 12b. Preferably, cover 19a and flange 19b mechanically cooperate to secure an electrosurgical cable 210 to the forceps 10 such that the user may selectively apply electrosurgical energy as needed.


The proximal end of the cable 210 includes a plug 200 having a pair of prongs 202a and 202b which are dimensioned to electrically and mechanically engage the electrosurgical energy generator. As explained in more detail below with respect to FIG. 8, the distal end of the cable 210 is secured to the proximal shaft connector 19 of shaft 12b by a plurality of finger-like clamping members 77a and 77b and a cable crimp having opposing fingers 76a and 76b. The interior of cable 210 houses a pair of leads 210a and 210b which conduct the different electrical potentials from the electrosurgical generator to the jaw members 110 and 120 as explained in greater detail below.


As best seen in FIGS. 2-4B, the two opposing jaw members 110 and 120 of the end effector assembly 100 are pivotable about pin 150 from the open position to the closed position for grasping tissue 400 therebetween. Jaw members 110 and 120 are generally symmetrical and include similar component features which cooperate to permit facile rotation about pivot pin 150 to effect the grasping and sealing of tissue 400. As a result and unless otherwise noted, jaw member 110 and the operative features associated therewith will initially be described herein in detail and the similar component features with respect to jaw member 120 will be briefly summarized thereafter.


Jaw member 110 includes an insulated outer housing 114 which is dimensioned to mechanically engage an electrically conductive sealing surface 112 and a proximally extending flange 130 which is dimensioned to seat a distal connector 300 which is described in more detail below with respect to FIGS. 4A, 4B and 5. Preferably, outer insulative housing 114 extends along the entire length of jaw member 110 to reduce alternate or stray current paths during sealing and/or incidental burning of tissue 400. The inner facing surface of flange 130 includes an electrically conductive plate 134 (FIG. 4B) which conducts electrosurgical energy to the electrically conductive sealing surface 112 upon activation.


Likewise, jaw member 120 include similar elements which include: an outer housing 124 which engages an electrically conductive sealing surface 122; a proximally extending flange 140 which seats the opposite face of the distal connector 300; an electrically conductive plate 144 which conducts electrosurgical energy to the electrically conductive sealing surface 122 upon activation.


It is envisioned that one of the jaw members, e.g., 110, includes at least one stop member 150 disposed on the inner facing surface of the electrically conductive sealing surface 112 (and/or 122). The stop member(s) is preferably designed to facilitate gripping and manipulation of tissue 400 and to define a gap “G”.(FIG. 6) between opposing jaw members 110 and 120 during sealing. A detailed discussion of these and other envisioned stop members 150 as well as various manufacturing and assembling processes for attaching, disposing, depositing and/or affixing the stop members 150 to the electrically conductive sealing surfaces 112, 122 are described in commonly-assigned, co-pending U.S. application Serial No. PCT/US01/11413 entitled “VESSEL SEALER WITH NON-CONDUCTIVE STOP MEMBERS” which is hereby incorporated by reference in its entirety herein.


In an embodiment, a method of sealing tissue includes providing an electrosurgical energy source connected to a surgical instrument used for open surgical procedures. The surgical instrument includes a pair of jaws jaw members, wherein the pair of jaw members includes a first jaw member and a second jaw member. The method includes closing the jaw members around tissue to provide a gap between the jaw members in the range of about 0.001 inches to about 0.006 inches and a closure pressure of in the range of about 7 kg/cm2 to about 13 kg/cm2. The method also includes applying electrosurgical energy to the jaw members so that energy passes between the jaw members and through tissue to effect a tissue seal. The electrosurgical energy is applied to at least one of the first jaw member and the second jaw member via a lead having a terminal end which interfaces with a distal connector, and wherein the distal connector supports a running electrical contact. In an embodiment, the gap between the jaw members is greater than about 0.001 inches and less than about 0.003 inches.


In an embodiment, a method of sealing tissue includes providing a surgical instrument for use with open surgical procedures. The surgical instrument includes a pair of jaws jaw members adapted to connect to a source of electrosurgical energy members, wherein the pair of jaw members including a first jaw member and a second jaw member. The methods includes closing the jaw members around tissue so as to provide a substantially uniform gap between the jaw members in the range of about 0.001 inches to about 0.006 inches and a closure pressure of in the range of about 7 kg/cm2 to about 13 kg/cm2. The method also includes applying electrosurgical energy to the jaw members so that energy passes between the jaw members and through tissue to effect a tissue seal, The electrosurgical energy is applied to at least one of the first jaw member and the second jaw member via a lead having a terminal end which interfaces with a distal connector, and wherein the distal connector includes a spring washer which acts as an electrical intermediary between the terminal end and the jaw member. In an embodiment, the gap between the jaw members is greater than about 0.001 inches and less than about 0.003 inches



FIG. 4A shows an exploded view of the various components of the forceps 10 and the inter-operative relationships among the same. More particularly and in addition to the components described above with respect to FIGS. 1-3 above, shaft 12a is preferably hollow to define a longitudinal channel 15a disposed therethrough which is dimensioned to receive a tube 60a therein. Tube 60a includes a proximal end 64a, a distal end 62a and at least one mechanical interface 61a disposed therebetween. Shaft 12a also includes a cover plate 50 which is designed for snap-fit engagement within an aperture/cavity 45a defined through the outer surface of shaft 12a. Cover plate 50 includes a series of opposing flanges 51a and 51b which extend therefrom which are dimensioned to secure the tube 60a within shaft 12a as described below. A second flange 52 secures the cover plate 50 to the shaft 12a.


During assembly, the proximal end 64a of tube 60a is slideable incorporated within channel 15a such that mechanical interface 61a is poised for engagement with cover plate 50. Cover plate 50 is then snapped into cavity 45a such that flanges 51a and 51b secure tube 60a within shaft 12a. It is envisioned that the cavity 45a of shaft 12a may include at least one detent (not shown) which engages mechanical interface 61a disposed along the outer surface of tube 60a to limit/prevent rotation of the tube 60a relative to the shaft 12a. This cooperative relationship is shown by way of example with respect to detents 75a and 75b and interfaces (e.g., notches) 61b of shaft 12b in FIG. 8. In this instance, flanges 51a and 51b (much like flanges 42a and 42b of cover plate 40 in FIG. 8) hold the detents 75a and 75b in FIG. 8) in secure engagement within the notch(es) 61a to prevent rotational and/or longitudinal movement of the tube 60a within the channel 15a.


Preferably, the proximal-most end of tube 60a includes a slit-like interface 65a which mechanically engages a corresponding tongue 88a extending from the inner surface of shaft 12a within cavity 45a. It is envisioned that tongue 88a also prevents rotational movement of the tube 60a within the shaft 12a. Alternatively, slit 65a may be formed to allow radial contraction and expansion of the tube 60a to promote friction-fit engagement between the tube 60a and the shaft 12a. Other interfaces are also envisioned which will facilitate engagement of the shaft 12a and the tube 60a, e.g., snap-fit, spring-lock, locking tabs, screw-like interface, tongue and groove, etc.


The distal end 62a of tube 60a is preferably dimensioned to engage jaw member 120, i.e., the distal end 62a includes a slit-like interface 66a which promotes simple, secure friction-fit engagement of the tube 60a with the jaw member 120. More particularly and as mentioned above, jaw member 120 includes a proximally extending flange 130 having a sleeve 128 extending proximally therefrom which is dimensioned such that, upon insertion of the sleeve 128 within distal end 62a, slit-like interface 66a expands radially outwardly and securely locks the jaw member 120 to tube 60a. Again, other methods of attachment are also envisioned which would serve the same purpose, e.g., snap-locks, locking tabs, spring-locks, screw-like interface, tongue and groove, etc.


As can be appreciated by the present disclosure, the arrangement of shaft 12b is slightly different from shaft 12a as shown best in FIGS. 4B, 7 and 8. More particularly, shaft 12b is also hollow to define a channel 15b therethrough and is dimensioned to receive a tube 60b therein. Tube 60b includes a proximal end 64b and a distal end 62b which attach in a generally similar fashion as their counterpart components with respect to shaft 12a. For example, the proximal end 64b of tube 60b is slideable incorporated within channel 15b such that a mechanical interface 61b disposed on the outer surface of tube 60b is poised for engagement with a cover plate 40 (FIGS. 4A and 8).


Preferably and since the forceps 10 is uniquely designed to incorporate all of the electrical interfaces and connections within and along a single shaft, e.g., 12b, shaft 12b includes a slightly larger cavity 45b defined therein for housing and securing the various electrical connections associated with the forceps 10 as described below. For example, cover plate 40 is dimensioned slightly differently than cover plate 50 mostly due to the spatial considerations which must be taken into account for incorporation of the various internally disposed electrical connections. However, cover plate 40 does snap atop shaft 12b such that a pair of flanges 42a and 42b secure tube 60b within shaft 12b in a similar manner as described above. For example, FIG. 8 shows a pair of detents 75a and 75b disposed within the cavity 45b of shaft 12b which engage a corresponding number of mechanical interfaces 61b disposed along the outer surface of tube 60b to limit/prevent rotation of the tube 60b relative to the shaft 12b. When assembled, each flange 42a and 42b is pushed into a corresponding groove 73a and 73b, respectively, which effectively maintain/hold the detents 75a and 75b in secure engagement within the notches 61b to prevent rotational and/or longitudinal movement of the tube 60b within the channel 15b.


End 64b of tube 60b also includes a slit-like interface 65b which mechanically engages a corresponding tongue 88b extending from the inner surface of shaft 12b within cavity 45b. It is envisioned that tongue 88a also prevents rotational movement of the tube 60b within the shaft 12b. Alternatively, slit 65b may be formed to allow radial contraction and expansion of the tube 60b to promote friction-fit engagement between the tube 60b and the shaft 12b.


Unlike tube 60a, tube 60b is designed as an electrical conduit for transmitting electrosurgical energy to jaw member 110 which is explained in more detail below with respect to FIGS. 7 and 8. The distal end 62b of tube 60b is preferably dimensioned to engage jaw member 110, i.e., the distal end 62b includes a slit-like interface 66b which promotes simple, secure friction-fit engagement of the tube 60b with the jaw member 110. This is best illustrated in FIG. 4B which shows proximally extending flange 130 of jaw member 110 having a terminal sleeve 138 which extends therefrom. Terminal sleeve 138 is dimensioned such that, upon insertion of the terminal sleeve 138 within distal end 62b, slit-like interface 66b expands radially outwardly and securely locks the jaw member 110 to tube 60b.


As can be appreciated, terminal end 138 is at least partially made from an electrically conductive material such that an electrosurgical potential is effectively conducted from the tube 60b, through the terminal sleeve 138, across plate 134 and to the electrically conductive sealing plate 112 upon activation. As mentioned above, the outer insulative housing 114 of jaw member 110 effectively eliminates stray electrical currents and incidental burning of tissue across the intended electrical path.


As best shown in FIG. 4B, jaw member 110 includes a raceway 135 extending proximally from the flange 130 which includes terminal sleeve 138 at the proximal-most end thereof. The terminal sleeve 138 connects to the conductive tube 60b disposed within shaft 12b as described above. Raceway 135 serves two purposes: 1) to provide electrical continuity from the terminal sleeve 138, through the electrically conductive plate 134 and to the electrically conductive sealing surface 112; and 2) to provide a channel for guiding lead 210a to the distal connector 300 as described below.


Insulated outer housing 114 is dimensioned to securely engage the electrically conductive sealing surface 112. It is envisioned that this may be accomplished by stamping, by overmolding, by overmolding a stamped electrically conductive sealing plate and/or by overmolding a metal injection molded seal plate. All of these manufacturing techniques produce an electrode having an electrically conductive surface 112 which is substantially surrounded by an insulated outer housing 114.


It is envisioned that the jaw member may also include a second insulator (not shown) disposed between the electrically conductive sealing surface 112 and the outer insulative housing 114. The insulated outer housing 114 and the electrically conductive sealing surface 112 (and the other insulator if utilized) are preferably dimensioned to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread and stray current dissipation.


It is also envisioned that the electrically conductive sealing surface 112 may include a pinch trim (not shown) which facilitates secure engagement of the electrically conductive surface 112 to the insulated outer housing 114 and also simplifies the overall manufacturing process. It is also contemplated that the electrically conductive sealing surface 112 may include an outer peripheral edge which has a radius and the insulated outer housing 114 meets the electrically conductive sealing surface 112 along an adjoining edge which is generally tangential to the radius and/or meets along the radius. Preferably, at the interface, the electrically conductive surface 112 is raised relative to the insulated outer housing 114. These and other envisioned embodiments are discussed in concurrently-filed, co-pending, commonly assigned Application Serial No. PCT/US01/11412 entitled “ELECTROSURGICAL INSTRUMENT WHICH REDUCES COLLATERAL DAMAGE TO ADJACENT TISSUE” by Johnson et al. and concurrently-filed, co-pending, commonly assigned application Ser. No. PCT/US01/11411 entitled “ELECTROSURGICAL INSTRUMENT WHICH IS DESIGNED TO REDUCE THE INCIDENCE OF FLASHOVER” by Johnson et al.


As best illustrated in the exploded view of FIG. 4B, the inner periphery of tube 60b is preferably dimensioned to house lead 210a therethrough such that a different electrically potential can be effectively transmitted to jaw member 120. More particularly and as mentioned above, cable 210 houses two leads 210a and 210b having different electrical potentials. The first lead 210a is disposed through tube 60b and conducts the first electrical potential to jaw member 120 as described in more detail below. The second lead 210b is electrically interfaced with tube 60b at a proximal connector 80 (FIG. 7) which includes a series of electrical crimps 85, 87 and 89 for securing lead 210b to tube 60b. As a result, tube 60b carries the second electrical potential therethrough for ultimate connection to jaw member 110 as described above.


Lead 210a preferably includes an insulative coating 213 which surrounds an inner core or electrical conductor 211 (e.g., wire) disposed therein to insulate the electrical conductor 211 from the tube 60b during activation. It is envisioned that the wire 211 may be made from a solid or multi-strand electrically conductive material, e.g., copper/aluminum, which is surrounded by an insulative, non-conductive coating 213, e.g., plastic.


The wire 211 includes a terminal end 212 which is dimensioned to electrically interface with jaw member 120. Preferably, the terminal end 212 is “flat-formed” in a generally arcuate shape to encircle a corresponding boss 314 which extends upwardly from the distal connector 300 towards jaw member 120 as described below. It is envisioned that the distal connector 300 performs at least two functions: 1) to insulate jaw member 110 from jaw member 120; and 2) to provide a running electrical connection for lead 210a to jaw member 120.


More particularly, the distal connector 300 is generally shaped to match the overall profile of the electrically conductive face plates 134 and 144 of jaw members 110 and 120, respectively, such that, upon assembly, outer facing surfaces 302 and 304 of the distal connector 300 abut against the corresponding plates 134 and 144 of jaw member 110 and 120, respectively. It is envisioned that the outer facing surface 302 of the distal connector 300 acts as a runway surface which facilitates pivotable motion of jaw member 120 about pivot pin 151 relative to jaw member 110. Preferably, the distal connector 300 is made form an insulative substrate such as plastic or some other non-conductive material.


The distal connector includes a series of flanges 322 and 326 which extend towards jaw member 120 and a second series of flanges 324 and 328 which extend towards jaw member 110. It is envisioned that these flanges 322, 324, 326 and 328 insulate the other operative components of the forceps 10 and the patient from stray electrical currents emanating from the electrically conductive plates 134 and 144 during activation. Flanges 322 and 328 may also be dimensioned to limit/restrict the expansion of tissue 400 beyond the sealing surfaces 112 and 122 during activation. Flanges 326 and 324 are preferably dimensioned to insulate the forceps during all angles of operation, i.e., pivoting of the jaw members 110 and 120.


As mentioned above, the distal connector 300 includes a boss 314 which extends towards jaw member 120 which is dimensioned to secure the terminal end 212 of lead 210a. Preferably, the boss is designed to electrically insulate the terminal end of the lead from the pivot. The boss 314 preferably defines an aperture 316 therethrough for receiving the pivot pin 151 and to allow pivotable motion of jaw member 120 about the pivot 151 and the boss 314 relative to jaw member 110.


A continuous series of recesses 312, 318 and 319 are formed around and proximate boss 314 to seat the flat-formed terminal end 212, the wire 211 and the insulated portion of the lead 210a, respectively. This also secures lead 210a to the distal connector and limits movement of the same (210a). In some cases it may be preferable to include a dollop of silicone or other non-conductive material at the junction between the wire and the terminal end 212 as an added and/or alternative insulating safeguard. It is also envisioned that flange 326 may include a notch (not shown) disposed therethrough which facilitates assembly of the lead 210a atop the distal connector 300. As can be appreciated, this eliminates the step of forming the arcuately-shaped terminal end 212 after insertion through channel 318. As mentioned above, a dollop of silicone or the like may be added atop/within the notch for insulation purposes after the terminal end 212 is seated within the distal connector 300.


The proximal-most portion of distal connector 300 includes a finger 320 which is dimensioned to seat within a channel 137 formed within the raceway 135 such that the distal connector 300 moves in connection with jaw member 110 during pivoting. Channel 135 may be formed during a molding process, subsequently bored after the raceway 135 is formed or by any other known method of formation. The uppermost edge of boss 314 is preferably dimensioned to seat within a corresponding recess (not shown) formed within plate 144. Likewise and although not shown, it is envisioned that the opposite end of boss 314 extends towards plate 134 and seats within a recess 131 formed within plate 134. It is envisioned that recess 131 promotes engagement of the distal connector 300 with the jaw member 110.


The distal connector 300 also includes a spring washer or wave washer 155 which is preferably dimensioned to encircle the boss 314 atop terminal end 212. Upon assembly, the washer 212 is sandwiched/wedged between the terminal end 212 and the conductive plate 144 of jaw member 120. It is envisioned that the washer 155 enhances the connection between the terminal end and the plate 144. More particularly, the washer 155 is preferably shaped such that the washer 155 provides a self-cleaning, running electrical contact between the terminal end 212 and the jaw member 120. It is contemplated that the washer 155 “self-cleans” due to the frictional contact and relative movement of the washer 155 with respect to the terminal end 212 during pivoting of the jaw members 110 and 120. The self-cleaning action can be attributed to the washer 155 rubbing, scoring and/or digging against the terminal end 212 and/or the plate 144 during pivoting of the jaw members 110 and 120.


The outer housing of each of the jaw members 110 and 120 preferably includes an additional recess or circular groove 129 which receives a ring-like insulator 153b and 153a, respectively. Insulators 153a and 153b insulate the pivot pin 150 from the jaw members 110 and 120 when the forceps 10 is assembled. Preferably, the pivot pin 150 is peened to secure the jaw members 110 and 120 during assembly and may include outer rims 151a and 151b at least one of which is peened or formed after the jaw members 110 and 120 are assembled about the pivot pin 150 as best shown in FIG. 4B.


Upon activation, the first electrical potential is carried by lead 210a through tube 60b to the terminal end 212. The washer 155 of the distal connector 300 then conducts the first potential to face plate 144 which carries the first potential to sealing plate 122 disposed on the inner facing surface of jaw member 120. The second potential is carried by lead 210b which electrically interfaces with the tube 60b (by way of crimps 85, 87 and 89) to conduct the second potential to terminal sleeve 138 of jaw member 110. The terminal sleeve 138 electrically connects to sealing surface 112 across face plate 134.



FIG. 8 shows the connection of the cable 210 within the cavity 45b of shaft 12b. As mentioned above a series of finger-like elements 77a and 77b and crimps 76a and 76b secure the cable 210 within shaft 12b. Preferably, cable 210 is secured at an angle alpha (α) relative to a longitudinal axis “A” disposed along shaft 12b. It is envisioned that angling the cable 210 in an inward direction, i.e., towards shaft 12a, facilitates handling of the forceps 10 and the cable 210 during surgery, i.e., the angled disposition of the cable 210 as it exits the forceps 10 tends to reduce cable tangling and/or cable interference during handling.


Preferably at least one of the jaw members 110 and 120 includes a skirt-like feature 126 and 136, respectively, which is dimensioned to prevent exposure of the terminal end 212 or wire 211 during all angles of operation, i.e., when the jaw members 110 and 120 are disposed in the first open position, the second closed position and/or during operative movement therebetween.


It is envisioned that by making the forceps 10 disposable, the forceps 10 is less likely to become damaged since it is only intended for a single use and, therefore, does not require cleaning or sterilization. As a result, the functionality and consistency of the vital sealing components, e.g., the conductive surfaces 112 and 122, the stop member(s) 150, and the insulative housings 124 and 114 will assure a uniform and quality seal.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the present disclosure. For example, it may be preferable to include a tang which facilitates manipulation of the forceps 10 during surgery.


Moreover, although the electrical connections are preferably incorporated with the bottom shaft 12b and the instrument is intended for right-handed use, it is contemplated the electrical connections may be incorporated with the other shaft 12a depending upon a particular purpose and/or to facilitate manipulation by a left-handed user.


It is also contemplated that a shrink tube may be employed over the proximal connector 80 and/or the other various solder or crimp connections 85, 87 and 89 associated with the proximal connector 80 interface with lead wire 210b. This provides additional insulating protection during assembly. It is also contemplated that the forceps 10 (and/or the electrosurgical generator used in connection with the forceps 10) may include a sensor or feedback mechanism (not shown) which automatically selects the appropriate amount of electrosurgical energy to effectively seal the particularly-sized tissue 400 grasped between the jaw members 110 and 120. The sensor or feedback mechanism may also measure the impedance across the tissue during sealing and provide an indicator (visual and/or audible) that an effective seal has been created between the jaw members 110 and 120.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A method of sealing tissue, comprising: providing an electrosurgical energy source connected to a surgical instrument used for open surgical procedures, said surgical instrument including a pair of jaw members, the pair of jaw members including a first jaw member and a second jaw member;closing the jaw members around tissue so as to provide a gap between the jaw members in the range of about 0.001 inches to about 0.006 inches and a closure pressure of in the range of about 7 kg/cm2 to about 13 kg/cm2; andapplying electrosurgical energy to the jaw members so that energy passes between the jaw members and through tissue to effect a tissue seal, wherein electrosurgical energy is applied to at least one of the first jaw member and the second jaw member via a lead having a terminal end which interfaces with a distal connector, and wherein the distal connector supports a running electrical contact.
  • 2. A method of sealing tissue, comprising: providing a surgical instrument for use with open surgical procedures, said surgical instrument including a pair of jaw members adapted to connect to a source of electrosurgical energy members, the pair of jaw members including a first jaw member and a second jaw member;closing the jaw members around tissue so as to provide a substantially uniform gap between the jaw members in the range of about 0.001 inches to about 0.006 inches and a closure pressure of in the range of about 7 kg/cm2 to about 13 kg/cm2; andapplying electrosurgical energy to the jaw members so that energy passes between the jaw members and through tissue to effect a tissue seal, wherein electrosurgical energy is applied to at least one of the first jaw member and the second jaw member via a lead having a terminal end which interfaces with a distal connector, and wherein the distal connector includes a spring washer which acts as an electrical intermediary between the terminal end and the jaw member.
  • 3. The method of claim 1, wherein the gap between the jaw members is greater than about 0.001 inches and less than about 0.003 inches.
  • 4. The method of claim 2, wherein the gap between the jaw members is greater than about 0.001 inches and less than about 0.003 inches.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/849,432 filed May 19, 2004 (now abandoned) which is a continuation-in-part of U.S. application Ser, No. 10/474,170 filed Mar. 10, 2004 which claims priority to and benefit of PCT Application Serial No. PCT/US01/11420 filed Apr. 6, 2001 entitled “VESSEL SEALING INSTRUMENT” which is a continuation-in-part of U.S. application Ser. No. 09/425,696 filed Oct. 22, 1999 now U.S. Pat. No. 6,511,480 which is a continuation-in-part of U.S. application Ser. No. 09/178,027 filed Oct. 23, 1998 now U.S. Pat. No. 6,277,177, the entire contents of each of these applications is hereby incorporated by reference.

US Referenced Citations (603)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2176479 Willis Oct 1939 A
2279753 Knopp Apr 1942 A
2305156 Grubel Dec 1942 A
2632661 Cristofv Mar 1953 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3459187 Pallotta Aug 1969 A
3643663 Sutter Feb 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3720896 Beierlein Mar 1973 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4088134 Mazzariello May 1978 A
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4233734 Bies Nov 1980 A
4300564 Furihata Nov 1981 A
D263020 Rau, III Feb 1982 S
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4452246 Bader et al. Jun 1984 A
4492231 Auth Jan 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4685459 Xoch et al. Aug 1987 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
4827929 Hodge May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4938761 Ensslin Jul 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5084057 Green et al. Jan 1992 A
5099840 Goble et al. Mar 1992 A
5116332 Lottick May 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5282799 Rydell Feb 1994 A
5290286 Parins Mar 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308357 Lichtman May 1994 A
5314445 Degwitz et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5368600 Failla et al. Nov 1994 A
5376089 Smith Dec 1994 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5451224 Goble et al. Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472443 Cordis et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5512721 Young et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562699 Heimberger et al. Oct 1996 A
5569241 Edwardds Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5582611 Tsukagoshi et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5601601 Tal et al. Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5611798 Eggers Mar 1997 A
5620453 Nallakrishnan Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638003 Hall Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5658281 Heard Aug 1997 A
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5755717 Yates et al. May 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
H1745 Paraschac Aug 1998 H
5792137 Carr et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5817083 Williamson, IV et al. Oct 1998 A
5820630 Lind Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5860976 Billings et al. Jan 1999 A
5876401 Schulze et al. Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5935126 Riza Aug 1999 A
5944718 Dafforn et al. Aug 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
5976132 Morris Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5997565 Inoue Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka et al. Jan 2000 A
6024741 Williamson et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
6074386 Goble et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6152923 Ryan Nov 2000 A
6162220 Nezhat Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6217602 Redmon Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6302424 Gisinger et al. Oct 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6500176 Truckai et al. Dec 2002 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6527771 Weadock et al. Mar 2003 B1
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6669696 Bacher et al. Dec 2003 B2
6676660 Wampler et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6757977 Dambal et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6860880 Treat et al. Mar 2005 B2
6887240 Lands et al. May 2005 B1
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
6942662 Goble et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052496 Yamauchi May 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179258 Buysse et al. Feb 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7207990 Lands et al. Apr 2007 B2
D541938 Kerr et al. May 2007 S
7223265 Keppel May 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jhigamian Mar 2008 B2
7367976 Lawes et al. May 2008 B2
20020013583 Camran et al. Jan 2002 A1
20020049442 Roberts et al. Apr 2002 A1
20020099372 Schulze et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018331 Dycus et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030032956 Lands et al. Feb 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078578 Truckai et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030158549 Swanson Aug 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220637 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040078035 Kanehira et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040115296 Duffin Jun 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040116979 Truckai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040193153 Sarter et al. Sep 2004 A1
20040230189 Keppel Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260281 Baxter, III et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050096645 Wellman et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20050137590 Lawes et al. Jun 2005 A1
20050149017 Dycus Jul 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20050187547 Sugi Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050240179 Buysse et al. Oct 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060074417 Cunningham et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189981 Dycus et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060224158 Odom et al. Oct 2006 A1
20060259036 Tetzlaff et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060287641 Perlin Dec 2006 A1
20070016182 Lipson et al. Jan 2007 A1
20070016187 Weinberg et al. Jan 2007 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070060919 Isaacson et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070078459 Johnson et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070106297 Dumbauld et al. May 2007 A1
20070118111 Weinberg May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070203485 Keppel Aug 2007 A1
20070213706 Dumbauld et al. Sep 2007 A1
20070213707 Dumbauld et al. Sep 2007 A1
20070213708 Dumbauld et al. Sep 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070255279 Buysse et al. Nov 2007 A1
20070260235 Podhajsky Nov 2007 A1
20070260238 Guerra Nov 2007 A1
20070260241 Dalla Betta et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080009860 Odom Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080021450 Couture Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080039835 Johnson et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082100 Orton et al. Apr 2008 A1
Foreign Referenced Citations (130)
Number Date Country
2104423 Feb 1994 CA
2415263 Oct 1975 DE
2627679 Jan 1977 DE
8712328 Mar 1988 DE
4303882 Aug 1994 DE
29616210 Jan 1997 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
0364216 Apr 1990 EP
518230 Dec 1992 EP
0541930 May 1993 EP
0572131 Dec 1993 EP
584787 Mar 1994 EP
0589453 Mar 1994 EP
0623316 Nov 1994 EP
0624348 Nov 1994 EP
0650701 May 1995 EP
0694290 Mar 1996 EP
0717966 Jun 1996 EP
0754437 Mar 1997 EP
853922 Jul 1998 EP
0875209 Nov 1998 EP
0878169 Nov 1998 EP
0887046 Jan 1999 EP
0923907 Jun 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
1025807 Oct 2000 EP
1034746 Oct 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1159926 Dec 2001 EP
1301135 Apr 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
1472984 Nov 2004 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1632192 Mar 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1707143 Oct 2006 EP
2214430 Jun 1989 GB
2213416 Aug 1989 GB
501068 Sep 1984 JP
502328 Mar 1992 JP
5-5106 Jan 1993 JP
5-40112 Feb 1993 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09010223 Jan 1997 JP
11244298 Sep 1999 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
401367 Nov 1974 SU
WO 8900757 Jan 1989 WO
WO 9204873 Apr 1992 WO
WO 9206642 Apr 1992 WO
WO 9408524 Apr 1994 WO
WO 9420025 Sep 1994 WO
WO 9502369 Jan 1995 WO
WO 9507662 Mar 1995 WO
WO 9515124 Jun 1995 WO
WO 9605776 Feb 1996 WO
WO 9622056 Jul 1996 WO
WO 9613218 Sep 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO 9710764 Mar 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9827880 Jul 1998 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912488 Mar 1999 WO
WO 9940857 Aug 1999 WO
WO 9940861 Aug 1999 WO
WO 9951158 Oct 1999 WO
WO 9966850 Dec 1999 WO
WO 0024330 May 2000 WO
WO 0024331 May 2000 WO
WO 0041638 Jul 2000 WO
WO 0047124 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0117448 Mar 2001 WO
WO 0154604 Aug 2001 WO
WO 0207627 Jan 2002 WO
WO 02067798 Sep 2002 WO
WO 02080783 Oct 2002 WO
WO 02080784 Oct 2002 WO
WO 02080785 Oct 2002 WO
WO 02080786 Oct 2002 WO
WO 02080793 Oct 2002 WO
WO 02080794 Oct 2002 WO
WO 02080795 Oct 2002 WO
WO 02080796 Oct 2002 WO
WO 02080797 Oct 2002 WO
WO 02080798 Oct 2002 WO
WO 02080799 Oct 2002 WO
WO 02081170 Oct 2002 WO
WO 03090630 Nov 2003 WO
WO 03101311 Dec 2003 WO
WO 2004032776 Apr 2004 WO
WO 2004032777 Apr 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004073488 Sep 2004 WO
WO 2004073490 Sep 2004 WO
WO 2004073753 Sep 2004 WO
WO 2004082495 Sep 2004 WO
WO 2004098383 Nov 2004 WO
WO 2004103156 Dec 2004 WO
WO 2005004734 Jan 2005 WO
WO 2005004735 Jan 2005 WO
WO 2005110264 Nov 2005 WO
Related Publications (1)
Number Date Country
20080167651 A1 Jul 2008 US
Continuations (1)
Number Date Country
Parent 10849432 May 2004 US
Child 12004986 US
Continuation in Parts (1)
Number Date Country
Parent 10474170 Mar 2004 US
Child 10849432 US