The present disclosure relates to hemostats or forceps used for open surgical procedures and laparoscopic surgical procedures. More particularly, the present disclosure relates to a fenestrated forceps having wave-like opposing jaws which can be used to apply purely mechanical clamping pressure to clamp, grasp and/or manipulate vascular tissue in an atraumatic fashion or to apply a combination of mechanical clamping pressure and electrosurgical current to cauterize, coagulate/desiccate and/or cut tissue.
A hemostat or forceps is a simple plier-like tool which uses mechanical action between its jaws to constrict vessels and is commonly used in open surgical procedures to grasp, dissect and/or clamp tissue. Electrosurgical forceps are similar clamping devices which utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to cause coagulation and/or cauterization.
Over the last several decades, more and more surgeons are abandoning traditional open methods of gaining access to vital organs and body cavities in favor of endoscopes and laparoscopic instruments which access organs through small puncture-like incisions. However, due to space limitations surgeons can have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. Electrosurgical instruments and particularly electrosurgical forceps can be used instead to control bleeding.
By utilizing an electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or cut tissue and/or simply reduce or slow bleeding, by controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue. Generally, the electrical configuration of electrosurgical forceps can be categorized in two classifications: 1) monopolar electrosurgical forceps; and 2) bipolar electrosurgical forceps.
Monopolar forceps utilize one active electrode associated with the clamping end effector and a remote patient return electrode or pad which is typically attached externally to the patient. When the electrosurgical energy is applied, the energy travels from the active electrode, to the surgical site, through the patient and to the return electrode. See, e.g., U.S. Pat. Nos. 4,416,276 and 4,416,277 the contents of which are incorporated herein by reference.
Bipolar electrosurgical forceps utilize two generally opposing electrodes which are disposed on the inner opposing surfaces of the end effectors and which are both electrically coupled to an electrosurgical generator. Each electrode is charged to a different electric potential. Since tissue is a conductor of electrical energy, when the effectors are utilized to grasp tissue therebetween, the electrical energy can be selectively transferred through the tissue.
Numerous mechanical and electrosurgical forceps designs have been proposed in the past for various open surgical procedures and laparoscopic surgical procedures. Some of these designs may not provide adequate clamping pressure and/or may cause undue trauma to the tissue during manipulation, clamping and/or coagulation. For example, U.S. Pat. No. 2,518,994 to Miller, U.S. Pat. No. 3,404,677 to Springer and U.S. Pat. No. 5,263,967 to Lyons, III et al. all disclose purely mechanical forceps which have serrated edges or teeth on their respective undersurfaces for grasping and clamping tissue. These structures may have a traumatic effect on delicate tissue. Likewise, U.S. Pat. No. 5,674,220 to Fox et al. and U.S. Pat. No. 5,217,460 to Knoepfler both disclose electrosurgical forceps which also utilize teeth to grasp the tissue and, as a result, may also have a similar traumatic effect on delicate tissue.
Thus, a need exists to develop a forceps which can be utilized effectively without causing needless trauma to tubular vessels or delicate tissues. Preferably, the forceps can be used for both mechanical clamping, grasping and dissecting as well as electrosurgical sealing, coagulation/desiccating and/or cutting of tissue.
The present disclosure relates to a forceps which includes a shaft portion having a proximal end, a distal end and first and second jaw members pivotally attached to the distal end of the shaft by a pivot assembly. Each of the jaw members includes an opposing inner facing surface having a plurality of wave forms disposed thereon which are capable of engaging tissue therebetween. The plurality of wave forms disposed on the inner facing surface of the second jaw member are complimentary to the plurality of wave forms disposed on the inner facing surface of the first jaw member. The forceps also includes a handle portion attached to the proximal end of the shaft. The handle portion includes an activator assembly disposed therein for imparting movement of the first and second jaw members from a first open position wherein the jaw members are disposed in spaced relation relative to one another to a second clamping position wherein the jaw members cooperate to grasp tissue therebetween.
In one embodiment, the inner facing surfaces of each jaw member include a fenestrated portion disposed therethrough. Preferably, the fenestrated portion of the first jaw member is aligned with the fenestrated portion of the second jaw member.
In another embodiment, the wave forms of the first jaw member include clamping portions and manipulating portions and the wave forms of the second jaw member include complimentary clamping and manipulating portions. Preferably, the plurality of wave forms of each jaw member are longitudinally, transversely and/or both longitudinally and transversely disposed on the inner facing surface of each jaw member.
In yet another embodiment, the manipulating portions of the jaw members include a plurality of teeth which are filleted or rounded to reduce trauma to the tissue. Preferably, the clamping portion of each of the jaw members is wide relative to the manipulating portion to facilitate dissection.
The forceps may be bipolar with each of the inner facing surfaces of the jaw members including an electrode which is connected to a source of electrical energy. The wave forms of the first jaw member include coagulating portions and manipulating portions and the wave forms of the second jaw member include complimentary coagulating and manipulating portions. The source of electrical energy imparts different electrical potentials to each of the electrodes such that the electrodes are capable of conducting bipolar energy through the tissue held between the inner facing surfaces of the jaw members. It is also contemplated that a portion of the inner facing surfaces of each jaw member is non-conductive and/or semi-conductive (i.e., only certain portions of the surface are conductive) to control and/or eliminate current densities at specific jaw locations.
a is an enlarged, frontal view in cross-section taken along line 13a—13a of
b is an enlarged, frontal view in cross-section of another embodiment of the present disclosure showing an alternative transverse wave pattern disposed along the inner facing surface of the upper jaw member.
Referring now to
Activator assembly 20 includes a movable handle 26 having an aperture 34 defined therein for receiving at least one of the operator's fingers and a fixed handle 28 having an aperture 32 defined therein for receiving an operator's thumb. Movable handle 26 is selectively moveable from a first position relative to fixed handle 28 to a second position in closer proximity to the fixed handle 28 to close jaw members 40, 42. Preferably, fixed handle 28 includes a channel 27 which extends proximally for receiving a ratchet 30 which is coupled to movable handle 26. This structure allows for progressive closure of end effector assembly 22 as well as locking engagement of opposing jaw members 40, 42.
In some cases it may be preferable to include other mechanisms to control and/or limit the movement of handle 26 relative to handle 28 such as, e.g., hydraulic, semi-hydraulic and/or gearing systems.
Handle portion 18 may also include a rotation knob 24 for controlling the rotational movement of the end effector assembly 22 about a longitudinal axis “A” of the elongated shaft 12. Preferably, the ratio of rotation of the knob 24 to the end effector assembly 22 is 1:1, however, it is contemplated that gearing structure may be incorporated to increase or decrease the rotational ratio depending upon a particular purpose.
Each jaw member 40, 42 includes a plurality of wave forms disposed along its inner facing surface which cooperate to engage tissue 51 therebetween. Preferably, each jaw member 40 and 42 includes clamping wave portions 48a and 48b and manipulating wave portions 52a and 52b, respectively (FIG. 3). The clamping and manipulating wave portions 48b, 58b, respectively, disposed on the inner facing surface of the lower jaw member 42 are complimentary (out of phase) to the clamping and manipulating wave portions 48a, 52a, respectively, of the upper jaw member 40 thus, the upper and lower jaws interfit in the closed position (FIG. 2).
In one embodiment of the present disclosure, the clamping wave portions 48a, 48b are disposed along a proximal portion of each jaw member's 40, 42 length and the manipulating wave portions 52a, 52b are tapered at or about step 53a, 53b to facilitate dissection. In some cases, however, it may be preferable to adjust the length of the clamping wave portions 48a, 48b relative to the manipulating wave portions 53a, 53b to suit a particular purpose. Preferably, the radius of curvature of the clamping wave portions 48a, 48b is greater than the radius of curvature of the manipulating wave portions 52a, 52b. More particularly, the manipulating wave portions 52a, 52b preferably include a plurality of small peaks 55a and 55b which facilitate dissection and delicate positioning of tissue. The clamping wave portions 48a, 48b, on the other hand, preferably include larger, more undulating, wave patterns to improve atraumatic grasping of large structures and to increase surface area contact. In another embodiment of the present disclosure, the small peaks 55a, 55b are filleted to reduce trauma to the tissue 51. It is also envisioned that by filleting peaks 55a, 55b and the areas between successive peaks 55a, 55b, areas of high current densities which typically occur at or along sharp edges/points and which may cause tissue damage, e.g., tissue sticking and charring, will be reduced.
Jaw members 40, 42 also include apertures 57a and 57b, respectively, and slots or cams 59a and 59b which are each disposed within respective pivot portions 44a and 44b and mount jaw members 40, 42 about pivot pins 47a and 47b, respectively to pivot housing 41 (see FIGS. 2 and 3). Preferably, slots 59a, 59b effect opposing linear movement of the jaw members 40, 42 about pins 47a, 47b. However, in some cases it may be preferable to manufacture slots or cams 59a, 59b with a different shape, e.g., harmonic, parabolic and/or cycloidal, to move the jaw members 40, 42 in a different and/or more prescribed manner.
As seen best in
b show other wave patterns which can be formed on the inner facing surfaces of the jaw members 40, 42. For example,
For the purposes herein the term coagulating is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. Vessel sealing is defined as the process of liquefying the collagen in the tissue so that it crosslinks and reforms into a fused mass.
As best seen in
The electrodes 449a, 449b are disposed along the coagulating wave portions 448a, 448b of the jaw members 440, 442 and are generally shaped according to the contours and undulating patterns of the coagulating wave portions 448a, 448b. Preferably, portions of the inner facing surfaces of each jaw member 440, 442 are nonconductive and/or semiconductive to control or eliminate undesirable current densities which may convene at these locations. For example, an insulative coating could be applied to the small peaks 455a, 455b to reduce the possibility of electrical shorting when the forceps 410 is sealing/coagulating tissue 51 grasped in the coagulating wave portions 448a, 448b of the jaw members 440, 442. Moreover, various metal alloys could be employed to add non-stick characteristics to the bipolar forceps 410.
In addition to rendering the forceps 410 atraumatic and improving its overall grasping features by the provision of fenestrations and various wave patterns disposed along the inner facing surfaces of the jaw members 440, 442, the wave features of the forceps 410 increase the overall surface area for welding vessels and other anatomical structures which is believed to provide superior tissue sealing effects.
In use, the surgeon manipulates handle 26 to advance the activator assembly 20 and move jaw members 440, 442 to the open position wherein the jaw members 440, 442 are disposed in spaced relation relative to one another to receive tissue 51 therebetween. The surgeon then manipulates handle 26 to impart movement of the jaw members 440, 442 about pivot portions 444a, 444b to close the inner facing surfaces of the jaw members 440, 442 about tissue 51.
Depending upon the surgeons particular purpose, the surgeon can close either the coagulating wave portions 448a, 448b and/or the manipulating wave portions 452a, 452b about the tissue 51 to coagulate/seal/cut and/or delicately manipulate the tissue 51. If the surgeon's purpose is to coagulate seal/cut the tissue 51, then after the jaw members 440, 442 are closed about the tissue 51, the surgeon then applies electrosurgical energy to the tissue 51. By controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue 51, the surgeon can either cauterize, coagulate/desiccate and/or cut tissue and/or simply reduce or slow bleeding.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the present disclosure. For example, it is envisioned that various longitudinal, transverse wave patterns can be formed on the jaw members depending upon a particular purpose. In addition, the shape and size of the fenestrations may also be altered to meet a particular purpose.
Although it is preferable to form the upper and lower jaw members such that they are complimentary and intermesh with one another, in some cases it may be preferable to include non-complimentary portions depending upon a particular purpose. Moreover, it may be preferable to offset the upper jaw member fenestrations from the lower jaw member fenestrations.
Although it is preferable to vertically align the electrodes on the bipolar version of the forceps, in some cases it may be preferable to offset the opposing electrodes relative to one another either longitudinally or transversely to suit a particular purpose.
In addition, it may be preferable to add other features to the forceps of the present disclosure, e.g., an articulating assembly to axially displace the end effector assembly relative to the elongated shaft.
There have been described and illustrated herein several embodiments of a forceps having wavelike opposing jaws for clamping, grasping, manipulating, cauterizing, coagulating/desiccating and/or cutting vascular tissue in an atraumatic fashion. While particular embodiments of the disclosure have been described, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation-in-part of U.S. application Ser. No. 09/104,729 now U.S. Pat. No. 6,179,834 entitled “VASCULAR TISSUE SEALING PRESSURE CONTROL” which was filed on Jun. 25, 1998 by BUYSSE ET AL., which is a continuation of (U.S. application Ser. No. 08/530,450) now U.S. Pat. No. 5,776,130 which was filed on Sep. 19, 1995 by BUYSSE ET AL. entitled “VASCULAR TISSUE SEALING PRESSURE CONTROL”, the entire contents of both of these disclosures are hereby incorporated by reference. This application claims benefit of 60/105,333 filed Oct. 23, 1998.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
702472 | Pignolet | Jun 1902 | A |
728883 | Downes | May 1903 | A |
1586645 | Bierman | Jun 1926 | A |
2002594 | Wappler et al. | May 1935 | A |
2176479 | Willis | Oct 1939 | A |
2397823 | Walter | Apr 1946 | A |
2518994 | Miller | Aug 1950 | A |
3404677 | Springer | Oct 1968 | A |
3515139 | Malina | Jun 1970 | A |
3643663 | Sutter | Feb 1972 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3895636 | Schmidt | Jul 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3938527 | Rioux et al. | Feb 1976 | A |
3952749 | Fridolph et al. | Apr 1976 | A |
3980861 | Fukunaga | Sep 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4370980 | Lottick | Feb 1983 | A |
4492231 | Auth | Jan 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4597379 | Xihn et al. | Jul 1986 | A |
4671274 | Sorochenko | Jun 1987 | A |
4685459 | Xoch et al. | Aug 1987 | A |
4763669 | Jaeger | Aug 1988 | A |
4836205 | Barrett | Jun 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4938761 | Ensslin | Jul 1990 | A |
5026370 | Lottick | Jun 1991 | A |
5116332 | Lottick | May 1992 | A |
5147356 | Bhatta | Sep 1992 | A |
5151102 | Xamiyama et al. | Sep 1992 | A |
5197493 | Grier-Idris | Mar 1993 | A |
5199441 | Hogle | Apr 1993 | A |
5217458 | Parins | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5263967 | Lyons, III et al. | Nov 1993 | A |
5275615 | Rose | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282826 | Quadri | Feb 1994 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5324289 | Eggers | Jun 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342389 | Haber et al. | Aug 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5372589 | Davis | Dec 1994 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5431674 | Basile et al. | Jul 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443464 | Russell et al. | Aug 1995 | A |
5443479 | Bressi, Jr. | Aug 1995 | A |
5445658 | Durrfeld et al. | Aug 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5486172 | Chess | Jan 1996 | A |
5507772 | Shutt et al. | Apr 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5549623 | Sharpe et al. | Aug 1996 | A |
5553624 | Francese et al. | Sep 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5615690 | Giurtino et al. | Apr 1997 | A |
5618305 | Lolagne | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5658281 | Heard | Aug 1997 | A |
5667526 | Levin | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5683388 | Slater | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5700276 | Benecke | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5709707 | Lock et al. | Jan 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5728160 | Draenert | Mar 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5766166 | Hooven | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5776128 | Eggers | Jul 1998 | A |
5776130 | Buysee et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5817091 | Nardella et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5893863 | Yoon | Apr 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
6053933 | Balazs et al. | Apr 2000 | A |
6083150 | Aznoian et al. | Jul 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6193718 | Kortenbach et al. | Feb 2001 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6443970 | Schulze et al. | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
20030018331 | Dycus et al. | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
2104423 | Feb 1994 | CA |
19608716 | Apr 1997 | DE |
0572131 | Dec 1993 | EP |
0 584 787 | Mar 1994 | EP |
0 584 787 | Mar 1994 | EP |
0 853 922 | Jul 1998 | EP |
401367 | Oct 1973 | SU |
WO 0154604 | Aug 2001 | WO |
WO 02060798 | Oct 2002 | WO |
Number | Date | Country | |
---|---|---|---|
60105333 | Oct 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09104729 | Jun 1998 | US |
Child | 09419592 | US | |
Parent | 08530450 | Sep 1995 | US |
Child | 09104729 | US |