The present technology is generally related to implantable medical systems, in particular, to delivering implantable medical systems.
The cardiac conduction system includes the sinus atrial (SA) node, the atrioventricular (AV) node, the bundle of His, bundle branches, and Purkinje fibers. A heartbeat is initiated in the SA node, which may be described as the natural “pacemaker” of the heart. An electrical impulse arising from the SA node causes the atrial myocardium to contract. The signal is conducted to the ventricles via the AV node which inherently delays the conduction to allow the atria to stop contracting before the ventricles begin contracting thereby providing proper AV synchrony. The electrical impulse is conducted from the AV node to the ventricular myocardium via the bundle of His, bundle branches, and Purkinje fibers.
Implantable medical devices (IMDs), such as cardiac pacemakers or implantable cardioverter defibrillators, deliver therapeutic stimulation to patients' hearts. Patients with a conduction system abnormality, such as poor AV node conduction or poor SA node function, may receive an IMD, such as a pacemaker, to restore a more normal heart rhythm and AV synchrony. Some types of IMDs, such as cardiac pacemakers, implantable cardioverter-defibrillators (ICDs), or cardiac resynchronization therapy (CRT) devices, provide therapeutic electrical stimulation to a heart of a patient via electrodes on one or more implantable endocardial, epicardial, or coronary venous leads that are positioned in or adjacent to the heart. The therapeutic electrical stimulation may be delivered to the heart in the form of pulses or shocks for pacing, cardioversion, or defibrillation. In some cases, an IMD may sense intrinsic depolarizations of the heart and control the delivery of therapeutic stimulation to the heart based on the sensing.
Delivery of therapeutic electrical stimulation to the heart can be useful in addressing cardiac conditions such as ventricular dyssynchrony that may occur in patients. Ventricular dyssynchrony may be described as a lack of synchrony or a difference in the timing of contractions in different ventricles of the heart. Significant differences in timing of contractions can reduce cardiac efficiency. CRT, delivered by an IMD to the heart, may enhance cardiac output by resynchronizing the electromechanical activity of the ventricles of the heart. CRT is sometimes referred to as “triple chamber pacing” because CRT delivers pacing to three chambers, namely, the right atrium, right ventricle, and left ventricle.
Cardiac arrhythmias may be treated by delivering electrical shock therapy for cardioverting or defibrillating the heart in addition to cardiac pacing, for example, from an ICD, which may sense a patient's heart rhythm and classify the rhythm according to an arrhythmia detection scheme in order to detect episodes of tachycardia or fibrillation. Arrhythmias detected may include ventricular tachycardia (VT), fast ventricular tachycardia (FVT), ventricular fibrillation (VF), atrial tachycardia (AT) and atrial fibrillation (AT). Anti-tachycardia pacing (ATP), a painless therapy, can be used to treat ventricular tachycardia (VT) to substantially terminate many monomorphic fast rhythms. While ATP is painless, ATP may not deliver effective therapy for all types of VTs. For example, ATP may not be as effective for polymorphic VTs, which has variable morphologies. Polymorphic VTs and ventricular fibrillation (VFs) can be more lethal and may require expeditious treatment by shock.
Dual chamber medical devices are available that include a transvenous atrial lead carrying electrodes that may be placed in the right atrium and a transvenous ventricular lead carrying electrodes that may be placed in the right ventricle via the right atrium. The dual chamber medical device itself is generally implanted in a subcutaneous pocket and the transvenous leads are tunneled to the subcutaneous pocket. A dual chamber medical device may sense atrial electrical signals and ventricular electrical signals and can provide both atrial pacing and ventricular pacing as needed to promote a normal heart rhythm and AV synchrony. Some dual chamber medical devices can treat both atrial and ventricular arrhythmias.
Intracardiac medical devices, such as a leadless pacemaker, have been introduced or proposed for implantation entirely within a patient's heart, eliminating the need for transvenous leads. A leadless pacemaker may include one or more electrodes on its outer housing to deliver therapeutic electrical signals and/or sense intrinsic depolarizations of the heart. Intracardiac medical devices may provide cardiac therapy functionality, such as sensing and pacing, within a single chamber of the patient's heart. Single chamber intracardiac devices may also treat either atrial or ventricular arrhythmias or fibrillation. Some leadless pacemakers are not intracardiac and may be positioned outside of the heart and, in some examples, may be anchored to a wall of the heart via a fixation mechanism.
The techniques of this disclosure generally relate to delivering an implantable medical system for ventricle-from-atrium (VfA) cardiac therapy. These techniques may facilitate accurate delivery of an implantable medical system through the triangle of Koch region in the right atrium for pacing the left ventricle. In particular, at least one electrode of an implantable lead or device may be advanced from the triangle of Koch region through the right atrial endocardium and central fibrous body into the left ventricular myocardium of the patient's heart to deliver cardiac therapy to or sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium. An atrial slow pathway potential (ASP) may be used to determine the suitability of a pacing location or depth for VfA cardiac therapy.
In one aspect, a method includes locating the triangle of Koch region in the right atrium of a patient's heart; securing at least one electrode of an implantable lead or device to cardiac tissue from the triangle of Koch region to deliver ventricle-from-atrium (VfA) cardiac therapy; and testing the location or depth of the at least one electrode to configure VfA cardiac therapy. An atrial slow pathway potential (ASP) may be used to determine the suitability of a pacing location or depth for VfA cardiac therapy. A delivery system including a mapping analyzer may be used to carry out the method.
The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.
The present disclosure provides techniques for delivering an implantable medical system for VfA cardiac therapy. These techniques may facilitate accurate delivery of an implantable medical system through the triangle of Koch region in the right atrium (RA) for pacing the left ventricle (LV). In particular, at least one electrode of an implantable lead or device may be advanced from the triangle of Koch region through the RA endocardium and central fibrous body into the LV myocardium of the patient's heart to deliver cardiac therapy to or sense electrical activity of the LV in the basal region, septal region, or basal-septal region of the LV myocardium.
As used herein, the term “or” is generally employed in its inclusive sense, for example, to mean “and/or” unless the context clearly dictates otherwise. The term “and/or” means one or all the listed elements or a combination of at least two of the listed elements.
The terms “coupled” or “connected” refer to elements being attached to each other either directly (i.e., in direct contact with each other) or indirectly (i.e., having one or more elements between and attaching the two elements). Either term may be modified by “operatively” and “operably,” which may be used interchangeably, to describe that the coupling or connection is configured to allow the components to interact to carry out functionality described in this disclosure or known to one skilled in the art having the benefit of this disclosure.
Reference will now be made to the drawings, which depict one or more aspects described in this disclosure. However, it will be understood that other aspects not depicted in the drawings fall within the scope of this disclosure. Like numbers used in the figures refer to like components, steps, and the like. However, it will be understood that the use of a reference character to refer to an element in a given figure is not intended to limit the element in another figure labeled with the same reference character. In addition, the use of different reference characters to refer to elements in different figures is not intended to indicate that the differently referenced elements cannot be the same or similar.
The method 100 may include providing an introduction pathway to the RA of the patient's heart 102 from outside of the patient's body to deliver at least one electrode to the RA of the patient's heart. In general, the introduction pathway to the RA includes a vein near a surface of the patient's body that leads to the RA.
The method 100 may also include locating the triangle of Koch region in the right atrium of a patient's heart 104. In some cases, the triangle of Koch region may be found in relation to particular anatomical structures, such as the tricuspid valve and the coronary sinus ostium (CSO) and the AV node, which may also be described as reference anatomical structures. In other words, the tricuspid valve or the CSO may be used as a starting point to find the triangle of Koch region.
Further, the method 100 may include securing at least one electrode of an implantable lead or device of the implantable medical system to cardiac tissue through the triangle of Koch region to deliver ventricle-from-atrium (VfA) cardiac therapy 106. Securing at least one electrode may include selecting a particular location, depth, or orientation of the implantable lead or device to properly position the at least one electrode. In general, securing at least one electrode of the implantable lead or device to cardiac tissue through the triangle of Koch region does not position the one or more electrodes into the blood volume of the LV of the patient's heart.
Also, the method 100 may include testing the location or depth of the at least one electrode to configure VfA cardiac therapy 108. If the initial location or depth of the at least one electrode is not sufficient for the desired VFA cardiac therapy, the electrode may be repositioned in terms of location or depth, for example, by adjusting the location, depth, or orientation of the implantable lead or device. Any suitable technique may be used to test the location or depth of the at least one electrode to configure VfA cardiac therapy 108, such as described with respect to
The method 100 may further include preparing a patient for VfA cardiac therapy 110. In general, any introducers or components unnecessary for delivering VfA cardiac therapy may be removed from the patient's body after the implantable medical system has been delivered. For example, a catheter may be slit, the introducer may be removed, the lead may be tied down (if there is a lead) and connected to a device (such as a pacemaker) placed in a pocket, and the pocket may be closed.
The method 102a may also include creating an entryway into the vein 122. In some embodiments, a physician may insert a needle and syringe into the vein.
The method 102a may further include confirming that the entryway goes into the vein 124. For example, a physician may check that the needle has entered into the subclavian vein. In some embodiments, a physician may retract, or pull back on, the syringe to extract fluid from the entryway. If the color of the blood extracted into the syringe is purple, the physician may determine that the needle has entered into the subclavian vein or other suitable vein.
In addition, the method 102a may include inserting an introducer into the vein 126 through the entryway. In general, the introducer may be used to introduce various components of an implantable medical system or delivery system through the entryway and into the RA. One example of an introducer is a sheath that may be placed in the entryway through the syringe and needle, through the subclavian vein, and into the RA. The sheath may extend from outside of the patient's body into the RA. The implantable lead or device may be advanced from outside of the patient's body, through the sheath, and into the RA.
The method 104a may also include advancing the implantable lead or device into the RA 142. When an introducer is used, such as a sheath, the implantable lead or device may be advanced through the introducer into the RA. The implantable lead, or delivery system for the device, may be steerable. A stylet may be coupled to the lead, or delivery system for the device, to provide a physician with control to steer the lead through the patient's body toward an implantation site.
The method 104a may further include locating the tricuspid valve of the patient's heart using the implantable lead or device 144. In some embodiments, a physician may locate the tricuspid valve, for example, by allowing the implantable lead or device to fall into the RV or slide the device along the RA endocardium until the implantable lead or device falls into the RV to locate the tricuspid valve. A ridge of the tricuspid valve proximate to the septal wall of the right atrium above the septal leaflet of the tricuspid valve may be located. In some embodiments, a physician may locate the ridge of the tricuspid valve by moving a distal end of the implantable lead or device along the tricuspid valve until a tactile response of the ridge is detected by the physician.
In addition, the method 104a may include moving the implantable lead or device partially toward the CSO and the AV node of the patient's heart to reach the triangle of Koch region 146, for example, after locating the tricuspid valve. In some embodiments a distal end of the implantable lead or device may be moved along the endocardium of the RA a certain distance before reaching triangle of Koch region. For example, the distal end of the implantable lead or device may be moved between 3 and 5 mm in a direction toward the CSO and the AV node. This distance is shorter than the distance required to reach either the CSO or AV node.
Differing from the method 104a, the method 104b may include locating the CSO using the implantable lead or device 148. In some embodiments, locating the CSO may include advancing the implantable lead or device into the coronary sinus (CS) of the patient's heart, which may be described as cannulating the CS. The implantable lead or device may be retracted from the CS until a distal end of the implantable lead or device reaches the CSO, just outside of the CS, based on fluoroscopy landmarks. Imaging agents may be used to highlight the CSO and the tricuspid valve.
The method 104b may also include moving the implantable lead or device partially toward the tricuspid valve and the AV node to reach the triangle of Koch region 150. In some embodiments a distal end of the implantable lead or device may be moved along the endocardium of the RA a certain distance before reaching triangle of Koch region. For example, the distal end of the implantable lead or device may be moved between 3 and 5 mm in a direction toward the tricuspid valve and the AV node. This distance is shorter than the distance required to reach either the tricuspid valve or AV node.
The method 106a may include determining an initial implant location through the triangle of Koch region 160. For example, the initial implant location may be based on moving a distal end of the implantable lead or device a particular distance from the tricuspid valve or CSO.
The method 106a may also include orienting the implantable lead or device at the initial implant location 162. In some embodiments, orienting the implantable lead or device may include pointing a distal end of the implantable lead or device toward the LV apex of the patient's heart. Orienting the implantable lead or device may be defined using a longitudinal axis that extends along the elongate lead or device. In some embodiments orienting the implantable lead or device may include aligning a longitudinal axis of the implantable lead or device, or a longitudinal axis of a distal end portion of the implantable lead or device, orthogonal (or perpendicular) to the surface of the triangle of Koch region at the initial implant location.
The method 106a may also include attaching the implantable lead or device to the initial implant location 164. The implantable lead or device may be attached in any suitable manner, which may depend on the type of fixation mechanism is included. In some embodiments, the implantable lead or device includes a helical fixation assembly, which may be part of a tissue penetrating assembly including one or more electrodes. The implantable lead or device may be attached by rotating, or screwing clockwise or counterclockwise, the implantable lead or device to advance the at least one electrode into cardiac tissue forming the triangle of Koch region toward the LV. In some embodiments, the implantable lead or device includes fixation elements, which may be separate from the tissue penetrating assembly including one or more electrodes. Fixation elements may be in the form of tines that engage with cardiac tissue forming the triangle of Koch region.
The method 106a may further include testing the initial implant location or depth 166. Any suitable testing may be performed to verify the ability of the at least one electrode to deliver VfA cardiac therapy. In some embodiments, testing may include monitoring electrical activity using one or more electrodes of the implantable lead or device. Testing may also include monitoring mechanical activity using a motion sensor of the implantable lead or device. Further, testing may include delivering test pulses using one or more electrodes of the implantable lead or device detectable by an external electrode apparatus, such as the apparatus described with respect to
In addition, the method 106a may include updating the initial implant location or depth in response to the testing 168. If the testing indicates that the at least one electrode is not properly positioned to deliver VfA cardiac therapy, the initial implant location or depth may be changed. In one example, the implantable lead or device may be retracted from the cardiac tissue and reoriented at the same implant location. In another example, the implantable lead or device may be retracted from the cardiac tissue and relocated to another implantation site through the triangle of Koch region. In a further example, the implantable lead or device may be inserted further into the cardiac tissue at the same implant location. The depth may be adjusted by rotating the implantable lead or device, for example, when a helical fixation assembly is used.
Various steps of the method 106a may be repeated until the testing indicates that the at least one electrode is properly positioned to deliver VfA cardiac therapy. Updating the initial implant location or depth 168 may only be performed, in some cases, if the at least one electrode is not properly positioned to deliver VFA cardiac therapy.
In some embodiments, a tissue piercing electrode may be implanted in a target implant region in the basal region, septal region, or basal-septal region of the LV myocardium of the patient's heart, for example, through or from the triangle of Koch region of the RA through the RA endocardium and central fibrous body. With reference to map 200, the basal region includes one or more of the basal anterior area 1, basal anteroseptal area 2, basal inferoseptal area 3, basal inferior area 4, mid-anterior area 7, mid-anteroseptal area 8, mid-inferoseptal area 9, and mid-inferior area 10. With reference to map 200, the septal region includes one or more of the basal anteroseptal area 2, basal anteroseptal area 3, mid-anteroseptal area 8, mid-inferoseptal area 9, and apical septal area 14. The basal-septal region may include one or more of the basal anteroseptal area 2, basal inferoseptal area 3, mid-anteroseptal area 8, and mid-inferoseptal area 9.
In some embodiments, the target implant region may include the basal inferoseptal area 3, mid-inferoseptal area 9, at least part of basal anteroseptal area 2 near the basal inferoseptal area, and at least part of mid-anteroseptal area 8 near the mid-inferoseptal area.
In some embodiments, the tissue piercing electrode may be positioned in the high inferior/posterior basal-septal region of the LV myocardium when implanted. The high inferior/posterior basal-septal region of the LV myocardium may include a portion of at least one of the basal inferoseptal area 3 and mid-inferoseptal area 9. For example, the high inferior/posterior basal septal region may include region 206 illustrated generally as a dashed-line boundary. As shown, the dashed line boundary represents an approximation of about where the high inferior/posterior basal-septal region and may take somewhat different shape or size depending on the particular application. Without being bound by any particular theory, intraventricular synchronous pacing or activation may result from stimulating the high septal ventricular myocardium due to functional electrical coupling between the subendocardial Purkinje fibers and the ventricular myocardium.
The implantable lead 302 is shown implanted in RA of the patient's heart 8 in a target implant region 4, through which a tissue piercing electrode 306 may be advanced through the target implant region into a target implant location in the LV myocardium. In the illustration, the LV is behind the RV (see different perspective of the RV 614 and LV 618 of
The implantable lead 302 may include one or more fixation members (such as fixation members 20 in
The one or more IMDs of the system 300 may include leadless or leaded IMDs. As used herein, a “leadless” device refers to a device being free of a lead extending out of the patient's heart 8. In other words, a leadless device may have a lead that does not extend from outside of the patient's heart 8 to into the inside of the patient's heart. Some leadless devices may be introduced through a vein, but once implanted, the device is free of, or may not include, any transvenous lead and may be configured to provide cardiac therapy without using any transvenous lead. In one example, a leadless device implanted in the RA, in particular, does not use a lead to operably connect to an electrode in the RA or LV when a housing of the device is positioned in the RA.
The system 300 may include one or more intracardiac IMDs, such as implantable device 400 (
In some embodiments, the system 300 may include multiple electrodes. A first electrode of the system 300 may be configured to sense electrical activity of the LV of the patient's heart 8 or to deliver cardiac therapy to the LV of the patient's heart. A second electrode of the system 300 may be configured to sense electrical activity of the RA of the patient's heart 8 or to deliver cardiac therapy to the RA of the patient's heart.
One or more leadless electrodes may be coupled to the housing of an IMD. An IMD having only leadless electrodes may be described as a leadless IMD. As used herein, a “leadless” electrode refers to an electrode operably coupled to a device being free of a lead, or without using a lead, extending between the electrode and the housing of the device.
A motion sensor of the system 300 may be configured to sense mechanical activity of the patient's heart 8. In some cases, the motion sensor may be configured to sense at least mechanical activity of an atrium of the patient's heart 8. The motion sensor used may be the same as or similar to the motion sensor 11 (
In the illustrated embodiment, the system 300 includes an implantable lead 302. The implantable lead 302 may be configured to sense electrical activity of the heart 8 and to deliver pacing therapy, such as CRT. The implantable lead 302 may be attached to an interior wall (such as AV septal wall 662 shown in
Processing circuitry, sensing circuitry, and other circuitry configured for performing the techniques described herein with respect to the implantable lead 302 may be housed within a respective sealed housing (not shown) operably coupled to the implantable lead. The housing (or a portion thereof) may be conductive to serve as an electrode for pacing or sensing, or as an active electrode during defibrillation. As such, the housing of an IMD may be described as including a housing electrode, or housing-based electrode.
The intracardiac device 400 may include a housing 30. The housing 30 may define a hermetically-sealed internal cavity in which internal components of the device 400 reside, such as a sensing circuit, therapy delivery circuit, control circuit, memory, telemetry circuit (or communication interface), other optional sensors, and a power source. The housing 30 may be at least partially formed from electrically conductive material. Additionally, or alternatively, the housing 30 may be formed at least partially from non-conductive material.
The housing 30 may be described as extending between a distal end region 32 and a proximal end region 34 in a generally cylindrical shape to facilitate delivery. The housing 30 may include a delivery tool interface member 26, e.g., at the proximal end 34, for engaging with a delivery tool during implantation of the device 400. For example, the delivery tool interface member 26 may be used while the device 400 is advanced toward a target implant region 4 using a delivery catheter. The delivery tool or catheter may be steerable to direct the device 400 toward the target implant region 4.
All or a portion of the housing 30 may function as an electrode during cardiac therapy, for example, in sensing and/or pacing. In the example shown, the housing-based electrode 24 is shown to circumscribe a proximal portion of the housing 30. When the housing 30 includes (e.g., is formed from) an electrically conductive material, portions of the housing 30 may be electrically insulated by a non-conductive material, such as a coating, leaving one or more discrete areas of conductive material exposed to define the proximal housing-based electrode 24. When the housing 30 includes (e.g., is formed from) a non-conductive material, an electrically conductive coating or layer may be applied to one or more discrete areas of the housing 30 to form the proximal housing-based electrode 24. In other examples, the proximal housing-based electrode 24 may be a component, such as a ring electrode, that is mounted or assembled onto the housing 30. The proximal housing-based electrode 24 may be electrically coupled to internal circuitry of the device 400, e.g., via the electrically-conductive housing 30 or an electrical conductor when the housing 30 includes a non-conductive material.
In the example shown, the housing-based electrode 24 is located nearer to the housing proximal end region 34 than the housing distal end region 32 and may, therefore, be described as being a proximal housing-based electrode. In other examples, however, the housing-based electrode 24 may be located at other positions along the housing 30, for example, relatively more distally than the position shown.
At the distal end region 32, the device 400 may include a distal fixation and electrode assembly 36, which may include one or more fixation members 20, in addition to one or more dart electrodes 12 of equal or unequal length. The one or more dart electrodes 12 of the assembly 36 may be described as tissue piercing electrodes. In other embodiments (not shown), the distal fixation and electrode assembly 36 may include a helical or spiral-shaped electrode. A dart electrode or a helix electrode may also be described as a tissue piercing electrode.
The device 400 as depicted includes a single dart electrode 12 that may include a shaft 40 extending distally away from the housing distal end region 32 and may include one or more electrode elements, such as a tip electrode element 42 at or near the free, distal end region of the shaft 40. The tip electrode element 42 may have a conical or hemi-spherical distal tip with a relatively narrow tip diameter (e.g., less than about 1 millimeter (mm)) for penetrating into and through tissue layers without using a sharpened tip or needle-like tip having sharpened or beveled edges.
The shaft 40 of the dart electrode 12 may be a normally straight member and may be rigid. In other embodiments, the shaft 40 may be described as being relatively stiff but still possessing limited flexibility in lateral directions (e.g., resilient or semi-rigid). The dart electrode 12 may be configured to pierce through one or more tissue layers to position the tip electrode element 42 within a desired tissue layer, e.g., the ventricular myocardium. As such, the length or height 47 of the shaft 40 may correspond to the expected pacing site depth. If a second dart electrode 12 is employed, its length or height may be unequal to the expected pacing site depth and may be configured to act as an indifferent electrode for delivery of pacing energy to the tissue.
The one or more fixation members 20 may be described as one or more “tines” having a normally-curved position. The tines may be held in a distally extended position within a delivery tool. The distal tips of tines may penetrate the heart tissue to a limited depth before elastically curving back proximally into the normally curved position (shown) upon release from the delivery tool.
In some examples, the distal fixation and electrode assembly 36 includes a distal housing-based electrode 22. In the case of using the device 400 as a pacemaker for multiple chamber pacing (e.g., dual or triple chamber pacing) and sensing, the tip electrode element 42 may be used as a cathode electrode paired with the proximal housing-based electrode 24 serving as a return anode electrode. Alternatively, the distal housing-based electrode 22 may serve as a return anode electrode paired with tip electrode element 42 for sensing ventricular signals and delivering ventricular pacing pulses. In other examples, the distal housing-based electrode 22 may be a cathode electrode for sensing atrial signals and delivering pacing pulses to the atrial myocardium in the target implant region 4. When the distal housing-based electrode 22 serves as an atrial cathode electrode, the proximal housing-based electrode 24 may serve as the return anode paired with the tip electrode element 42 for ventricular pacing and sensing and as the return anode paired with the distal housing-based electrode 22 for atrial pacing and sensing.
As shown in this illustration, the target implant region 4 in some pacing applications is along the atrial endocardium 18, generally inferior to the AV node 15 and the His bundle 5. The dart electrode 42 may define the length or height 47 of the shaft 40 for penetrating through the atrial endocardium 18 in the target implant region 4, through the central fibrous body 16, and into the ventricular myocardium 14 without perforating through the ventricular endocardial surface 17. When the length or height 47 of the dart electrode 12 is fully advanced into the target implant region 4, the tip electrode element 42 may rest, or be positioned, within the ventricular myocardium 14, and the distal housing-based electrode 22 may be positioned in intimate contact with or close proximity to the atrial endocardium 18.
The device 400 may include a motion sensor 11, or motion detector, within the housing 30. The motion sensor 11 may be used to monitor mechanical activity, such as atrial mechanical activity (e.g., an atrial contraction) and/or ventricular mechanical activity (e.g., a ventricular contraction). In some embodiments, the motion sensor 11 may be used to detect RA mechanical activity. A non-limiting example of a motion sensor 11 includes an accelerometer. In some embodiments, the mechanical activity detected by the motion sensor 11 may be used to supplement or replace electrical activity detected by one or more of the electrodes of the device 400. For example, the motion sensor 11 may be used in addition to, or as an alternative to, the proximal housing-based electrode 24.
The mechanical activity detected by the motion sensor 11 may correspond to various heart sounds. In general, heart sounds are associated with mechanical vibrations of a patient's heart and the flow of blood through the heart valves and, thus, may be highly correlated with pressure gradients across heart valves and blood pressure. Heart sounds may be not only due to vibrations of and pressure within the heart, but may also be due to the entire cardiohemic system, e.g., blood, heart, great arteries, etc. Heart sounds may recur with each cardiac cycle and are separated and classified according to the activity associated with the vibration.
The device 400 may be implanted such that the electrode 12 is positioned to sense electrical activity or deliver pacing therapy to a specific part of the patient's LV myocardium. For example, the electrode 12 may be implanted in the basal, septal, or basal-septal region of the LV.
The electrode apparatus 510 as shown includes a plurality of electrodes 512 incorporated, or included, within a band wrapped around the chest, or torso, of a patient 520. In other embodiments, the electrode apparatus 510 may include a vest upon which the plurality of electrodes 512 may be attached, or to which the electrodes 512 may be coupled. The electrode apparatus 510 is operatively coupled to the computing apparatus 540 (e.g., through one or wired electrical connections, wirelessly, etc.) to provide electrical signals from each of the electrodes to the computing apparatus 540 for analysis, evaluation, etc. Electrode apparatus may be described in U.S. Pat. No. 9,320,446 entitled “Bioelectric Sensor Device and Methods” and issued on Apr. 26, 2016, which is incorporated herein by reference in its entirety.
Although not described herein, the system 500 may further include imaging apparatus (not shown). The imaging apparatus may be any type of imaging apparatus configured to image, or provide images of, at least a portion of the patient in a noninvasive manner. For example, the imaging apparatus may not use any components or parts that may be located within the patient to provide images of the patient except noninvasive tools, such as an imaging agent. It is to be understood that the systems, methods, and interfaces described herein may further use imaging apparatus to provide noninvasive assistance to a user (e.g., a physician) to calibrate and/or deliver a cardiac pacing therapy, to locate and position a device to deliver cardiac pacing therapy, and/or to locate or select a pacing electrode or pacing vector proximate the patient's heart for cardiac pacing therapy in conjunction with the evaluation of cardiac pacing therapy.
For example, the systems, methods, and interfaces may provide image-guided navigation that may be used to navigate leads including leadless devices, electrodes, leadless electrodes, wireless electrodes, catheters, etc., within the patient's body while also providing noninvasive cardiac therapy evaluation including determining whether a paced setting is optimal or determining whether one or more selected parameters are optimal, such as selected location information (e.g., location information for the electrodes to target a particular location in the left ventricle). Systems and methods that use imaging apparatus and/or electrode apparatus may be described in U.S. Pat. No. 9,877,789 issued on Jan. 30, 2018, and entitled “Implantable Electrode Location Selection,” U.S. Pat. No. 10,251,555 issued Apr. 9, 2019, and entitled “Implantable Electrode Location Selection,” U.S. Pat. No. 9,924,884 issued on Mar. 27, 2018, and entitled “Systems, Methods, and Interfaces for Identifying Effective Electrodes,” U.S. Pat. No. 10,064,567 issued on Sep. 4, 2018, and entitled “Systems, Methods, and Interfaces for Identifying Optical-Electrical Vectors,” each of which is incorporated herein by reference in its entirety.
Imaging apparatus may be configured to capture x-ray images and/or any other alternative imaging modality. For example, the imaging apparatus may be configured to capture images, or image data, using isocentric fluoroscopy, bi-plane fluoroscopy, ultrasound, computed tomography (CT), multi-slice computed tomography (MSCT), magnetic resonance imaging (MM), high frequency ultrasound (HIFU), optical coherence tomography (OCT), intravascular ultrasound (IVUS), two-dimensional (2D) ultrasound, three dimensional (3D) ultrasound, four-dimensional (4D) ultrasound, intraoperative CT, intraoperative MM, etc. Further, it is to be understood that the imaging apparatus may be configured to capture a plurality of consecutive images (e.g., continuously) to provide video frame data. In other words, a plurality of images taken over time using the imaging apparatus may provide video frame, or motion picture, data. Additionally, the images may also be obtained and displayed in two, three, or four dimensions. In more advanced forms, four-dimensional surface rendering of the heart or other regions of the body may also be achieved by incorporating heart data or other soft tissue data from a map or from pre-operative image data captured by MRI, CT, or echocardiography modalities. Image datasets from hybrid modalities, such as positron emission tomography (PET) combined with CT, or single photon emission computer tomography (SPECT) combined with CT, could also provide functional image data superimposed onto anatomical data, e.g., to be used to navigate treatment apparatus proximate target locations (e.g., such as locations within the RA or LV) within the heart or other areas of interest.
Systems and/or imaging apparatus that may be used in conjunction with the exemplary systems and method described herein are described in U.S. Pat. App. Pub. No. 2005/0008210 to Evron et al. published on Jan. 13, 2005, U.S. Pat. App. Pub. No. 2006/0074285 to Zarkh et al. published on Apr. 6, 2006, U.S. Pat. No. 8,731,642 issued May 20, 2014, to Zarkh et al. U.S. Pat. No. 8,861,830 issued Oct. 14, 2014, to Brada et al., U.S. Pat. No. 6,980,675 to Evron et al. issued on Dec. 27, 2005, U.S. Pat. No. 7,286,866 to Okerlund et al. issued on Oct. 23, 2007, U.S. Pat. No. 7,308,297 to Reddy et al. issued on Dec. 11, 2011, U.S. Pat. No. 7,308,299 to Burrell et al. issued on Dec. 11, 2011, U.S. Pat. No. 7,321,677 to Evron et al. issued on Jan. 22, 2008, U.S. Pat. No. 7,346,381 to Okerlund et al. issued on Mar. 18, 2008, U.S. Pat. No. 7,454,248 to Burrell et al. issued on Nov. 18, 2008, U.S. Pat. No. 7,499,743 to Vass et al. issued on Mar. 3, 2009, U.S. Pat. No. 7,565,190 to Okerlund et al. issued on Jul. 21, 2009, U.S. Pat. No. 7,587,074 to Zarkh et al. issued on Sep. 8, 2009, U.S. Pat. No. 7,599,730 to Hunter et al. issued on Oct. 6, 2009, U.S. Pat. No. 7,613,500 to Vass et al. issued on Nov. 3, 2009, U.S. Pat. No. 7,742,629 to Zarkh et al. issued on Jun. 22, 2010, U.S. Pat. No. 7,747,047 to Okerlund et al. issued on Jun. 29, 2010, U.S. Pat. No. 7,778,685 to Evron et al. issued on Aug. 17, 2010, U.S. Pat. No. 7,778,686 to Vass et al. issued on Aug. 17, 2010, U.S. Pat. No. 7,813,785 to Okerlund et al. issued on Oct. 12, 2010, U.S. Pat. No. 7,996,063 to Vass et al. issued on Aug. 9, 2011, U.S. Pat. No. 8,060,185 to Hunter et al. issued on Nov. 15, 2011, and U.S. Pat. No. 8,401,616 to Verard et al. issued on Mar. 19, 2013, each of which is incorporated herein by reference in its entirety.
The display apparatus 530 and the computing apparatus 540 may be configured to display and analyze data such as, e.g., electrical signals (e.g., electrocardiogram data), cardiac information representative of one or more of mechanical cardiac functionality and electrical cardiac functionality (e.g., mechanical cardiac functionality only, electrical cardiac functionality only, or both mechanical cardiac functionality and electrical cardiac functionality), etc. Cardiac information may include, e.g., electrical heterogeneity information or electrical dyssynchrony information, surrogate electrical activation information or data, etc. that is generated using electrical signals gathered, monitored, or collected, using the electrode apparatus 510. The computing apparatus 540 may be a server, a personal computer, or a tablet computer. The computing apparatus 540 may be configured to receive input from input apparatus 542 and transmit output to the display apparatus 530. Further, the computing apparatus 540 may include data storage that may allow for access to processing programs or routines and/or one or more other types of data, e.g., for calibrating and/or delivering pacing therapy for driving a graphical user interface configured to noninvasively assist a user in targeting placement of a pacing device, and/or for evaluating pacing therapy at that location (e.g., the location of an implantable electrode used for pacing, the location of pacing therapy delivered by a particular pacing vector, etc.).
The computing apparatus 540 may be operatively coupled to the input apparatus 542 and the display apparatus 530 to, e.g., transmit data to and from each of the input apparatus 542 and the display apparatus 530. For example, the computing apparatus 540 may be electrically coupled to each of the input apparatus 542 and the display apparatus 530 using, e.g., analog electrical connections, digital electrical connections, wireless connections, bus-based connections, network-based connections, internet-based connections, etc. As described further herein, a user may provide input to the input apparatus 542 to manipulate, or modify, one or more graphical depictions displayed on the display apparatus 530 and to view and/or select one or more pieces of information related to the cardiac therapy.
Although as depicted the input apparatus 542 is a keyboard, it is to be understood that the input apparatus 542 may include any apparatus capable of providing input to the computing apparatus 540 for performing the functionality, methods, and/or logic described herein. For example, the input apparatus 542 may include a mouse, a trackball, a touchscreen (e.g., capacitive touchscreen, a resistive touchscreen, a multi-touch touchscreen, etc.), etc. Likewise, the display apparatus 530 may include any apparatus capable of displaying information to a user, such as a graphical user interface 532 including cardiac information, textual instructions, graphical depictions of electrical activation information, graphical depictions of anatomy of a human heart, images or graphical depictions of the patient's heart, graphical depictions of a leadless pacing device used to calibrate and/or deliver pacing therapy, graphical depictions of a leadless pacing device being positioned or placed to provide cardiac pacing therapy, graphical depictions of locations of one or more electrodes, graphical depictions of a human torso, images or graphical depictions of the patient's torso, graphical depictions or actual images of implanted electrodes and/or leads, etc. Further, the display apparatus 530 may include a liquid crystal display, an organic light-emitting diode screen, a touchscreen, a cathode ray tube display, etc.
The processing programs or routines stored and/or executed by the computing apparatus 540 may include programs or routines for computational mathematics, matrix mathematics, dispersion determinations (e.g., standard deviations, variances, ranges, interquartile ranges, mean absolute differences, average absolute deviations, etc.), filtering algorithms, maximum value determinations, minimum value determinations, threshold determinations, moving windowing algorithms, decomposition algorithms, compression algorithms (e.g., data compression algorithms), calibration algorithms, image construction algorithms, signal processing algorithms (e.g., various filtering algorithms, Fourier transforms, fast Fourier transforms, etc.), standardization algorithms, comparison algorithms, vector mathematics, or any other processing required to implement one or more methods and/or processes described herein. Data stored and/or used by the computing apparatus 540 may include, for example, electrical signal/waveform data from the electrode apparatus 510, dispersions signals, windowed dispersions signals, parts or portions of various signals, electrical activation times from the electrode apparatus 510, graphics (e.g., graphical elements, icons, buttons, windows, dialogs, pull-down menus, graphic areas, graphic regions, 3D graphics, etc.), graphical user interfaces, results from one or more processing programs or routines employed according to the disclosure herein (e.g., electrical signals, cardiac information, etc.), or any other data that may be necessary for carrying out the one and/or more processes or methods described herein.
Electrical activation times of the patient's heart may be useful to evaluate a patient's cardiac condition and/or to calibrate, deliver, or evaluate cardiac therapy to be or being delivered to a patient. Surrogate electrical activation information or data of one or more regions of a patient's heart may be monitored, or determined, using the electrode apparatus 510. The electrode apparatus 510 may be configured to measure body-surface potentials of a patient 520 and, more particularly, torso-surface potentials of the patient 520.
The electrodes 512 may be configured to surround the heart of the patient 520 and record, or monitor, the electrical signals associated with the depolarization and repolarization of the heart after the signals have propagated through the torso of a patient 520. Each of the electrodes 512 may be used in a unipolar configuration to sense the torso-surface potentials that reflect the cardiac signals. The interface/amplifier circuitry 516 may also be coupled to a return or indifferent electrode (not shown) that may be used in combination with each electrode 512 for unipolar sensing. In some examples, there may be about 12 to about 50 electrodes 512 spatially distributed around the torso of the patient. Other configurations may have more or fewer electrodes 512.
The computing apparatus 540 may record and analyze the electrical activity (e.g., torso-surface potential signals) sensed by electrodes 512. The computing apparatus 540 may be configured to analyze the signals from the electrodes 512 to provide as anterior and posterior electrode signals and surrogate cardiac electrical activation times, e.g., representative of actual, or local, electrical activation times of one or more regions of the patient's heart as will be further described herein. The computing apparatus 540 may be configured to analyze the signals from the electrodes 512 to provide as anterior-septal electrode signals and surrogate cardiac electrical activation times, e.g., representative of actual, or local, electrical activation times of one or more anterior-septal regions of the patient's heart, as will be further described herein, e.g., for use in calibrating, delivering, and/or evaluating pacing therapy. Further, the electrical signals measured at the left anterior surface location of a patient's torso may be representative, or surrogates, of electrical signals of the left anterior left ventricle region of the patient's heart, electrical signals measured at the left lateral surface location of a patient's torso may be representative, or surrogates, of electrical signals of the left lateral left ventricle region of the patient's heart, electrical signals measured at the left posterolateral surface location of a patient's torso may be representative, or surrogates, of electrical signals of the posterolateral left ventricle region of the patient's heart, and electrical signals measured at the posterior surface location of a patient's torso may be representative, or surrogates, of electrical signals of the posterior left ventricle region of the patient's heart. Measurement of activation times can be performed by measuring the period of time between an onset of cardiac depolarization (e.g., onset of QRS complex) and an appropriate fiducial point such as, e.g., a peak value, a minimum value, a minimum slope, a maximum slope, a zero crossing, a threshold crossing, etc.
Additionally, the computing apparatus 540 may be configured to provide graphical user interfaces depicting the surrogate electrical activation times obtained using the electrode apparatus 510. Systems, methods, and/or interfaces may noninvasively use the electrical information collected using the electrode apparatus 510 to evaluate a patient's cardiac condition and/or to calibrate, deliver, or evaluate cardiac pacing therapy to be or being delivered to the patient.
As described herein, the electrode apparatus 510 may be configured to measure electrical information (e.g., electrical signals) representing different regions of a patient's heart. For example, activation times of different regions of a patient's heart can be approximated from surface electrocardiogram (ECG) activation times measured using surface electrodes in proximity to surface areas corresponding to the different regions of the patient's heart. In at least one example, activation times of the anterior-septal region of a patient's heart can be approximated from surface ECG activation times measured using surface electrodes in proximity to surface areas corresponding to the anterior-septal region of the patient's heart. That is, a portion of the set of electrodes 512, and not the entire set, can be used to generate activation times corresponding to a particular location of the patient's heart that the portion of the set of electrodes corresponds to.
The systems, methods, and interfaces may be used to provide noninvasive assistance to a user in the evaluation of a patient's cardiac health or status, and/or the evaluation of cardiac therapy such as CRT by use of the electrode apparatus 510 (e.g., cardiac therapy being presently-delivered to a patient during implantation or after implantation). Further, the systems, methods, and interfaces may be used to assist a user in the configuration, or calibration, of the cardiac therapy, such as CRT, to be or being delivered to a patient.
Electrical activity may be monitored using a plurality of external electrodes, such as electrodes 512. The electrical activity can be monitored by a plurality of electrodes during pacing therapy or in the absence of pacing therapy. The monitored electrical activity can be used to evaluate pacing therapy to a patient. The electrical activity monitored using the ECG belt described can be used to evaluate at least one paced setting of the pacing therapy on the heart. As an example, a paced setting can be any one parameter or a combination of parameters including, but not limited to, electrode position, pacing polarity, pacing output, pacing pulse width, timing at which ventricular pacing is delivered relative to atrial timing, pacing rate, etc. Further, as an example, the location of the leadless device or a pacing lead can include a location in the right ventricle, left ventricle, or right atrium.
Further, body-surface isochronal maps of ventricular activation can be constructed using the monitored electrical activity during pacing therapy or in the absence of pacing therapy. The monitored electrical activity and/or the map of ventricular activation can be used to generate electrical heterogeneity information (EHI). The electrical heterogeneity information can include determining metrics of electrical heterogeneity. The metrics of electrical heterogeneity can include a metric of standard deviation of activation times (SDAT) of electrodes on a left side of a torso of the patient and/or a metric of mean left ventricular activation time (LVAT) of electrodes on the left side of the torso of the patient. A metric of LVAT may be determined from electrodes on both the anterior and posterior surfaces, which are more proximal to the left ventricle. The metrics of electrical heterogeneity information can include a metric of mean right ventricular activation time (RVAT) of electrodes on the right side of the torso of the patient. A metric of RVAT may be determined from electrodes on both the anterior and posterior surfaces which are more proximal to the right ventricle. The metrics of electrical heterogeneity can include a metric of mean total activation time (mTAT) taken from a plurality of electrode signals from both sides of the torso of the patient, or it may include other metrics (e.g., standard deviation, interquartile deviations, a difference between a latest activation time and earliest activation time) reflecting a range or dispersion of activation times on a plurality of electrodes located on the right side of the patient torso or left side of the patient torso, or combining both right and left sides of the patient torso. The metrics of electrical heterogeneity information can include a metric of anterior-septal activation times (ASAT) of electrodes on the torso in close proximity to the anterior-septal portion of the heart.
Electrical heterogeneity information (EHI) may be generated during delivery of pacing therapy at one or more paced settings. The electrical heterogeneity information can be generated using metrics of electrical heterogeneity. As an example, the metrics of electrical heterogeneity can include one or more of an SDAT, an LVAT, an RVAT, an mTAT, and an ASAT. In another example, only ASAT may be determined and further used, and/or ASAT may be more heavily weighted than other values.
One or more paced settings associated with the pacing therapy may be evaluated. A paced setting can include a plurality of pacing parameters. The plurality of pacing parameters can be optimal if the patient's cardiac condition improves, if the pacing therapy is effectively capturing a desired portion of the RA, RV, or LV, and/or if a metric of electrical heterogeneity improves by a certain threshold compared to a baseline rhythm or therapy. The determination of whether the paced setting is optimal can be based on at least one metric of electrical heterogeneity generated from electrical activity during pacing (and also, in some cases, during native conduction, or in the absence of pacing). The at least one metric can include one or more of an SDAT, an LVAT, an RVAT, an mTAT, and an ASAT.
Further, the plurality of pacing parameters can be optimal if a metric of electrical heterogeneity is greater than or less than a particular threshold, and/or if the location of the pacing therapy to excite the left ventricle causes a particular pattern of excitation of the muscle fibers in the heart. In addition, the plurality of pacing parameters can be optimal if a metric of electrical heterogeneity indicates a correction of a left bundle branch block (LBBB), and/or if a metric of electrical heterogeneity indicates a complete engagement of a Purkinje system, etc. As an example, a metric of electrical heterogeneity of an ASAT less than or equal to a threshold (e.g., a threshold of 30 ms) and an LVAT less than or equal to a threshold (e.g., a threshold of 30 ms) can indicate a correction of an LBBB, and thus, the paced setting is optimal. As an example, a metric of electrical heterogeneity of an RVAT less than or equal to a threshold (e.g., a threshold of 30 ms), an ASAT less than or equal to a threshold (e.g., a threshold of 30 ms), and an LVAT less than or equal to a threshold (e.g., a threshold of 30 ms) can indicate a complete engagement of the Purkinje system, and thus the paced setting is may be optimal.
The paced setting can be determined to be optimal in response to the pacing therapy using the paced setting being acceptable, being beneficial, being indicative of complete engagement of patient's native cardiac conduction system, being indicative of correction of a ventricular conduction disorder (e.g., left bundle branch block), etc. A paced setting can include one or more of a pacing electrode position (including one or more of a depth, an angle, an amount of turn for a screw-based fixation mechanism, etc.), a voltage, a pulse width, an intensity, a pacing polarity, a pacing vector, a pacing waveform, a timing of the pacing delivered relative to an intrinsic or paced atrial event or relative to the intrinsic His bundle potential, and/or a pacing location, etc. A pacing vector can include any two or more pacing electrodes such as, e.g., a tip electrode to a can electrode, a tip electrode to a ring electrode etc., that are used to deliver the pacing therapy, etc. The pacing location can refer to the location of any of the one or more pacing electrodes that are positioned using a lead, a leadless device, and/or any device or apparatus configured to deliver pacing therapy.
A paced setting for therapy may be adjusted. The paced setting can be adjusted in response to the paced setting being not optimal. The paced setting can be adjusted in response to the paced setting being within an optimal range but in order to determine whether the paced setting can be at a position within the optimal range that is more beneficial, more useful, more functional, etc., for the pacing therapy. The paced setting could be adjusted to find the most optimal metric of electrical heterogeneity.
A determination of whether the paced setting is optimal can be based on a particular metric of electrical heterogeneity using an ECG belt. In at least one example, the paced setting can be adjusted at intervals that correlate with a change in the metric of electrical heterogeneity until the metric of electrical heterogeneity is at or proximate a particular metric value. For instance, the adjusting of the paced setting can cause the metric of electrical heterogeneity to approach a particular threshold metric of electrical heterogeneity and, as the metric approaches the particular threshold, the rate at which the paced setting is adjusted can be slowed down. Put another way, as the metric of electrical heterogeneity is further from the particular threshold metric, the paced setting can be adjusted more quickly and as the metric of electrical heterogeneity gets closer to the particular threshold metric, the paced setting can be adjusted more slowly until the metric of electrical heterogeneity is at the particular threshold metric.
During implantation, various techniques may be used to determine whether the correct target implant region 4 has been reached in the triangle of Koch region before attempting to implant the IMD. In some embodiments, the target implant region 4 may be identified using a slow pathway signal measured using a tip of a mapping electrode of a delivery assembly or delivery catheter. In some embodiments, the target implant region 4 may be identified by testing pacing output with a tip of a mapping electrode of a delivery assembly or delivery catheter and stepping down the pacing output until a virtual ventricular to atrial pacing transit ECG pattern is detected. Using such techniques to appropriately identify the target implant region 4 before introducing the IMD may facilitate the overall implantation process.
With reference to
The SA node 15, located at the junction of the superior vena cava (SVC) 638 and RA 612, is considered to be the natural pacemaker of the heart since it continuously and repeatedly emits electrical impulses. The electrical impulse spreads through the muscles of RA 612 to LA 618 to cause synchronous contraction of the atria. Electrical impulses are also carried through atrial internodal tracts to AV node 15—the sole connection between the atria and the ventricles.
Conduction through the tissue of the AV node 15 takes longer than through the atrial tissue, resulting in a delay between atrial contraction and the start of ventricular contraction. The AV delay, which is the delay between atrial contraction and ventricular contractor, allows the atria to empty blood into the ventricles. Then, the valves between the atria and ventricles close before causing ventricular contraction via branches of the His bundle 5.
His bundle 5 is located in the membranous atrioventricular septum near the annulus of the tricuspid valve. The tricuspid valve 6 is between the RA 612 and the RV 614. His bundle 5 splits into the LBB 630 and RBB 632 and are formed of specialized fibers called “Purkinje fibers” 640. Purkinje fibers 640 may be described as rapidly conducting an action potential down the ventricular septum, spreading the depolarization wavefront quickly through the remaining ventricular myocardium, and producing a coordinated contraction of the ventricular muscle mass.
In some embodiments, the mapping electrode 664 is disposed on a guide wire 666. The guide wire 666 may be described as a mapping guide wire. Additionally, or alternatively, the delivery assembly 660 may include an electrically conductive fixation element on a sheath may be used to provide a mapping electrode 668.
The mapping electrode 664 and the mapping electrode 668 may each be electrically coupled to an individual conductor extending between a distal portion and a proximal portion of the delivery assembly 660. The conductor may be coupled to a proximal contact, such as a proximal end ring, which may be connected to an analyzer 670 to facilitate mapping. In particular, the analyzer 670 may be any suitable electrophysiological (EP) analyzer configured to analyze electrogram (EGM) signals and/or ECG signals for mapping selected by one skilled in the art having the benefit of this disclosure. The analyzer may include a controller having processing circuitry and memory.
In general, any suitable delivery assembly may be used to deliver a leaded or leadless 1 MB. Examples of delivery assemblies that may be used include those described in U.S. Provisional Application No. 62/914,937 (Hine et al.), filed Oct. 14, 2019, and U.S. Provisional Application No. 62/948,366 (Hine et al.), filed Dec. 16, 2019, which are incorporated herein by reference.
In some embodiments, the ASP signature waveform 686 may be identified as having multiple deflections. As illustrated, the ASP signature waveform 686 may include four “peaks” (local maxima) and three “valleys” (local minima). Collectively, the local maxima and minima may be described as deflection points. As shown, the ASP signature waveform 686 includes seven deflection points. In general, the ASP waveform 686 may include more local maxima and minima than other waveforms that may be detected in the EGM signal 682.
Other ECG and EGM signals are shown for reference. In the illustrated embodiment, various ECG signals 688 are shown (V1, I, and II) and other EGM signals, such as a His bundle electrode signal 690 and a proximal coronary sinus electrode signal 692. The EGM signal 682 may also be described as an RA electrode signal.
In the plot 700, test pacing with high pacing outputs around time windows 704 are shown with respect to the EGM signal 702 and corresponding ECG signals 708 measured, which indicate pacing of the ventricle. Test pacing with lower pacing outputs around time windows 706 are shown with respect to the EGM signal 702 and corresponding ECG signals 708 measured, which indicate a virtual ventricular to atrial pacing transit ECG pattern. In general, higher pacing outputs may pace both the ventricle and the atrium, whereas lower pacing outputs capable of pacing only the atrium may be suitable as target implant regions.
While the present disclosure is not so limited, an appreciation of various aspects of the disclosure will be gained through a discussion of the specific illustrative embodiments provided below. Various modifications of the illustrative embodiments, as well as additional embodiments of the disclosure, will become apparent herein.
In embodiment A1, a method comprises locating the triangle of Koch region in the right atrium of a patient's heart; securing at least one electrode of an implantable lead or device to cardiac tissue from the triangle of Koch region to deliver ventricle-from-atrium (VfA) cardiac therapy; and testing the location or depth of the at least one electrode to configure VfA cardiac therapy.
In embodiment A2, a method comprises the method according to embodiment A1, further comprising providing an introduction pathway to deliver at least one electrode to the right atrium of the patient's heart.
In embodiment A3, a method comprises the method according to embodiment A2, wherein providing the introduction pathway to the right atrium comprises one or more of:
In embodiment A4, a method comprises the method according to any A embodiment, wherein locating the triangle of Koch region comprises one or more of:
In embodiment A5, a method comprises the method according to embodiment A4, wherein locating the tricuspid valve comprises locating a ridge of the tricuspid valve proximate to the septal wall of the right atrium above the septal leaflet of the tricuspid valve.
In embodiment A6, a method comprises the method according to any embodiment A1-A3, wherein locating the triangle of Koch region comprises one or more of:
In embodiment A7, a method comprises the method according to embodiment A6, wherein locating the coronary sinus ostium comprises:
In embodiment A8, a method comprises the method according to any A embodiment, wherein securing at least one electrode of the implantable lead or device to cardiac tissue from the triangle of Koch region to deliver VfA cardiac therapy comprises one or more of:
In embodiment A9, a method comprises the method according to embodiment A8, wherein orienting the implantable lead or device comprises pointing a distal end of the implantable lead or device toward the left ventricular apex of the patient's heart.
In embodiment A10, a method comprises the method according to embodiment A8 or A9, wherein testing the initial implant location comprises one or more of:
In embodiment A11, a method comprises the method according to any A embodiment, further comprising preparing a patient for VfA cardiac therapy.
In embodiment A12, a method comprises the method according to any A embodiment, wherein securing the at least one electrode of the implantable lead or device to cardiac tissue through the triangle of Koch region does not position the one or more electrodes into the blood volume of the left ventricle of the patient's heart.
In embodiment A13, a method comprises the method according to any A embodiment, wherein securing the at least one electrode of an implantable lead or device to cardiac tissue through the triangle of Koch region comprises advancing the at least one electrode from the triangle of Koch region through the right atrial endocardium and central fibrous body into the left ventricular myocardium of the patient's heart to deliver cardiac therapy to or sense electrical activity of the left ventricle in the basal region, septal region, or basal-septal region of the left ventricular myocardium.
In embodiment A14, a method comprises the method according to any A embodiment, wherein locating the triangle of Koch region in the right atrium of a patient's heart comprises testing whether an atrial slow pathway potential (ASP) is detected at a potential target implant region using at least one electrode of a delivery assembly.
In embodiment A15, a method comprises the method according to embodiment A14, wherein testing whether an ASP is detected comprises determining whether electrical activity detected by the at least one electrode comprises a deflection pattern indicative of ASP.
In embodiment A16, a method comprises the method according to any A embodiment, wherein locating the triangle of Koch region in the right atrium of a patient's heart comprises testing whether a pacing output at a potential target implant region paces the atrium without pacing the ventricle of the patient's heart using at least one electrode of a delivery assembly.
In embodiment A17, a method comprises the method according to embodiment A16, wherein testing whether a pacing output at a potential target implant region comprises:
In embodiment B1, a delivery assembly comprises:
In embodiment C1, a delivery assembly comprises:
The embodiment of B1 or C1, wherein the mapping analyzer is configured to carry out the method according to any one of embodiments A14 to A17.
Thus, various techniques related to VfA delivery are disclosed. It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and accompanying drawings. It should also be understood that, depending on the example, certain acts or events of any of the processes or methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the techniques). In addition, while certain aspects of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a medical device.
In one or more examples, the described techniques may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include non-transitory computer-readable media, which corresponds to a tangible medium such as data storage media (e.g., RAM, ROM, EEPROM, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer).
Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry. Accordingly, the term “processor” as used herein may refer to any of the foregoing structure or any other physical structure suitable for implementation of the described techniques. Also, the techniques could be fully implemented in one or more circuits or logic elements.
All references and publications cited herein are expressly incorporated herein by reference in their entirety for all purposes, except to the extent any aspect directly contradicts this disclosure.
All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
Terms related to orientation, such as “proximal,” “distal,” “top,” “bottom,” “side,” and “end,” are used to describe relative positions of components and are not meant to limit the absolute orientation of the embodiments contemplated.
As used herein, the term “configured to” may be used interchangeably with the terms “adapted to” or “structured to” unless the content of this disclosure clearly dictates otherwise.
The singular forms “a,” “an,” and “the” encompass embodiments having plural referents unless its context clearly dictates otherwise.
The phrases “at least one of,” “comprises at least one of,” and “one or more of” followed by a list refers to any one of the items in the list and any combination of two or more items in the list.
As used herein, “have,” “having,” “include,” “including,” “comprise,” “comprising” or the like are used in their open-ended sense, and generally mean “including, but not limited to.” It will be understood that “consisting essentially of” “consisting of,” and the like are subsumed in “comprising,” and the like.
Reference to “one embodiment,” “an embodiment,” “certain embodiments,” or “some embodiments,” etc., means that a particular feature, configuration, composition, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of such phrases in various places throughout are not necessarily referring to the same embodiment of the disclosure. Furthermore, the particular features, configurations, compositions, or characteristics may be combined in any suitable manner in one or more embodiments.
The present application claims the benefit of U.S. Provisional Application No. 62/891,599, filed Aug. 26, 2019, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3835864 | Rasor et al. | Sep 1974 | A |
3865118 | Bures | Feb 1975 | A |
3943936 | Rasor et al. | Mar 1976 | A |
3949757 | Sabel | Apr 1976 | A |
4142530 | Wittkampf | Mar 1979 | A |
4151513 | Menken et al. | Apr 1979 | A |
4157720 | Greatbatch | Jun 1979 | A |
RE30366 | Rasor et al. | Aug 1980 | E |
4243045 | Mass | Jan 1981 | A |
4250884 | Hartlaub et al. | Feb 1981 | A |
4256115 | Bilitch | Mar 1981 | A |
4263919 | Levin | Apr 1981 | A |
4280502 | Baker, Jr. et al. | Jul 1981 | A |
4289144 | Gilman | Sep 1981 | A |
4310000 | Lindemans | Jan 1982 | A |
4312354 | Walters | Jan 1982 | A |
4323081 | Wiebusch | Apr 1982 | A |
4332259 | McCorkle, Jr. | Jun 1982 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4365639 | Goldreyer | Dec 1982 | A |
4374382 | Markowitz et al. | Feb 1983 | A |
4393883 | Smyth et al. | Jul 1983 | A |
4440173 | Hudziak et al. | Apr 1984 | A |
4476868 | Thompson | Oct 1984 | A |
4479500 | Smits | Oct 1984 | A |
4522208 | Buffet | Jun 1985 | A |
4537200 | Widrow | Aug 1985 | A |
4546777 | Groch et al. | Oct 1985 | A |
4556063 | Thompson et al. | Dec 1985 | A |
4562841 | Brockway et al. | Jan 1986 | A |
4574814 | Buffet | Mar 1986 | A |
4593702 | Ski et al. | Jun 1986 | A |
4593955 | Leiber | Jun 1986 | A |
4630611 | King | Dec 1986 | A |
4635639 | Hakala et al. | Jan 1987 | A |
4674508 | DeCote | Jun 1987 | A |
4712554 | Garson | Dec 1987 | A |
4729376 | DeCote | Mar 1988 | A |
4754753 | King | Jul 1988 | A |
4759366 | Callaghan | Jul 1988 | A |
4776338 | Lekholm et al. | Oct 1988 | A |
4787389 | Tarjan | Nov 1988 | A |
4793353 | Borkan | Dec 1988 | A |
4819662 | Heil et al. | Apr 1989 | A |
4830006 | Haluska et al. | May 1989 | A |
4858610 | Callaghan et al. | Aug 1989 | A |
4865037 | Chin et al. | Sep 1989 | A |
4886064 | Strandberg | Dec 1989 | A |
4887609 | Cole, Jr. | Dec 1989 | A |
4928688 | Mower | May 1990 | A |
4953564 | Berthelsen | Sep 1990 | A |
4967746 | Vandegriff | Nov 1990 | A |
4987897 | Funke | Jan 1991 | A |
4989602 | Sholder et al. | Feb 1991 | A |
5012806 | De Bellis | May 1991 | A |
5036849 | Hauck et al. | Aug 1991 | A |
5040534 | Mann et al. | Aug 1991 | A |
5058581 | Silvian | Oct 1991 | A |
5078134 | Heilman et al. | Jan 1992 | A |
5107850 | Olive | Apr 1992 | A |
5109845 | Yuuchi et al. | May 1992 | A |
5113859 | Funke | May 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5117824 | Keimel et al. | Jun 1992 | A |
5127401 | Grievous et al. | Jul 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5144950 | Stoop et al. | Sep 1992 | A |
5154170 | Bennett et al. | Oct 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5174289 | Cohen | Dec 1992 | A |
5179945 | Van Hofwegen et al. | Jan 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5241961 | Henry | Sep 1993 | A |
5243977 | Trabucco et al. | Sep 1993 | A |
5255692 | Neubauer et al. | Oct 1993 | A |
5259387 | dePinto | Nov 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5284136 | Hauck et al. | Feb 1994 | A |
5300107 | Stokes et al. | Apr 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5305760 | McKown et al. | Apr 1994 | A |
5312439 | Loeb | May 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5314459 | Swanson et al. | May 1994 | A |
5318594 | Limousin et al. | Jun 1994 | A |
5318597 | Hauck et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5334222 | Salo et al. | Aug 1994 | A |
5342408 | Decoriolis et al. | Aug 1994 | A |
5370667 | Alt | Dec 1994 | A |
5372606 | Lang et al. | Dec 1994 | A |
5376106 | Stahmann et al. | Dec 1994 | A |
5383915 | Adams | Jan 1995 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5404877 | Nolan et al. | Apr 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5411031 | Yomtov | May 1995 | A |
5411525 | Swanson et al. | May 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5456691 | Snell | Oct 1995 | A |
5458622 | Alt | Oct 1995 | A |
5466246 | Silvian | Nov 1995 | A |
5468254 | Hahn et al. | Nov 1995 | A |
5472453 | Alt | Dec 1995 | A |
5522866 | Fernald | Jun 1996 | A |
5540727 | Tockman et al. | Jul 1996 | A |
5545186 | Olson et al. | Aug 1996 | A |
5545202 | Dahl et al. | Aug 1996 | A |
5554177 | Kieval et al. | Sep 1996 | A |
5562711 | Yerich et al. | Oct 1996 | A |
5571146 | Jones et al. | Nov 1996 | A |
5591214 | Lu | Jan 1997 | A |
5620466 | Haefner et al. | Apr 1997 | A |
5634938 | Swanson et al. | Jun 1997 | A |
5649968 | Alt et al. | Jul 1997 | A |
5662688 | Haefner et al. | Sep 1997 | A |
5674259 | Gray | Oct 1997 | A |
5683426 | Greenhut et al. | Nov 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5706823 | Wodlinger | Jan 1998 | A |
5709215 | Perttu et al. | Jan 1998 | A |
5720770 | Nappholz et al. | Feb 1998 | A |
5728140 | Salo et al. | Mar 1998 | A |
5728154 | Crossett et al. | Mar 1998 | A |
5741314 | Daly et al. | Apr 1998 | A |
5741315 | Lee et al. | Apr 1998 | A |
5749909 | Schroeppel et al. | May 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5752977 | Grievous et al. | May 1998 | A |
5755736 | Gillberg et al. | May 1998 | A |
5759199 | Snell et al. | Jun 1998 | A |
5774501 | Halpern et al. | Jun 1998 | A |
5792195 | Carlson et al. | Aug 1998 | A |
5792202 | Rueter | Aug 1998 | A |
5792203 | Schroeppel | Aug 1998 | A |
5792205 | Alt et al. | Aug 1998 | A |
5792208 | Gray | Aug 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5817130 | Cox et al. | Oct 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836985 | Goyal et al. | Nov 1998 | A |
5836987 | Baumann et al. | Nov 1998 | A |
5842977 | Lesho et al. | Dec 1998 | A |
5855593 | Olson et al. | Jan 1999 | A |
5873894 | Vandegriff et al. | Feb 1999 | A |
5891184 | Lee et al. | Apr 1999 | A |
5897586 | Molina | Apr 1999 | A |
5899876 | Flower | May 1999 | A |
5899928 | Sholder et al. | May 1999 | A |
5919214 | Ciciarelli et al. | Jul 1999 | A |
5928271 | Hess et al. | Jul 1999 | A |
5935078 | Feierbach | Aug 1999 | A |
5941906 | Barreras et al. | Aug 1999 | A |
5944744 | Paul et al. | Aug 1999 | A |
5954757 | Gray | Sep 1999 | A |
5978713 | Prutchi et al. | Nov 1999 | A |
5991660 | Goyal | Nov 1999 | A |
5991661 | Park et al. | Nov 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999857 | Weijand et al. | Dec 1999 | A |
6016445 | Baura | Jan 2000 | A |
6026320 | Carlson et al. | Feb 2000 | A |
6029085 | Olson et al. | Feb 2000 | A |
6041250 | dePinto | Mar 2000 | A |
6044298 | Salo et al. | Mar 2000 | A |
6044300 | Gray | Mar 2000 | A |
6055454 | Heemels | Apr 2000 | A |
6073050 | Griffith | Jun 2000 | A |
6076016 | Feierbach | Jun 2000 | A |
6077236 | Cunningham | Jun 2000 | A |
6080187 | Alt et al. | Jun 2000 | A |
6083248 | Thompson | Jul 2000 | A |
6106551 | Crossett et al. | Aug 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6128526 | Stadler et al. | Oct 2000 | A |
6132456 | Sommer et al. | Oct 2000 | A |
6141581 | Olson et al. | Oct 2000 | A |
6141588 | Cox et al. | Oct 2000 | A |
6141592 | Pauly | Oct 2000 | A |
6144879 | Gray | Nov 2000 | A |
6162195 | Igo et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167310 | Grevious | Dec 2000 | A |
6201993 | Kruse et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6211799 | Post et al. | Apr 2001 | B1 |
6221011 | Bardy | Apr 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6240317 | Villaseca et al. | May 2001 | B1 |
6256534 | Dahl | Jul 2001 | B1 |
6259947 | Olson et al. | Jul 2001 | B1 |
6266558 | Gozani et al. | Jul 2001 | B1 |
6266567 | Ishikawa et al. | Jul 2001 | B1 |
6270457 | Bardy | Aug 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6273856 | Sun et al. | Aug 2001 | B1 |
6277072 | Bardy | Aug 2001 | B1 |
6280380 | Bardy | Aug 2001 | B1 |
6285903 | Rosenthal et al. | Sep 2001 | B1 |
6285907 | Kramer et al. | Sep 2001 | B1 |
6292698 | Duffin et al. | Sep 2001 | B1 |
6295473 | Rosar | Sep 2001 | B1 |
6297943 | Carson | Oct 2001 | B1 |
6298271 | Weijand | Oct 2001 | B1 |
6307751 | Bodony et al. | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6336903 | Bardy | Jan 2002 | B1 |
6345202 | Richmond et al. | Feb 2002 | B2 |
6351667 | Godie | Feb 2002 | B1 |
6351669 | Hartley et al. | Feb 2002 | B1 |
6353759 | Hartley et al. | Mar 2002 | B1 |
6358203 | Bardy | Mar 2002 | B2 |
6361780 | Ley et al. | Mar 2002 | B1 |
6368284 | Bardy | Apr 2002 | B1 |
6371922 | Baumann et al. | Apr 2002 | B1 |
6393316 | Gillberg et al. | May 2002 | B1 |
6398728 | Bardy | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6400990 | Silvian | Jun 2002 | B1 |
6408208 | Sun | Jun 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411848 | Kramer et al. | Jun 2002 | B2 |
6424865 | Ding | Jul 2002 | B1 |
6434429 | Kraus et al. | Aug 2002 | B1 |
6438410 | Hsu et al. | Aug 2002 | B2 |
6438417 | Rockwell et al. | Aug 2002 | B1 |
6438421 | Stahmann et al. | Aug 2002 | B1 |
6440066 | Bardv | Aug 2002 | B1 |
6441747 | Khair et al. | Aug 2002 | B1 |
6442426 | Kroll | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6443891 | Grevious | Sep 2002 | B1 |
6445953 | Bulkes et al. | Sep 2002 | B1 |
6453200 | Koslar | Sep 2002 | B1 |
6459929 | Hopper et al. | Oct 2002 | B1 |
6470215 | Kraus et al. | Oct 2002 | B1 |
6471645 | Warkentin et al. | Oct 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6487443 | Olson et al. | Nov 2002 | B2 |
6490487 | Kraus et al. | Dec 2002 | B1 |
6498951 | Larson et al. | Dec 2002 | B1 |
6507755 | Gozani et al. | Jan 2003 | B1 |
6507759 | Prutchi et al. | Jan 2003 | B1 |
6508771 | Padmanabhan et al. | Jan 2003 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6526311 | Begemann | Feb 2003 | B2 |
6539253 | Thompson et al. | Mar 2003 | B2 |
6542775 | Ding et al. | Apr 2003 | B2 |
6544270 | Zhang | Apr 2003 | B1 |
6553258 | Stahmann et al. | Apr 2003 | B2 |
6561975 | Pool et al. | May 2003 | B1 |
6564807 | Schulman et al. | May 2003 | B1 |
6574506 | Kramer et al. | Jun 2003 | B2 |
6584351 | Ekwall | Jun 2003 | B1 |
6584352 | Combs et al. | Jun 2003 | B2 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6597951 | Kramer et al. | Jul 2003 | B2 |
6622046 | Fraley et al. | Sep 2003 | B2 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6628985 | Sweeney et al. | Sep 2003 | B2 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6666844 | Igo et al. | Dec 2003 | B1 |
6689117 | Sweeney et al. | Feb 2004 | B2 |
6690959 | Thompson | Feb 2004 | B2 |
6694189 | Begemann | Feb 2004 | B2 |
6704602 | Berg et al. | Mar 2004 | B2 |
6718212 | Parry et al. | Apr 2004 | B2 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6738670 | Almendinger et al. | May 2004 | B1 |
6746797 | Benson et al. | Jun 2004 | B2 |
6749566 | Russ | Jun 2004 | B2 |
6754528 | Bardy et al. | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6763269 | Cox | Jul 2004 | B2 |
6778860 | Ostroff et al. | Aug 2004 | B2 |
6788971 | Sloman et al. | Sep 2004 | B1 |
6788974 | Bardy et al. | Sep 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6807442 | Myklebust et al. | Oct 2004 | B1 |
6847844 | Sun et al. | Jan 2005 | B2 |
6869404 | Schulhauser et al. | Mar 2005 | B2 |
6871095 | Stahmann et al. | Mar 2005 | B2 |
6871096 | Hill | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6885889 | Chinchoy | Apr 2005 | B2 |
6892094 | Ousdigian et al. | May 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6904315 | Panken et al. | Jun 2005 | B2 |
6922592 | Thompson et al. | Jul 2005 | B2 |
6931282 | Esler | Aug 2005 | B2 |
6931286 | Sigg et al. | Aug 2005 | B2 |
6934585 | Schloss et al. | Aug 2005 | B1 |
6941169 | Pappu | Sep 2005 | B2 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6978176 | Lattouf | Dec 2005 | B2 |
6980675 | Evron et al. | Dec 2005 | B2 |
6985773 | Von Arx et al. | Jan 2006 | B2 |
6990375 | Kloss et al. | Jan 2006 | B2 |
6993389 | Ding et al. | Jan 2006 | B2 |
7001366 | Ballard | Feb 2006 | B2 |
7003350 | Denker et al. | Feb 2006 | B2 |
7006864 | Echt et al. | Feb 2006 | B2 |
7013176 | Ding et al. | Mar 2006 | B2 |
7013178 | Reinke et al. | Mar 2006 | B2 |
7027871 | Burnes et al. | Apr 2006 | B2 |
7031711 | Brown et al. | Apr 2006 | B2 |
7031771 | Brown et al. | Apr 2006 | B2 |
7035684 | Lee et al. | Apr 2006 | B2 |
7050849 | Echt et al. | May 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7063693 | Guenst | Jun 2006 | B2 |
7082336 | Ransbury et al. | Jul 2006 | B2 |
7085606 | Flach et al. | Aug 2006 | B2 |
7092758 | Sun et al. | Aug 2006 | B2 |
7110824 | Amundson et al. | Sep 2006 | B2 |
7120504 | Osypka | Oct 2006 | B2 |
7130681 | Gebhardt et al. | Oct 2006 | B2 |
7139613 | Reinke et al. | Nov 2006 | B2 |
7142912 | Wagner et al. | Nov 2006 | B2 |
7146225 | Guenst et al. | Dec 2006 | B2 |
7146226 | Lau et al. | Dec 2006 | B2 |
7149581 | Goedeke | Dec 2006 | B2 |
7149588 | Lau et al. | Dec 2006 | B2 |
7158839 | Lau | Jan 2007 | B2 |
7162307 | Patrias | Jan 2007 | B2 |
7164952 | Lau et al. | Jan 2007 | B2 |
7177700 | Cox | Feb 2007 | B1 |
7181284 | Burnes et al. | Feb 2007 | B2 |
7181505 | Haller et al. | Feb 2007 | B2 |
7184830 | Echt et al. | Feb 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7200439 | Zdeblick et al. | Apr 2007 | B2 |
7206423 | Feng et al. | Apr 2007 | B1 |
7209785 | Kim et al. | Apr 2007 | B2 |
7209790 | Thompson et al. | Apr 2007 | B2 |
7211884 | Davis et al. | May 2007 | B1 |
7212871 | Morgan | May 2007 | B1 |
7226440 | Gelfand et al. | Jun 2007 | B2 |
7228183 | Sun et al. | Jun 2007 | B2 |
7231248 | Kramer et al. | Jun 2007 | B2 |
7231253 | Tidemand et al. | Jun 2007 | B2 |
7236821 | Cates et al. | Jun 2007 | B2 |
7236829 | Farazi et al. | Jun 2007 | B1 |
7254448 | Almendinger et al. | Aug 2007 | B2 |
7260436 | Kilgore et al. | Aug 2007 | B2 |
7270669 | Sra | Sep 2007 | B1 |
7272448 | Morgan et al. | Sep 2007 | B1 |
7277755 | Falkenberg et al. | Oct 2007 | B1 |
7280872 | Mosesov et al. | Oct 2007 | B1 |
7286866 | Okerlund et al. | Oct 2007 | B2 |
7288096 | Chin | Oct 2007 | B2 |
7289847 | Gill et al. | Oct 2007 | B1 |
7289852 | Helfinstine et al. | Oct 2007 | B2 |
7289853 | Campbell et al. | Oct 2007 | B1 |
7289855 | Nghiem et al. | Oct 2007 | B2 |
7302294 | Kamath et al. | Nov 2007 | B2 |
7305266 | Kroll | Dec 2007 | B1 |
7307321 | Avanzino | Dec 2007 | B1 |
7308297 | Reddy et al. | Dec 2007 | B2 |
7308299 | Burrell et al. | Dec 2007 | B2 |
7310556 | Bulkes | Dec 2007 | B2 |
7317950 | Lee | Jan 2008 | B2 |
7319905 | Morgan et al. | Jan 2008 | B1 |
7321677 | Evron et al. | Jan 2008 | B2 |
7321798 | Muhlenberg et al. | Jan 2008 | B2 |
7333853 | Mazar et al. | Feb 2008 | B2 |
7336994 | Hettrick et al. | Feb 2008 | B2 |
7346381 | Okerlund et al. | Mar 2008 | B2 |
7346393 | Spinelli et al. | Mar 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7366572 | Heruth et al. | Apr 2008 | B2 |
7373207 | Lattouf | May 2008 | B2 |
7384403 | Sherman | Jun 2008 | B2 |
7386342 | Falkenberg et al. | Jun 2008 | B1 |
7392090 | Sweeney et al. | Jun 2008 | B2 |
7406105 | DelMain et al. | Jul 2008 | B2 |
7406349 | Seeberger et al. | Jul 2008 | B2 |
7410497 | Hastings et al. | Aug 2008 | B2 |
7425200 | Brockway et al. | Sep 2008 | B2 |
7433739 | Salys et al. | Oct 2008 | B1 |
7454248 | Burrell et al. | Nov 2008 | B2 |
7496409 | Greenhut et al. | Feb 2009 | B2 |
7496410 | Heil | Feb 2009 | B2 |
7499743 | Vass et al. | Mar 2009 | B2 |
7502652 | Gaunt et al. | Mar 2009 | B2 |
7512448 | Malick et al. | Mar 2009 | B2 |
7515969 | Tockman et al. | Apr 2009 | B2 |
7526342 | Chin et al. | Apr 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7532933 | Hastings et al. | May 2009 | B2 |
7536222 | Bardy et al. | May 2009 | B2 |
7536224 | Ritscher et al. | May 2009 | B2 |
7539541 | Quiles et al. | May 2009 | B2 |
7544197 | Kelsch et al. | Jun 2009 | B2 |
7546166 | Michels et al. | Jun 2009 | B2 |
7558626 | Corbucci | Jul 2009 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7565190 | Okerlund et al. | Jul 2009 | B2 |
7565195 | Kroll et al. | Jul 2009 | B1 |
7584002 | Burnes et al. | Sep 2009 | B2 |
7587074 | Zarkh et al. | Sep 2009 | B2 |
7590455 | Heruth et al. | Sep 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7606621 | Brisken et al. | Oct 2009 | B2 |
7610088 | Chinchoy | Oct 2009 | B2 |
7610092 | Cowan et al. | Oct 2009 | B2 |
7610099 | Almendinger et al. | Oct 2009 | B2 |
7610104 | Kaplan et al. | Oct 2009 | B2 |
7613500 | Vass et al. | Nov 2009 | B2 |
7616991 | Mann et al. | Nov 2009 | B2 |
7617001 | Penner et al. | Nov 2009 | B2 |
7617007 | Williams et al. | Nov 2009 | B2 |
7630764 | Ding et al. | Dec 2009 | B2 |
7630767 | Poore et al. | Dec 2009 | B1 |
7634313 | Kroll et al. | Dec 2009 | B1 |
7635541 | Scott et al. | Dec 2009 | B2 |
7637867 | Zdeblick | Dec 2009 | B2 |
7640057 | Libbus et al. | Dec 2009 | B2 |
7640060 | Zdeblick | Dec 2009 | B2 |
7647109 | Hastings et al. | Jan 2010 | B2 |
7650186 | Hastings et al. | Jan 2010 | B2 |
7657311 | Bardy et al. | Feb 2010 | B2 |
7657313 | Rom | Feb 2010 | B2 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7682316 | Anderson et al. | Mar 2010 | B2 |
7691047 | Ferrari | Apr 2010 | B2 |
7702392 | Echt et al. | Apr 2010 | B2 |
7706879 | Burnes et al. | Apr 2010 | B2 |
7713194 | Zdeblick | May 2010 | B2 |
7713195 | Zdeblick | May 2010 | B2 |
7729783 | Michels et al. | Jun 2010 | B2 |
7734333 | Ghanem et al. | Jun 2010 | B2 |
7734343 | Ransbury et al. | Jun 2010 | B2 |
7738958 | Zdeblick et al. | Jun 2010 | B2 |
7738964 | Von Arx et al. | Jun 2010 | B2 |
7742629 | Zarkh et al. | Jun 2010 | B2 |
7742812 | Ghanem et al. | Jun 2010 | B2 |
7742816 | Masoud et al. | Jun 2010 | B2 |
7742822 | Masoud et al. | Jun 2010 | B2 |
7743151 | Vallapureddy et al. | Jun 2010 | B2 |
7747047 | Okerlund et al. | Jun 2010 | B2 |
7747335 | Williams | Jun 2010 | B2 |
7751881 | Cowan et al. | Jul 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7761150 | Ghanem et al. | Jul 2010 | B2 |
7761164 | Verhoef et al. | Jul 2010 | B2 |
7765001 | Echt et al. | Jul 2010 | B2 |
7769452 | Ghanem et al. | Aug 2010 | B2 |
7778685 | Evron et al. | Aug 2010 | B2 |
7778686 | Vass et al. | Aug 2010 | B2 |
7783362 | Whitehurst et al. | Aug 2010 | B2 |
7792588 | Harding | Sep 2010 | B2 |
7797059 | Bornzin et al. | Sep 2010 | B1 |
7801596 | Fischell et al. | Sep 2010 | B2 |
7809438 | Echt et al. | Oct 2010 | B2 |
7813785 | Okerlund et al. | Oct 2010 | B2 |
7840281 | Kveen et al. | Nov 2010 | B2 |
7844331 | Li et al. | Nov 2010 | B2 |
7844348 | Swoyer et al. | Nov 2010 | B2 |
7846088 | Ness | Dec 2010 | B2 |
7848815 | Brisken et al. | Dec 2010 | B2 |
7848823 | Drasler et al. | Dec 2010 | B2 |
7860455 | Fukumoto et al. | Dec 2010 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7877136 | Moffitt et al. | Jan 2011 | B1 |
7877142 | Moaddeb et al. | Jan 2011 | B2 |
7877144 | Coles, Jr. et al. | Jan 2011 | B2 |
7881786 | Jackson | Feb 2011 | B2 |
7881791 | Sambelashvili et al. | Feb 2011 | B2 |
7881798 | Miesel et al. | Feb 2011 | B2 |
7881810 | Chitre et al. | Feb 2011 | B1 |
7890173 | Brisken et al. | Feb 2011 | B2 |
7890181 | Denzene et al. | Feb 2011 | B2 |
7890192 | Kelsch et al. | Feb 2011 | B1 |
7894885 | Bartal et al. | Feb 2011 | B2 |
7894894 | Stadler et al. | Feb 2011 | B2 |
7894902 | Rom | Feb 2011 | B2 |
7894907 | Cowan et al. | Feb 2011 | B2 |
7894910 | Cowan et al. | Feb 2011 | B2 |
7894915 | Chitre et al. | Feb 2011 | B1 |
7899537 | Kroll et al. | Mar 2011 | B1 |
7899541 | Cowan et al. | Mar 2011 | B2 |
7899542 | Cowan et al. | Mar 2011 | B2 |
7899554 | Williams et al. | Mar 2011 | B2 |
7901360 | Yang et al. | Mar 2011 | B1 |
7904170 | Harding | Mar 2011 | B2 |
7907993 | Ghanem et al. | Mar 2011 | B2 |
7912544 | Min et al. | Mar 2011 | B1 |
7920928 | Yang et al. | Apr 2011 | B1 |
7925343 | Min et al. | Apr 2011 | B1 |
7930022 | Zhang et al. | Apr 2011 | B2 |
7930027 | Prakash et al. | Apr 2011 | B2 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7937135 | Ghanem et al. | May 2011 | B2 |
7937148 | Jacobson | May 2011 | B2 |
7937161 | Hastings et al. | May 2011 | B2 |
7941214 | Kleckner et al. | May 2011 | B2 |
7941218 | Sambelashvili et al. | May 2011 | B2 |
7945333 | Jacobson | May 2011 | B2 |
7946997 | Hubinette | May 2011 | B2 |
7949404 | Hill | May 2011 | B2 |
7949405 | Feher | May 2011 | B2 |
7953486 | Daum et al. | May 2011 | B2 |
7953493 | Fowler et al. | May 2011 | B2 |
7962202 | Bhunia | Jun 2011 | B2 |
7974702 | Fain et al. | Jul 2011 | B1 |
7979136 | Young et al. | Jul 2011 | B2 |
7983753 | Severin | Jul 2011 | B2 |
7991467 | Markowitz et al. | Aug 2011 | B2 |
7991471 | Ghanem et al. | Aug 2011 | B2 |
7996063 | Vass et al. | Aug 2011 | B2 |
7996087 | Cowan et al. | Aug 2011 | B2 |
8000791 | Sunagawa et al. | Aug 2011 | B2 |
8000807 | Morris et al. | Aug 2011 | B2 |
8001975 | DiSilvestro et al. | Aug 2011 | B2 |
8002700 | Ferek-Petric et al. | Aug 2011 | B2 |
8002718 | Buchholtz et al. | Aug 2011 | B2 |
8010191 | Zhu et al. | Aug 2011 | B2 |
8010209 | Jacobson | Aug 2011 | B2 |
8014861 | Zhu et al. | Sep 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8019434 | Quiles et al. | Sep 2011 | B2 |
8027727 | Freeberg | Sep 2011 | B2 |
8027729 | Sunagawa et al. | Sep 2011 | B2 |
8032219 | Neumann et al. | Oct 2011 | B2 |
8036743 | Savage et al. | Oct 2011 | B2 |
8046065 | Burnes et al. | Oct 2011 | B2 |
8046079 | Bange et al. | Oct 2011 | B2 |
8046080 | Von Arx et al. | Oct 2011 | B2 |
8050297 | Delmain et al. | Nov 2011 | B2 |
8050759 | Stegemann et al. | Nov 2011 | B2 |
8050774 | Kveen et al. | Nov 2011 | B2 |
8055345 | Li et al. | Nov 2011 | B2 |
8055350 | Roberts | Nov 2011 | B2 |
8060185 | Hunter et al. | Nov 2011 | B2 |
8060212 | Rios et al. | Nov 2011 | B1 |
8065018 | Haubrich et al. | Nov 2011 | B2 |
8068920 | Gaudiani | Nov 2011 | B2 |
8073542 | Doerr | Dec 2011 | B2 |
8078278 | Penner | Dec 2011 | B2 |
8078283 | Cowan et al. | Dec 2011 | B2 |
8095123 | Gray | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103359 | Reddy | Jan 2012 | B2 |
8103361 | Moser | Jan 2012 | B2 |
8105714 | Schmidt et al. | Jan 2012 | B2 |
8112148 | Giftakis et al. | Feb 2012 | B2 |
8114021 | Robertson et al. | Feb 2012 | B2 |
8121680 | Falkenberg et al. | Feb 2012 | B2 |
8123684 | Zdeblick | Feb 2012 | B2 |
8126545 | Flach et al. | Feb 2012 | B2 |
8131334 | Lu et al. | Mar 2012 | B2 |
8140161 | Willerton et al. | Mar 2012 | B2 |
8145308 | Sambelashvili et al. | Mar 2012 | B2 |
8150521 | Crowley et al. | Apr 2012 | B2 |
8160672 | Kim et al. | Apr 2012 | B2 |
8160702 | Mann et al. | Apr 2012 | B2 |
8160704 | Freeberg | Apr 2012 | B2 |
8165694 | Carbanaru et al. | Apr 2012 | B2 |
8175715 | Cox | May 2012 | B1 |
8180428 | Kaiser et al. | May 2012 | B2 |
8180451 | Hickman et al. | May 2012 | B2 |
8185213 | Kveen et al. | May 2012 | B2 |
8187161 | Li et al. | May 2012 | B2 |
8195293 | Limousin et al. | Jun 2012 | B2 |
8204590 | Sambelashvili et al. | Jun 2012 | B2 |
8204595 | Pianca et al. | Jun 2012 | B2 |
8204605 | Hastings et al. | Jun 2012 | B2 |
8209014 | Doerr | Jun 2012 | B2 |
8214041 | Van Gelder et al. | Jul 2012 | B2 |
8214043 | Matos | Jul 2012 | B2 |
8224244 | Kim et al. | Jul 2012 | B2 |
8229556 | Li | Jul 2012 | B2 |
8233985 | Bulkes et al. | Jul 2012 | B2 |
8265748 | Liu et al. | Sep 2012 | B2 |
8265757 | Mass et al. | Sep 2012 | B2 |
8262578 | Bharmi et al. | Oct 2012 | B1 |
8280521 | Haubrich et al. | Oct 2012 | B2 |
8285387 | Utsi et al. | Oct 2012 | B2 |
8290598 | Boon et al. | Oct 2012 | B2 |
8290600 | Hastings et al. | Oct 2012 | B2 |
8295939 | Jacobson | Oct 2012 | B2 |
8301254 | Mosesov et al. | Oct 2012 | B2 |
8315701 | Cowan et al. | Nov 2012 | B2 |
8315708 | Berthelsdorf et al. | Nov 2012 | B2 |
8321014 | Maskara et al. | Nov 2012 | B2 |
8321021 | Kisker et al. | Nov 2012 | B2 |
8321036 | Brockway et al. | Nov 2012 | B2 |
8332036 | Hastings et al. | Dec 2012 | B2 |
8335563 | Stessman | Dec 2012 | B2 |
8335568 | Heruth et al. | Dec 2012 | B2 |
8340750 | Prakash et al. | Dec 2012 | B2 |
8340780 | Hastings et al. | Dec 2012 | B2 |
8352025 | Jacobson | Jan 2013 | B2 |
8352027 | Spinelli et al. | Jan 2013 | B2 |
8352028 | Wenger | Jan 2013 | B2 |
8352038 | Mao et al. | Jan 2013 | B2 |
8359098 | Lund et al. | Jan 2013 | B2 |
8364261 | Stubbs et al. | Jan 2013 | B2 |
8364276 | Willis | Jan 2013 | B2 |
8369959 | Meskens | Feb 2013 | B2 |
8369962 | Abrahamson | Feb 2013 | B2 |
8380320 | Spital | Feb 2013 | B2 |
8383269 | Scott et al. | Feb 2013 | B2 |
8386051 | Rys | Feb 2013 | B2 |
8391964 | Musley et al. | Mar 2013 | B2 |
8391981 | Mosesov | Mar 2013 | B2 |
8391990 | Smith et al. | Mar 2013 | B2 |
8401616 | Verard et al. | Mar 2013 | B2 |
8406874 | Liu et al. | Mar 2013 | B2 |
8406879 | Shuros et al. | Mar 2013 | B2 |
8406886 | Gaunt et al. | Mar 2013 | B2 |
8406899 | Reddy et al. | Mar 2013 | B2 |
8412352 | Griswold et al. | Apr 2013 | B2 |
8417340 | Goossen | Apr 2013 | B2 |
8417341 | Freeberg | Apr 2013 | B2 |
8423149 | Hennig | Apr 2013 | B2 |
8428716 | Mullen et al. | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8433402 | Ruben et al. | Apr 2013 | B2 |
8433409 | Johnson et al. | Apr 2013 | B2 |
8433420 | Bange et al. | Apr 2013 | B2 |
8447412 | Dal Molin et al. | May 2013 | B2 |
8452413 | Young et al. | May 2013 | B2 |
8457740 | Osche | Jun 2013 | B2 |
8457742 | Jacobson | Jun 2013 | B2 |
8457744 | Janzig et al. | Jun 2013 | B2 |
8457761 | Wariar | Jun 2013 | B2 |
8467871 | Maskara | Jun 2013 | B2 |
8478407 | Demmer et al. | Jul 2013 | B2 |
8478408 | Hastings et al. | Jul 2013 | B2 |
8478431 | Griswold et al. | Jul 2013 | B2 |
8494632 | Sun et al. | Jul 2013 | B2 |
8504156 | Bonner et al. | Aug 2013 | B2 |
8509910 | Sowder et al. | Aug 2013 | B2 |
8509916 | Byrd et al. | Aug 2013 | B2 |
8515559 | Roberts et al. | Aug 2013 | B2 |
8521268 | Zhang et al. | Aug 2013 | B2 |
8525340 | Eckhardt et al. | Sep 2013 | B2 |
8527068 | Ostroff | Sep 2013 | B2 |
8532790 | Griswold | Sep 2013 | B2 |
8538526 | Stahmann et al. | Sep 2013 | B2 |
8541131 | Lund et al. | Sep 2013 | B2 |
8543205 | Ostroff | Sep 2013 | B2 |
8547248 | Zdeblick et al. | Oct 2013 | B2 |
8548605 | Ollivier | Oct 2013 | B2 |
8554333 | Wu et al. | Oct 2013 | B2 |
8565882 | Matoes | Oct 2013 | B2 |
8565897 | Regnier et al. | Oct 2013 | B2 |
8571678 | Wang | Oct 2013 | B2 |
8577327 | Makdissi et al. | Nov 2013 | B2 |
8588926 | Moore et al. | Nov 2013 | B2 |
8594775 | Ghosh et al. | Nov 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8615310 | Khairkhahan et al. | Dec 2013 | B2 |
8617082 | Zhang et al. | Dec 2013 | B2 |
8626280 | Allavatam et al. | Jan 2014 | B2 |
8626294 | Sheldon et al. | Jan 2014 | B2 |
8634908 | Cowan | Jan 2014 | B2 |
8634912 | Bornzin et al. | Jan 2014 | B2 |
8634919 | Hou et al. | Jan 2014 | B1 |
8639333 | Stadler et al. | Jan 2014 | B2 |
8639335 | Peichel et al. | Jan 2014 | B2 |
8644934 | Hastings et al. | Feb 2014 | B2 |
8649859 | Smith et al. | Feb 2014 | B2 |
8670842 | Bornzin et al. | Mar 2014 | B1 |
8676314 | Maskara et al. | Mar 2014 | B2 |
8676319 | Knoll | Mar 2014 | B2 |
8676335 | Katoozi et al. | Mar 2014 | B2 |
8700173 | Edlund | Apr 2014 | B2 |
8700181 | Bornzin et al. | Apr 2014 | B2 |
8705599 | Dal Molin et al. | Apr 2014 | B2 |
8718766 | Wahlberg | May 2014 | B2 |
8718773 | Willis et al. | May 2014 | B2 |
8725260 | Shuros et al. | May 2014 | B2 |
8731642 | Zarkh et al. | May 2014 | B2 |
8738133 | Shuros et al. | May 2014 | B2 |
8738147 | Hastings et al. | May 2014 | B2 |
8744555 | Allavatam et al. | Jun 2014 | B2 |
8744572 | Greenhut et al. | Jun 2014 | B1 |
8747314 | Stahmann et al. | Jun 2014 | B2 |
8750994 | Ghosh et al. | Jun 2014 | B2 |
8750998 | Ghosh et al. | Jun 2014 | B1 |
8755884 | Demmer et al. | Jun 2014 | B2 |
8758365 | Bonner et al. | Jun 2014 | B2 |
8768459 | Ghosh et al. | Jul 2014 | B2 |
8768483 | Schmitt et al. | Jul 2014 | B2 |
8774572 | Hamamoto | Jul 2014 | B2 |
8781605 | Bornzin et al. | Jul 2014 | B2 |
8788035 | Jacobson | Jul 2014 | B2 |
8788053 | Jacobson | Jul 2014 | B2 |
8798740 | Samade et al. | Aug 2014 | B2 |
8798745 | Jacobson | Aug 2014 | B2 |
8798762 | Fain et al. | Aug 2014 | B2 |
8798770 | Reddy | Aug 2014 | B2 |
8805505 | Roberts | Aug 2014 | B1 |
8805528 | Corndorf | Aug 2014 | B2 |
8812109 | Blomqvist et al. | Aug 2014 | B2 |
8818504 | Bodner et al. | Aug 2014 | B2 |
8827913 | Havel et al. | Sep 2014 | B2 |
8831747 | Min et al. | Sep 2014 | B1 |
8855789 | Jacobson | Oct 2014 | B2 |
8861830 | Brada et al. | Oct 2014 | B2 |
8868186 | Kroll | Oct 2014 | B2 |
8886307 | Sambelashvili et al. | Nov 2014 | B2 |
8886311 | Anderson et al. | Nov 2014 | B2 |
8886339 | Faltys et al. | Nov 2014 | B2 |
8903473 | Rogers et al. | Dec 2014 | B2 |
8903513 | Ollivier | Dec 2014 | B2 |
8909336 | Navarro-Paredes et al. | Dec 2014 | B2 |
8914131 | Bornzin et al. | Dec 2014 | B2 |
8923795 | Makdissi et al. | Dec 2014 | B2 |
8923963 | Bonner et al. | Dec 2014 | B2 |
8938300 | Rosero | Jan 2015 | B2 |
8942806 | Sheldon et al. | Jan 2015 | B2 |
8948883 | Eggen et al. | Feb 2015 | B2 |
8958892 | Khairkhahan et al. | Feb 2015 | B2 |
8977358 | Ewert et al. | Mar 2015 | B2 |
8989873 | Locsin | Mar 2015 | B2 |
8996109 | Karst et al. | Mar 2015 | B2 |
9002467 | Smith et al. | Apr 2015 | B2 |
9008776 | Cowan et al. | Apr 2015 | B2 |
9008777 | Dianaty et al. | Apr 2015 | B2 |
9014818 | Deterre et al. | Apr 2015 | B2 |
9017341 | Bornzin et al. | Apr 2015 | B2 |
9020611 | Khairkhahan et al. | Apr 2015 | B2 |
9033996 | West | May 2015 | B1 |
9037262 | Regnier et al. | May 2015 | B2 |
9042984 | Demmer et al. | May 2015 | B2 |
9072872 | Asleson et al. | Jul 2015 | B2 |
9072911 | Hastings et al. | Jul 2015 | B2 |
9072913 | Jacobson | Jul 2015 | B2 |
9101281 | Reinert et al. | Aug 2015 | B2 |
9119959 | Rys et al. | Sep 2015 | B2 |
9155882 | Grubac et al. | Oct 2015 | B2 |
9168372 | Fain | Oct 2015 | B2 |
9168380 | Greenhut et al. | Oct 2015 | B1 |
9168383 | Jacobson et al. | Oct 2015 | B2 |
9180285 | Moore et al. | Nov 2015 | B2 |
9192774 | Jacobson | Nov 2015 | B2 |
9205225 | Khairkhahan et al. | Dec 2015 | B2 |
9216285 | Boling et al. | Dec 2015 | B1 |
9216293 | Berthiaume et al. | Dec 2015 | B2 |
9216298 | Jacobson | Dec 2015 | B2 |
9227077 | Jacobson | Jan 2016 | B2 |
9238145 | Wenzel et al. | Jan 2016 | B2 |
9242102 | Khairkhahan et al. | Jan 2016 | B2 |
9242113 | Smith et al. | Jan 2016 | B2 |
9248300 | Rys et al. | Feb 2016 | B2 |
9265436 | Min et al. | Feb 2016 | B2 |
9265962 | Dianaty et al. | Feb 2016 | B2 |
9272155 | Ostroff | Mar 2016 | B2 |
9278218 | Karst et al. | Mar 2016 | B2 |
9278229 | Reinke et al. | Mar 2016 | B1 |
9283381 | Grubac et al. | Mar 2016 | B2 |
9283382 | Berthiaume et al. | Mar 2016 | B2 |
9289612 | Sambelashbili et al. | Mar 2016 | B1 |
9302115 | Molin et al. | Apr 2016 | B2 |
9320446 | Gillberg et al. | Apr 2016 | B2 |
9333364 | Echt et al. | May 2016 | B2 |
9358387 | Suwito et al. | Jun 2016 | B2 |
9358400 | Jacobson | Jun 2016 | B2 |
9364675 | Deterre et al. | Jun 2016 | B2 |
9370663 | Moulder | Jun 2016 | B2 |
9375580 | Bonner et al. | Jun 2016 | B2 |
9375581 | Baru et al. | Jun 2016 | B2 |
9381365 | Kibler et al. | Jul 2016 | B2 |
9393424 | Demmer et al. | Jul 2016 | B2 |
9393436 | Doerr | Jul 2016 | B2 |
9399139 | Demmer et al. | Jul 2016 | B2 |
9399140 | Cho et al. | Jul 2016 | B2 |
9409033 | Jacobson | Aug 2016 | B2 |
9427594 | Bornzin et al. | Aug 2016 | B1 |
9433368 | Stahmann et al. | Sep 2016 | B2 |
9433780 | Regnier et al. | Sep 2016 | B2 |
9457193 | Klimovitch et al. | Oct 2016 | B2 |
9474457 | Ghosh et al. | Oct 2016 | B2 |
9486151 | Ghosh et al. | Nov 2016 | B2 |
9492668 | Sheldon et al. | Nov 2016 | B2 |
9492669 | Demmer et al. | Nov 2016 | B2 |
9492674 | Schmidt et al. | Nov 2016 | B2 |
9492677 | Greenhut et al. | Nov 2016 | B2 |
9511233 | Sambelashvili | Dec 2016 | B2 |
9511236 | Varady et al. | Dec 2016 | B2 |
9511237 | Deterre et al. | Dec 2016 | B2 |
9517336 | Eggen et al. | Dec 2016 | B2 |
9522276 | Shen et al. | Dec 2016 | B2 |
9522280 | Fishier et al. | Dec 2016 | B2 |
9526522 | Wood et al. | Dec 2016 | B2 |
9526891 | Eggen et al. | Dec 2016 | B2 |
9526909 | Stahmann et al. | Dec 2016 | B2 |
9533163 | Klimovitch et al. | Jan 2017 | B2 |
9561382 | Persson et al. | Feb 2017 | B2 |
9566012 | Greenhut et al. | Feb 2017 | B2 |
9579500 | Rys et al. | Feb 2017 | B2 |
9623234 | Anderson | Apr 2017 | B2 |
9636511 | Carney et al. | May 2017 | B2 |
9643014 | Zhang et al. | May 2017 | B2 |
9675579 | Rock et al. | Jun 2017 | B2 |
9707399 | Zielinski et al. | Jul 2017 | B2 |
9724519 | Demmer et al. | Aug 2017 | B2 |
9789319 | Sambelashvili | Oct 2017 | B2 |
9808628 | Sheldon et al. | Nov 2017 | B2 |
9808633 | Bonner et al. | Nov 2017 | B2 |
9877789 | Ghosh | Jan 2018 | B2 |
9924884 | Ghosh et al. | Mar 2018 | B2 |
10004467 | Lahm et al. | Jun 2018 | B2 |
10064567 | Ghosh et al. | Sep 2018 | B2 |
10099050 | Chen et al. | Oct 2018 | B2 |
10166396 | Schrock et al. | Jan 2019 | B2 |
10251555 | Ghosh et al. | Apr 2019 | B2 |
10406370 | Makharinsky | Sep 2019 | B1 |
10456581 | Liu et al. | Oct 2019 | B2 |
10478627 | Muessig | Nov 2019 | B2 |
10850107 | Li et al. | Dec 2020 | B2 |
10850108 | Li et al. | Dec 2020 | B2 |
20020032470 | Linberg | Mar 2002 | A1 |
20020035376 | Bardy et al. | Mar 2002 | A1 |
20020035377 | Bardy et al. | Mar 2002 | A1 |
20020035378 | Bardy et al. | Mar 2002 | A1 |
20020035380 | Rissmann et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042629 | Bardy et al. | Apr 2002 | A1 |
20020042630 | Bardy et al. | Apr 2002 | A1 |
20020042634 | Bardy et al. | Apr 2002 | A1 |
20020049475 | Bardy et al. | Apr 2002 | A1 |
20020049476 | Bardy et al. | Apr 2002 | A1 |
20020052636 | Bardy et al. | May 2002 | A1 |
20020068958 | Bardy et al. | Jun 2002 | A1 |
20020072773 | Bardy et al. | Jun 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020091414 | Bardy et al. | Jul 2002 | A1 |
20020095196 | Linberg | Jul 2002 | A1 |
20020099423 | Berg et al. | Jul 2002 | A1 |
20020103510 | Bardy et al. | Aug 2002 | A1 |
20020107545 | Rissmann et al. | Aug 2002 | A1 |
20020107546 | Ostroff et al. | Aug 2002 | A1 |
20020107547 | Erlinger et al. | Aug 2002 | A1 |
20020107548 | Bardy et al. | Aug 2002 | A1 |
20020107549 | Bardy et al. | Aug 2002 | A1 |
20020107559 | Sanders et al. | Aug 2002 | A1 |
20020120299 | Ostroff et al. | Aug 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20020193846 | Pool et al. | Dec 2002 | A1 |
20030004549 | Hill et al. | Jan 2003 | A1 |
20030009203 | Lebel et al. | Jan 2003 | A1 |
20030028082 | Thompson | Feb 2003 | A1 |
20030040779 | Engmark et al. | Feb 2003 | A1 |
20030041866 | Linberg et al. | Mar 2003 | A1 |
20030045805 | Sheldon et al. | Mar 2003 | A1 |
20030083104 | Bonner et al. | May 2003 | A1 |
20030088278 | Bardy et al. | May 2003 | A1 |
20030092995 | Thompson | May 2003 | A1 |
20030097153 | Bardy et al. | May 2003 | A1 |
20030105497 | Zhu et al. | Jun 2003 | A1 |
20030114908 | Flach | Jun 2003 | A1 |
20030144701 | Mehra et al. | Jul 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030187461 | Chin | Oct 2003 | A1 |
20040024435 | Leckrone et al. | Feb 2004 | A1 |
20040064158 | Klein et al. | Apr 2004 | A1 |
20040068302 | Rodgers et al. | Apr 2004 | A1 |
20040087938 | Leckrone et al. | May 2004 | A1 |
20040088035 | Guenst et al. | May 2004 | A1 |
20040102830 | Williams | May 2004 | A1 |
20040116878 | Byrd | Jun 2004 | A1 |
20040127959 | Amundson et al. | Jul 2004 | A1 |
20040133242 | Chapman et al. | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040147973 | Hauser | Jul 2004 | A1 |
20040167558 | Igo et al. | Aug 2004 | A1 |
20040167587 | Thompson | Aug 2004 | A1 |
20040172071 | Bardy et al. | Sep 2004 | A1 |
20040172077 | Chinchoy | Sep 2004 | A1 |
20040172104 | Berg et al. | Sep 2004 | A1 |
20040176817 | Wahlstrand et al. | Sep 2004 | A1 |
20040176818 | Wahlstrand et al. | Sep 2004 | A1 |
20040176830 | Fang | Sep 2004 | A1 |
20040186529 | Bardy et al. | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040210292 | Bardy et al. | Oct 2004 | A1 |
20040210293 | Bardy et al. | Oct 2004 | A1 |
20040210294 | Bardy et al. | Oct 2004 | A1 |
20040215308 | Bardy et al. | Oct 2004 | A1 |
20040220624 | Ritscher et al. | Nov 2004 | A1 |
20040220626 | Wagner | Nov 2004 | A1 |
20040220639 | Mulligan et al. | Nov 2004 | A1 |
20040230283 | Prinzen et al. | Dec 2004 | A1 |
20040249431 | Ransbury et al. | Dec 2004 | A1 |
20040260348 | Bakken et al. | Dec 2004 | A1 |
20040267303 | Guenst | Dec 2004 | A1 |
20050008210 | Evron et al. | Jan 2005 | A1 |
20050038477 | Kramer et al. | Feb 2005 | A1 |
20050061320 | Lee et al. | Mar 2005 | A1 |
20050070962 | Echt et al. | Mar 2005 | A1 |
20050102003 | Grabek et al. | May 2005 | A1 |
20050137629 | Dyjach et al. | Jun 2005 | A1 |
20050137671 | Liu et al. | Jun 2005 | A1 |
20050149138 | Min et al. | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050182465 | Ness | Aug 2005 | A1 |
20050203410 | Jenkins | Sep 2005 | A1 |
20050277990 | Ostroff et al. | Dec 2005 | A1 |
20050283208 | Von Arx et al. | Dec 2005 | A1 |
20050288743 | Ahn et al. | Dec 2005 | A1 |
20060042830 | Maghribi et al. | Mar 2006 | A1 |
20060052829 | Sun et al. | Mar 2006 | A1 |
20060052830 | Spinelli et al. | Mar 2006 | A1 |
20060064135 | Brockway | Mar 2006 | A1 |
20060064149 | Belacazar et al. | Mar 2006 | A1 |
20060074285 | Zarkh et al. | Apr 2006 | A1 |
20060085039 | Hastings et al. | Apr 2006 | A1 |
20060085041 | Hastings et al. | Apr 2006 | A1 |
20060085042 | Hastings et al. | Apr 2006 | A1 |
20060095078 | Tronnes | May 2006 | A1 |
20060106442 | Richardson et al. | May 2006 | A1 |
20060116746 | Chin | Jun 2006 | A1 |
20060135999 | Bodner et al. | Jun 2006 | A1 |
20060136004 | Cowan | Jun 2006 | A1 |
20060161061 | Echt et al. | Jul 2006 | A1 |
20060161205 | Mitrani et al. | Jul 2006 | A1 |
20060200002 | Guenst | Sep 2006 | A1 |
20060206151 | Lu | Sep 2006 | A1 |
20060212079 | Routh et al. | Sep 2006 | A1 |
20060235478 | Van Gelder et al. | Oct 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060241705 | Neumann et al. | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060259088 | Pastore et al. | Nov 2006 | A1 |
20060265018 | Smith et al. | Nov 2006 | A1 |
20070004979 | Wojciechowicz et al. | Jan 2007 | A1 |
20070016098 | Kim et al. | Jan 2007 | A1 |
20070027508 | Cowan | Feb 2007 | A1 |
20070049975 | Cates et al. | Mar 2007 | A1 |
20070078490 | Cowan et al. | Apr 2007 | A1 |
20070088394 | Jacobson | Apr 2007 | A1 |
20070088396 | Jacobson | Apr 2007 | A1 |
20070088397 | Jacobson | Apr 2007 | A1 |
20070088398 | Jacobson | Apr 2007 | A1 |
20070088405 | Jaconson | Apr 2007 | A1 |
20070135882 | Drasler et al. | Jun 2007 | A1 |
20070135883 | Drasler et al. | Jun 2007 | A1 |
20070150037 | Hastings et al. | Jun 2007 | A1 |
20070150038 | Hastings et al. | Jun 2007 | A1 |
20070156190 | Cinbis | Jul 2007 | A1 |
20070219525 | Gelfand et al. | Sep 2007 | A1 |
20070219590 | Hastings et al. | Sep 2007 | A1 |
20070225545 | Ferrari | Sep 2007 | A1 |
20070233206 | Frikart et al. | Oct 2007 | A1 |
20070233216 | Liu et al. | Oct 2007 | A1 |
20070239244 | Morgan et al. | Oct 2007 | A1 |
20070255376 | Michels et al. | Nov 2007 | A1 |
20070276444 | Gelbart et al. | Nov 2007 | A1 |
20070293900 | Sheldon et al. | Dec 2007 | A1 |
20070293904 | Gelbart et al. | Dec 2007 | A1 |
20070299475 | Levin et al. | Dec 2007 | A1 |
20080004663 | Jorgenson | Jan 2008 | A1 |
20080021505 | Hastings et al. | Jan 2008 | A1 |
20080021519 | De Geest et al. | Jan 2008 | A1 |
20080021532 | Kveen et al. | Jan 2008 | A1 |
20080065183 | Whitehurst et al. | Mar 2008 | A1 |
20080065185 | Worley | Mar 2008 | A1 |
20080071318 | Brooke et al. | Mar 2008 | A1 |
20080103539 | Stegemann et al. | May 2008 | A1 |
20080109054 | Hastings et al. | May 2008 | A1 |
20080119911 | Rosero | May 2008 | A1 |
20080130670 | Kim et al. | Jun 2008 | A1 |
20080154139 | Shuros et al. | Jun 2008 | A1 |
20080154322 | Jackson et al. | Jun 2008 | A1 |
20080228234 | Stancer | Sep 2008 | A1 |
20080234771 | Chinchoy et al. | Sep 2008 | A1 |
20080243217 | Wildon | Oct 2008 | A1 |
20080269814 | Rosero | Oct 2008 | A1 |
20080269816 | Prakash et al. | Oct 2008 | A1 |
20080269823 | Burnes et al. | Oct 2008 | A1 |
20080269825 | Chinchoy et al. | Oct 2008 | A1 |
20080275518 | Ghanem et al. | Nov 2008 | A1 |
20080275519 | Ghanem et al. | Nov 2008 | A1 |
20080288039 | Reddy | Nov 2008 | A1 |
20080294208 | Willis et al. | Nov 2008 | A1 |
20080294210 | Rosero | Nov 2008 | A1 |
20080294229 | Friedman et al. | Nov 2008 | A1 |
20080306359 | Zdeblick et al. | Dec 2008 | A1 |
20090018599 | Hastings et al. | Jan 2009 | A1 |
20090024180 | Kisker et al. | Jan 2009 | A1 |
20090036941 | Corbucci | Feb 2009 | A1 |
20090048646 | Katoozi et al. | Feb 2009 | A1 |
20090062895 | Stahmann et al. | Mar 2009 | A1 |
20090082827 | Kveen et al. | Mar 2009 | A1 |
20090082828 | Ostroff | Mar 2009 | A1 |
20090088813 | Brockway et al. | Apr 2009 | A1 |
20090099619 | Lessmeier et al. | Apr 2009 | A1 |
20090131907 | Chin et al. | May 2009 | A1 |
20090135886 | Robertson et al. | May 2009 | A1 |
20090143835 | Pastore et al. | Jun 2009 | A1 |
20090171408 | Solem | Jul 2009 | A1 |
20090171414 | Kelly et al. | Jul 2009 | A1 |
20090204163 | Shuros et al. | Aug 2009 | A1 |
20090204170 | Hastings et al. | Aug 2009 | A1 |
20090210024 | Jason | Aug 2009 | A1 |
20090216292 | Pless et al. | Aug 2009 | A1 |
20090234407 | Hastings et al. | Sep 2009 | A1 |
20090234411 | Sambelashvili et al. | Sep 2009 | A1 |
20090234412 | Sambelashvili | Sep 2009 | A1 |
20090234413 | Sambelashvili et al. | Sep 2009 | A1 |
20090234414 | Sambelashvili et al. | Sep 2009 | A1 |
20090234415 | Sambelashvili et al. | Sep 2009 | A1 |
20090248103 | Sambelashvili et al. | Oct 2009 | A1 |
20090259272 | Reddy et al. | Oct 2009 | A1 |
20090266573 | Engmark et al. | Oct 2009 | A1 |
20090275998 | Burnes et al. | Nov 2009 | A1 |
20090275999 | Burnes et al. | Nov 2009 | A1 |
20090299447 | Jensen et al. | Dec 2009 | A1 |
20100013668 | Kantervik | Jan 2010 | A1 |
20100016911 | Willis et al. | Jan 2010 | A1 |
20100016914 | Mullen et al. | Jan 2010 | A1 |
20100016917 | Efimov | Jan 2010 | A1 |
20100023078 | Dong et al. | Jan 2010 | A1 |
20100023085 | Wu et al. | Jan 2010 | A1 |
20100030061 | Canfield et al. | Feb 2010 | A1 |
20100030327 | Chatel | Feb 2010 | A1 |
20100042108 | Hibino | Feb 2010 | A1 |
20100063375 | Kassab et al. | Mar 2010 | A1 |
20100063562 | Cowan et al. | Mar 2010 | A1 |
20100065871 | Govari et al. | Mar 2010 | A1 |
20100094367 | Sen | Apr 2010 | A1 |
20100114209 | Krause et al. | May 2010 | A1 |
20100114214 | Morelli et al. | May 2010 | A1 |
20100125281 | Jacobson et al. | May 2010 | A1 |
20100152798 | Sanghera et al. | Jun 2010 | A1 |
20100168761 | Kassab et al. | Jul 2010 | A1 |
20100168819 | Freeberg | Jul 2010 | A1 |
20100185250 | Rom | Jul 2010 | A1 |
20100198288 | Ostroff | Aug 2010 | A1 |
20100198291 | Sambelashvili et al. | Aug 2010 | A1 |
20100198304 | Wang | Aug 2010 | A1 |
20100217367 | Belson | Aug 2010 | A1 |
20100218147 | Ishikawa | Aug 2010 | A1 |
20100228308 | Cowan et al. | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100234924 | Willis | Sep 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100249729 | Morris et al. | Sep 2010 | A1 |
20100286541 | Musley et al. | Nov 2010 | A1 |
20100286626 | Petersen | Nov 2010 | A1 |
20100286744 | Echt et al. | Nov 2010 | A1 |
20100298841 | Prinzen et al. | Nov 2010 | A1 |
20100312309 | Harding | Dec 2010 | A1 |
20110022113 | Ideblick et al. | Jan 2011 | A1 |
20110071586 | Jacobson | Mar 2011 | A1 |
20110077708 | Ostroff | Mar 2011 | A1 |
20110106202 | Ding et al. | May 2011 | A1 |
20110112398 | Zarkh et al. | May 2011 | A1 |
20110112600 | Cowan et al. | May 2011 | A1 |
20110118588 | Komblau et al. | May 2011 | A1 |
20110118810 | Cowan et al. | May 2011 | A1 |
20110137187 | Yang et al. | Jun 2011 | A1 |
20110144720 | Cowan et al. | Jun 2011 | A1 |
20110152970 | Jollota et al. | Jun 2011 | A1 |
20110160558 | Rassatt et al. | Jun 2011 | A1 |
20110160565 | Stubbs | Jun 2011 | A1 |
20110160801 | Markowitz et al. | Jun 2011 | A1 |
20110160806 | Lyden et al. | Jun 2011 | A1 |
20110166620 | Cowan et al. | Jul 2011 | A1 |
20110166621 | Cowan et al. | Jul 2011 | A1 |
20110184491 | Kivi | Jul 2011 | A1 |
20110190835 | Brockway et al. | Aug 2011 | A1 |
20110190841 | Sambelashvili et al. | Aug 2011 | A1 |
20110196444 | Prakash et al. | Aug 2011 | A1 |
20110208260 | Jacobson | Aug 2011 | A1 |
20110218587 | Jacobson | Sep 2011 | A1 |
20110230734 | Fain et al. | Sep 2011 | A1 |
20110237967 | Moore et al. | Sep 2011 | A1 |
20110245890 | Brisben et al. | Oct 2011 | A1 |
20110251660 | Griswold | Oct 2011 | A1 |
20110251662 | Griswold et al. | Oct 2011 | A1 |
20110270099 | Ruben et al. | Nov 2011 | A1 |
20110270339 | Murray, III et al. | Nov 2011 | A1 |
20110270340 | Pellegrini et al. | Nov 2011 | A1 |
20110276102 | Cohen | Nov 2011 | A1 |
20110282423 | Jacobson | Nov 2011 | A1 |
20120004527 | Thompson et al. | Jan 2012 | A1 |
20120029323 | Zhao | Feb 2012 | A1 |
20120035685 | Saha et al. | Feb 2012 | A1 |
20120041508 | Rousso et al. | Feb 2012 | A1 |
20120059433 | Cowan et al. | Mar 2012 | A1 |
20120059436 | Fontaine et al. | Mar 2012 | A1 |
20120065500 | Rogers et al. | Mar 2012 | A1 |
20120078129 | Bailin | Mar 2012 | A1 |
20120078322 | Dal Molin et al. | Mar 2012 | A1 |
20120089198 | Ostroff | Apr 2012 | A1 |
20120089214 | Kroll et al. | Apr 2012 | A1 |
20120093245 | Makdissi et al. | Apr 2012 | A1 |
20120095521 | Hintz | Apr 2012 | A1 |
20120095539 | Khairkhahan et al. | Apr 2012 | A1 |
20120101540 | O'Brien et al. | Apr 2012 | A1 |
20120101553 | Reddy | Apr 2012 | A1 |
20120109148 | Bonner et al. | May 2012 | A1 |
20120109149 | Bonner et al. | May 2012 | A1 |
20120109235 | Sheldon et al. | May 2012 | A1 |
20120109236 | Jacobson et al. | May 2012 | A1 |
20120109259 | Bond et al. | May 2012 | A1 |
20120116489 | Khairkhahan et al. | May 2012 | A1 |
20120150251 | Giftakis et al. | Jun 2012 | A1 |
20120158111 | Khairkhahan et al. | Jun 2012 | A1 |
20120165827 | Khairkhahan et al. | Jun 2012 | A1 |
20120172690 | Anderson et al. | Jul 2012 | A1 |
20120172891 | Lee | Jul 2012 | A1 |
20120172892 | Grubac et al. | Jul 2012 | A1 |
20120172942 | Berg | Jul 2012 | A1 |
20120197350 | Roberts et al. | Aug 2012 | A1 |
20120197373 | Khairkhahan et al. | Aug 2012 | A1 |
20120215285 | Tahmasian et al. | Aug 2012 | A1 |
20120232478 | Haslinger | Sep 2012 | A1 |
20120232563 | Williams et al. | Sep 2012 | A1 |
20120232565 | Kveen et al. | Sep 2012 | A1 |
20120245665 | Friedman et al. | Sep 2012 | A1 |
20120263218 | Dal Molin et al. | Oct 2012 | A1 |
20120277600 | Greenhut | Nov 2012 | A1 |
20120277606 | Ellingson et al. | Nov 2012 | A1 |
20120277725 | Kassab et al. | Nov 2012 | A1 |
20120283587 | Gosh et al. | Nov 2012 | A1 |
20120283795 | Stancer et al. | Nov 2012 | A1 |
20120283807 | Deterre et al. | Nov 2012 | A1 |
20120284003 | Gosh et al. | Nov 2012 | A1 |
20120290025 | Keimel | Nov 2012 | A1 |
20120296228 | Zhang et al. | Nov 2012 | A1 |
20120296381 | Matos | Nov 2012 | A1 |
20120303082 | Dong et al. | Nov 2012 | A1 |
20120316613 | Keefe et al. | Dec 2012 | A1 |
20130012151 | Hankins | Jan 2013 | A1 |
20130013017 | Mullen et al. | Jan 2013 | A1 |
20130023975 | Locsin | Jan 2013 | A1 |
20130035748 | Bonner et al. | Feb 2013 | A1 |
20130041422 | Jacobson | Feb 2013 | A1 |
20130053906 | Ghosh et al. | Feb 2013 | A1 |
20130053908 | Smith et al. | Feb 2013 | A1 |
20130053915 | Holmstrom et al. | Feb 2013 | A1 |
20130053921 | Bonner et al. | Feb 2013 | A1 |
20130060298 | Splett et al. | Mar 2013 | A1 |
20130066169 | Rys et al. | Mar 2013 | A1 |
20130072770 | Rao et al. | Mar 2013 | A1 |
20130079798 | Tran et al. | Mar 2013 | A1 |
20130079861 | Reinert et al. | Mar 2013 | A1 |
20130085350 | Schugt et al. | Apr 2013 | A1 |
20130085403 | Gunderson et al. | Apr 2013 | A1 |
20130085550 | Polefko et al. | Apr 2013 | A1 |
20130096649 | Martin et al. | Apr 2013 | A1 |
20130103047 | Steingisser et al. | Apr 2013 | A1 |
20130103109 | Jacobson | Apr 2013 | A1 |
20130110008 | Bourg et al. | May 2013 | A1 |
20130110127 | Bornzin et al. | May 2013 | A1 |
20130110192 | Tran et al. | May 2013 | A1 |
20130110219 | Bornzin et al. | May 2013 | A1 |
20130116529 | Min et al. | May 2013 | A1 |
20130116738 | Samade et al. | May 2013 | A1 |
20130116739 | Brada et al. | May 2013 | A1 |
20130116740 | Bornzin et al. | May 2013 | A1 |
20130116741 | Bornzin et al. | May 2013 | A1 |
20130123872 | Bornzin et al. | May 2013 | A1 |
20130123875 | Varady et al. | May 2013 | A1 |
20130131591 | Berthiaume et al. | May 2013 | A1 |
20130131693 | Berthiaume et al. | May 2013 | A1 |
20130131750 | Stadler et al. | May 2013 | A1 |
20130131751 | Stadler et al. | May 2013 | A1 |
20130150695 | Biela et al. | Jun 2013 | A1 |
20130150911 | Perschbacher et al. | Jun 2013 | A1 |
20130150912 | Perschbacher et al. | Jun 2013 | A1 |
20130184776 | Shuros et al. | Jul 2013 | A1 |
20130196703 | Masoud et al. | Aug 2013 | A1 |
20130197599 | Sambelashvili et al. | Aug 2013 | A1 |
20130197609 | Moore et al. | Aug 2013 | A1 |
20130231710 | Jacobson | Sep 2013 | A1 |
20130238072 | Deterre et al. | Sep 2013 | A1 |
20130238073 | Makdissi et al. | Sep 2013 | A1 |
20130253342 | Griswold et al. | Sep 2013 | A1 |
20130253343 | Walfhauser et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253345 | Griswold et al. | Sep 2013 | A1 |
20130253346 | Griswold et al. | Sep 2013 | A1 |
20130253347 | Griswold et al. | Sep 2013 | A1 |
20130261497 | Pertijs et al. | Oct 2013 | A1 |
20130265144 | Banna et al. | Oct 2013 | A1 |
20130268017 | Zhang et al. | Oct 2013 | A1 |
20130268042 | Hastings et al. | Oct 2013 | A1 |
20130274828 | Willis | Oct 2013 | A1 |
20130274847 | Ostroff | Oct 2013 | A1 |
20130282070 | Cowan et al. | Oct 2013 | A1 |
20130282073 | Cowan et al. | Oct 2013 | A1 |
20130138006 | Bornzin et al. | Nov 2013 | A1 |
20130296727 | Sullivan et al. | Nov 2013 | A1 |
20130303872 | Taff et al. | Nov 2013 | A1 |
20130324825 | Ostroff et al. | Dec 2013 | A1 |
20130325081 | Karst et al. | Dec 2013 | A1 |
20130345770 | Dianaty et al. | Dec 2013 | A1 |
20140012344 | Hastings et al. | Jan 2014 | A1 |
20140018876 | Ostroff | Jan 2014 | A1 |
20140018877 | Demmer et al. | Jan 2014 | A1 |
20140031836 | Ollivier | Jan 2014 | A1 |
20140039591 | Drasler et al. | Feb 2014 | A1 |
20140043146 | Makdissi et al. | Feb 2014 | A1 |
20140046395 | Regnier et al. | Feb 2014 | A1 |
20140046420 | Moore et al. | Feb 2014 | A1 |
20140058240 | Mothilal et al. | Feb 2014 | A1 |
20140058494 | Ostroff et al. | Feb 2014 | A1 |
20140339570 | Carroll et al. | Feb 2014 | A1 |
20140074114 | Khairkhahan et al. | Mar 2014 | A1 |
20140074186 | Faltys et al. | Mar 2014 | A1 |
20140094891 | Pare et al. | Apr 2014 | A1 |
20140100627 | Min | Apr 2014 | A1 |
20140107723 | Hou et al. | Apr 2014 | A1 |
20140114173 | Bar-Tal et al. | Apr 2014 | A1 |
20140114372 | Ghosh et al. | Apr 2014 | A1 |
20140121719 | Bonner et al. | May 2014 | A1 |
20140121720 | Bonner et al. | May 2014 | A1 |
20140121722 | Sheldon et al. | May 2014 | A1 |
20140128935 | Kumar et al. | May 2014 | A1 |
20140135865 | Hastings et al. | May 2014 | A1 |
20140142648 | Smith et al. | May 2014 | A1 |
20140148675 | Nordstrom et al. | May 2014 | A1 |
20140148815 | Wenzel et al. | May 2014 | A1 |
20140155950 | Hastings et al. | Jun 2014 | A1 |
20140169162 | Romano et al. | Jun 2014 | A1 |
20140172060 | Bornzin et al. | Jun 2014 | A1 |
20140180306 | Grubac et al. | Jun 2014 | A1 |
20140180366 | Edlund | Jun 2014 | A1 |
20140207149 | Hastings et al. | Jul 2014 | A1 |
20140207210 | Willis et al. | Jul 2014 | A1 |
20140214104 | Greenhut et al. | Jul 2014 | A1 |
20140222098 | Baru et al. | Aug 2014 | A1 |
20140222109 | Moulder | Aug 2014 | A1 |
20140228913 | Molin et al. | Aug 2014 | A1 |
20140236172 | Hastings et al. | Aug 2014 | A1 |
20140243848 | Auricchio et al. | Aug 2014 | A1 |
20140255298 | Cole et al. | Sep 2014 | A1 |
20140257324 | Fain | Sep 2014 | A1 |
20140257422 | Herken | Sep 2014 | A1 |
20140257444 | Cole et al. | Sep 2014 | A1 |
20140276929 | Foster et al. | Sep 2014 | A1 |
20140303704 | Suwito et al. | Oct 2014 | A1 |
20140309706 | Jacobson | Oct 2014 | A1 |
20140323882 | Ghosh et al. | Oct 2014 | A1 |
20140323892 | Ghosh et al. | Oct 2014 | A1 |
20140330208 | Christie et al. | Nov 2014 | A1 |
20140330287 | Thompson-Nauman et al. | Nov 2014 | A1 |
20140330326 | Thompson-Nauman et al. | Nov 2014 | A1 |
20140358135 | Sambelashvili et al. | Dec 2014 | A1 |
20140371832 | Ghosh | Dec 2014 | A1 |
20140371833 | Ghosh et al. | Dec 2014 | A1 |
20140379041 | Foster | Dec 2014 | A1 |
20150025612 | Haasl et al. | Jan 2015 | A1 |
20150039041 | Smith et al. | Feb 2015 | A1 |
20150051609 | Schmidt et al. | Feb 2015 | A1 |
20150051610 | Schmidt et al. | Feb 2015 | A1 |
20150051611 | Schmidt et al. | Feb 2015 | A1 |
20150051612 | Schmidt et al. | Feb 2015 | A1 |
20150051613 | Schmidt et al. | Feb 2015 | A1 |
20150051614 | Schmidt et al. | Feb 2015 | A1 |
20150051615 | Schmidt et al. | Feb 2015 | A1 |
20150051616 | Haasl et al. | Feb 2015 | A1 |
20150051682 | Schmidt et al. | Feb 2015 | A1 |
20150057520 | Foster et al. | Feb 2015 | A1 |
20150057558 | Stahmann et al. | Feb 2015 | A1 |
20150057721 | Stahmann et al. | Feb 2015 | A1 |
20150088155 | Foster et al. | Mar 2015 | A1 |
20150105836 | Bonner et al. | Apr 2015 | A1 |
20150142070 | Sambelashvili | May 2015 | A1 |
20150148697 | Burnes et al. | May 2015 | A1 |
20150149096 | Soykan | May 2015 | A1 |
20150157861 | Aghassian | Jun 2015 | A1 |
20150173655 | Demmer et al. | Jun 2015 | A1 |
20150190638 | Smith et al. | Jul 2015 | A1 |
20150196756 | Stahmann et al. | Jul 2015 | A1 |
20150196757 | Stahmann et al. | Jul 2015 | A1 |
20150196758 | Stahmann et al. | Jul 2015 | A1 |
20150196769 | Stahmann et al. | Jul 2015 | A1 |
20150217119 | Nikolski et al. | Aug 2015 | A1 |
20150221898 | Chi et al. | Aug 2015 | A1 |
20150224315 | Stahmann | Aug 2015 | A1 |
20150224320 | Stahmann | Aug 2015 | A1 |
20150258345 | Smith et al. | Sep 2015 | A1 |
20150290468 | Zhang | Oct 2015 | A1 |
20150297905 | Greenhut et al. | Oct 2015 | A1 |
20150297907 | Zhang | Oct 2015 | A1 |
20150305637 | Greenhut et al. | Oct 2015 | A1 |
20150305638 | Zhang | Oct 2015 | A1 |
20150305639 | Greenhut et al. | Oct 2015 | A1 |
20150305640 | Reinke et al. | Oct 2015 | A1 |
20150305641 | Stadler et al. | Oct 2015 | A1 |
20150305642 | Reinke et al. | Oct 2015 | A1 |
20150305695 | Lahm et al. | Oct 2015 | A1 |
20150306374 | Seifert et al. | Oct 2015 | A1 |
20150306375 | Marshall et al. | Oct 2015 | A1 |
20150306406 | Crutchfield et al. | Oct 2015 | A1 |
20150306407 | Crutchfield et al. | Oct 2015 | A1 |
20150306408 | Greenhut et al. | Oct 2015 | A1 |
20150321016 | O'Brien et al. | Nov 2015 | A1 |
20150328459 | Chin et al. | Nov 2015 | A1 |
20150335894 | Bornzin et al. | Nov 2015 | A1 |
20160015287 | Anderson et al. | Jan 2016 | A1 |
20160015322 | Anderson et al. | Jan 2016 | A1 |
20160023000 | Cho et al. | Jan 2016 | A1 |
20160030757 | Jacobson | Feb 2016 | A1 |
20160033177 | Barot et al. | Feb 2016 | A1 |
20160045738 | Ghosh et al. | Feb 2016 | A1 |
20160045744 | Gillberg et al. | Feb 2016 | A1 |
20160051821 | Sambelashvili et al. | Feb 2016 | A1 |
20160059002 | Grubac et al. | Mar 2016 | A1 |
20160067486 | Brown et al. | Mar 2016 | A1 |
20160067487 | Demmer et al. | Mar 2016 | A1 |
20160067490 | Carney et al. | Mar 2016 | A1 |
20160110856 | Hoof et al. | Apr 2016 | A1 |
20160114161 | Amblard et al. | Apr 2016 | A1 |
20160121127 | Klimovitch et al. | May 2016 | A1 |
20160121128 | Fishler et al. | May 2016 | A1 |
20160121129 | Persson et al. | May 2016 | A1 |
20160129239 | Anderson | May 2016 | A1 |
20160213919 | Suwito et al. | Jul 2016 | A1 |
20160213937 | Reinke et al. | Jul 2016 | A1 |
20160213939 | Carney et al. | Jul 2016 | A1 |
20160228026 | Jackson | Aug 2016 | A1 |
20160310733 | Sheldon et al. | Oct 2016 | A1 |
20160317825 | Jacobson | Nov 2016 | A1 |
20160367823 | Cowan et al. | Dec 2016 | A1 |
20170014629 | Ghosh et al. | Jan 2017 | A1 |
20170035315 | Jackson | Feb 2017 | A1 |
20170043173 | Sharma et al. | Feb 2017 | A1 |
20170043174 | Greenhut et al. | Feb 2017 | A1 |
20170056670 | Sheldon et al. | Mar 2017 | A1 |
20170182327 | Liu | Jun 2017 | A1 |
20170189681 | Anderson | Jul 2017 | A1 |
20170209689 | Chen | Jul 2017 | A1 |
20170216575 | Asleson et al. | Aug 2017 | A1 |
20170246461 | Ghosh | Aug 2017 | A1 |
20170304624 | Friedman et al. | Oct 2017 | A1 |
20170326369 | Koop et al. | Nov 2017 | A1 |
20170340885 | Sambelashvili | Nov 2017 | A1 |
20180008829 | An et al. | Jan 2018 | A1 |
20180021567 | An et al. | Jan 2018 | A1 |
20180021581 | An et al. | Jan 2018 | A1 |
20180021582 | An et al. | Jan 2018 | A1 |
20180050208 | Shuros et al. | Feb 2018 | A1 |
20180078773 | Thakur et al. | Mar 2018 | A1 |
20180078779 | An et al. | Mar 2018 | A1 |
20180117324 | Schilling et al. | May 2018 | A1 |
20180140848 | Stahmann | May 2018 | A1 |
20180178007 | Shuros et al. | Jun 2018 | A1 |
20180212451 | Schmidt et al. | Jul 2018 | A1 |
20180256904 | Li et al. | Sep 2018 | A1 |
20180264262 | Haasl et al. | Sep 2018 | A1 |
20180264272 | Haasl et al. | Sep 2018 | A1 |
20180264273 | Haasl et al. | Sep 2018 | A1 |
20180264274 | Haasl et al. | Sep 2018 | A1 |
20180272121 | Yankelson | Sep 2018 | A1 |
20180280686 | Shuros et al. | Oct 2018 | A1 |
20180326215 | Ghosh | Nov 2018 | A1 |
20190030346 | Li | Jan 2019 | A1 |
20190038906 | Koop et al. | Feb 2019 | A1 |
20190083779 | Yang et al. | Mar 2019 | A1 |
20190083800 | Yang et al. | Mar 2019 | A1 |
20190083801 | Yang et al. | Mar 2019 | A1 |
20190192860 | Ghosh et al. | Jun 2019 | A1 |
20190269926 | Ghosh | Sep 2019 | A1 |
20190290909 | Ghosh | Sep 2019 | A1 |
20210085986 | Li et al. | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
2008279789 | Oct 2011 | AU |
2008329620 | May 2014 | AU |
2014203793 | Jul 2014 | AU |
202933393 | May 2013 | CN |
0362611 | Apr 1990 | EP |
0459 239 | Dec 1991 | EP |
0 728 497 | Aug 1996 | EP |
1 541 191 | Jun 2005 | EP |
1 702 648 | Sep 2006 | EP |
1 904 166 | Jun 2011 | EP |
2 452 721 | May 2012 | EP |
2 471 452 | Jul 2012 | EP |
2 662 113 | Nov 2013 | EP |
1 703 944 | Jul 2015 | EP |
2005245215 | Sep 2005 | JP |
WO 9500202 | Jan 1995 | WO |
WO 9636134 | Nov 1996 | WO |
WO 9724981 | Jul 1997 | WO |
WO 0222206 | Mar 2002 | WO |
WO 03092800 | Nov 2003 | WO |
WO 2005000206 | Jan 2005 | WO |
WO 2005042089 | May 2005 | WO |
WO 2006086435 | Aug 2006 | WO |
WO 2006113659 | Oct 2006 | WO |
WO 2007073435 | Jun 2007 | WO |
WO 2007075974 | Jul 2007 | WO |
WO 2009006531 | Jan 2009 | WO |
WO 2018017226 | Jan 2010 | WO |
WO 2013080038 | Jun 2013 | WO |
WO 2013098644 | Jul 2013 | WO |
WO 2015081221 | Jun 2015 | WO |
WO 2016011042 | Jan 2016 | WO |
WO 2016077099 | May 2016 | WO |
WO 2016110856 | Jul 2016 | WO |
WO 2016171891 | Oct 2016 | WO |
WO 2017075193 | May 2017 | WO |
WO 2018009569 | Jan 2018 | WO |
WO 2018017361 | Jan 2018 | WO |
WO 2018035343 | Feb 2018 | WO |
WO 2018081519 | May 2018 | WO |
Entry |
---|
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn) |
International Search Report and Written Opinion from PCT Application No. PCT/US2020/047802 dated Nov. 19, 2020, 9 pages. |
http://www.isrctn.com/ISRCTN47824547, public posting published Aug. 2019. |
Abed et al., “Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation,” Heart Rhythm Society, Jan. 2013; 10(1):90-100. |
Adragão et al., “Ablation of pulmonary vein foci for the treatment of atrial fibrillation; percutaneous electroanatomical guided approach,” Europace, Oct. 2002; 4(4):391-9. |
Aliot et al., “Arrhythmia detection by dual-chamber implantable cardioverter defibrillators: A review of current algorithms,” Europace, Jul. 2004; 6(4):273-86. |
Amirahmadi et al., “Ventricular Tachycardia Caused by Mesothelial Cyst,” Indian Pacing and Electrophysiology Journal, 2013; 13(1):43-44. |
Ammirabile et al., “Pitx2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium,” Cardiovasc Res., Feb. 2012; 93(2):291-301. |
Anderson et al., “Left bundle branch block and the evolving role of QRS morphology in selection of patients for cardiac resynchronization”, Journal of Interventional Cardio Electrophysiology, vol. 52, No. 3. Aug. 20, 2018, pp. 353-374. |
Anfinsen, “Non-pharmacological Treatment of Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2002; 2(1):4-14. |
Anné et al., “Ablation of post-surgical intra-atrial reentrant Tachycardia,” European Heart Journal, 2002; 23:169-1616. |
Arenal et al., “Dominant frequency differences in atrial fibrillation patients with and without left ventricular systolic dysfunction,” Europace, Apr. 2009; 11(4):450-457. |
Arriagada et al., “Predictors of arrhythmia recurrence in patients with lone atrial fibrillation,” Europace, Jan. 2008; 10(1):9-14. |
Asirvatham et al., “Cardiac Anatomic Considerations in Pediatric Electrophysiology,” Indian Pacing and Electrophysiology Journal, Apr. 2008; 8(Suppl 1):S75-S91. |
Asirvatham et al., “Intramyocardial Pacing and Sensing for the Enhancement of Cardiac Stimulation and Sensing Specificity,” Pacing Clin. Electrophysiol., Jun. 2007; 30(6):748-754. |
Asirvatham et al., “Letter to the Editor,” J Cardiovasc Electrophysiol., Mar. 2010; 21(3): E77. |
Balmer et al., “Long-term follow up of children with congenital complete atrioventricular block and the impact of pacemaker therapy,” Europace, Oct. 2002, 4(4):345-349. |
Barold et al., “Conventional and biventricular pacing in patients with first-degree atrioventricular block,” Europace, Oct. 2012, 14(10):1414-9. |
Barold et al., “The effect of hyperkalaemia on cardiac rhythm devices,” Europace, Apr. 2014; 16(4):467-76. |
Bayrak et al., “Added value of transoesophageal echocardiography during transseptal puncture performed by inexperienced operators,” Europace, May 2012, 14(5):661-5. |
Bergau et al., “Measurement of Left Atrial Pressure is a Good Predictor of Freedom From Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):181-93. |
Bernstein et al., “The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group,” Pacing Clin Electrophysiol., Feb. 2002; 25(2):260-4. |
Bito et al., “Early exercise training after myocardial infarction prevents contractile but not electrical remodeling or hypertrophy,” Cardiovascular Research, Apr. 2010; 86(1):72-81. |
Bollmann et al., “Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications,” Europace, Nov. 2006; 8(11):911-926. |
Bortone et al., “Evidence for an incomplete mitral isthmus block after failed ablation of a left postero-inferior concealed accessory pathway,” Europace, Jun. 2006; 8(6):434-7. |
Boulos et al., “Electroanatomical mapping and radiofrequency ablation of an accessory pathway associated with a large aneurysm of the coronary sinus,” Europace, Nov. 2004; 6(6):608-12. |
Brembilla-Perrot et al., “Incidence and prognostic significance of spontaneous and inducible antidromic tachycardia,” Europace, Jun. 2013; 15(6):871-876. |
Buber et al., “Morphological features of the P-waves at surface electrocardiogram as surrogate to mechanical function of the left atrium following a successful modified maze procedure,” Europace, Apr. 2014; 16(4):578-86. |
Burashnikov et al., “Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation,” Pacing Clin Electrophysiol., Mar. 2006, 29(3):290-5. |
Burashnikov et al., “Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation,” Heart Rhythm, Jan. 2012, 9(1):125-31. |
Calvo et al., “Efficacy of circumferential pulmonary vein ablation of atrial fibrillation in endurance athletes,” Europace, Jan. 2010; 12(1):30-6. |
Can et al., ““Atrial torsades de pointes” Induced by Low-Energy Shock From Implantable-Cardioverter Defibrillator,” Indian Pacing and Electrophysiology Journal, Sep. 2013; 13(5):194-199. |
Carroz et al., “Pseudo-pacemaker syndrome in a young woman with first-degree atrio-ventricular block,” Europace, Apr. 2010; 12(4):594-596. |
Catanchin et al., “Wolff-Parkinson-White syndrome with an unroofed coronary sinus without persistent left superior vena cava treated with catheter cryoablation,” Indian Pacing and Electrophysiology Journal, Aug. 2008; 8(3):227-233. |
Cazeau et al., “Cardiac resynchronization therapy,” Europace, Sep. 2004; 5 Suppl 1:S42-8. |
Cerqueira et al., “Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association,” Circulation, Jan. 29, 2002; 105(4):539-42. |
Chandra et al., “Evaluation of KCB-328, a new IKr blocking anti arrhythmic agent in pacing induced canine atrial fibrillation,” Europace, Sep. 2004; 6(5):384-91. |
Chang et al., “Electrophysiological characteristics and catheter ablation in patients with paroxysmal supraventricular tachycardia and paroxysmal atrial fibrillation,” J Cardiovasc Electrophysiol., Apr. 2008; 19(4):367-73. |
Charron et al., “A familial form of conduction defect related to a mutation in the PRKAG2 gene,” Europace, Aug. 2007; 9(8):597-600. |
Chou et al., “Effects of SEA0400 on Arrhythmogenicity in a Langendorff-Perfused 1-Month Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., May 2013; 36(5):596-606. |
Ciploetta et al., “Posterior Coronary Vein as the Substrate for an Epicardial Accessory Pathway,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13(4):142-7. |
Climent et al., “Effects of endocardial microwave energy ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2005; 5(3):233-43. |
Comtois et al., “Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry,” Europace, Sep. 2005; 7 Suppl 2:10-20. |
Crick et al., “Anatomy of the pig heart: comparisons with normal human cardiac structure,” J. Anat., 1998, 193:105-119. |
Daoulah et al., “Unintended Harm and Benefit of the Implantable Defibrillator in an Unfortunate 19-Year-Old Male: Featuring a Sequence of Rare Life-threatening Complications of Cardiac Procedures,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13(4):151-6. |
De Mattia et al., “Paroxysmal atrial fibrillation triggered by a monomorphic ventricular couplet in a patient with acute coronary syndrome,” Indian Pacing and Electrophysiology Journal, Jan. 2012; 12(1):19-23. |
DeSimone et al., “New approach to cardiac resynchronization therapy: CRT without left ventricular lead,” Apr. 25, 2014, 2 pages. |
De Sisti et al., “Electrophysiological determinants of atrial fibrillation in sinus node dysfunction despite atrial pacing,” Europace, Oct. 2000; 2(4):304-11. |
De Voogt et al., “Electrical characteristics of low atrial septum pacing compared with right atrial appendage pacing,” Europace, Jan. 2005; 7(1):60-6. |
De Voogt et al., “A technique of lead insertion for low atrial septal pacing,” Pacing Clin Electrophysiol., Jul. 2005, 28(7):639-46. |
Dizon et al. “Real-time stroke volume measurements for the optimization of cardiac resynchronization therapy parameters,” Europace, Sep. 2010; 12(9):1270-1274. |
Duckett et al., “Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy,” Europace, Jan. 2012; 14(1):99-106. |
Eksik et al., “Influence of atrioventricular nodal reentrant tachycardia ablation on right to left inter-atrial conduction,” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):279-88. |
Fiala et al., “Left Atrial Voltage during Atrial Fibrillation in Paroxysmal and Persistent Atrial Fibrillation Patients,” PACE, May 2010; 33(5):541-548. |
Fragakis et al., “Acute beta-adrenoceptor blockade improves efficacy of ibutilide in conversion of atrial fibrillation with a rapid ventricular rate,” Europace, Jan. 2009; 11(1):70-4. |
Frogoudaki et al., “Pacing for adult patients with left atrial isomerism: efficacy and technical considerations,” Europace, Apr. 2003; 5(2):189-193. |
Ganapathy et al., “Implantable Device to Monitor Cardiac Activity with Sternal Wires,” Pacing Clin. Electrophysiol., Dec. 2014; Epub Aug. 24, 2014; 37(12):1630-40. |
Geddes, “Accuracy limitations of chronaxie values,” IEEE Trans Biomed Eng., Jan. 2004; 51(1):176-81. |
Gertz et al., “The impact of mitral regurgitation on patients undergoing catheter ablation of atrial fibrillation,” Europace, Aug. 2011; 13(8):1127-32. |
Girmatsion et al., “Changes in microRNA-1 expression and IK 1 up-regulation in human atrial fibrillation,” Heart Rhythm, Dec. 2009; 6(12):1802-9. |
Goette et al., “Acute atrial tachyarrhythmia induces angiotensin II type 1 receptor-mediated oxidative stress and microvascular flow abnormalities in the ventricles,” European Heart Journal, Jun. 2009; 30(11):1411-20. |
Goette et al., “Electrophysiological effects of angiotensin II. Part I: signal transduction and basic electrophysiological mechanisms,” Europace, Feb. 2008; 10(2):238-41. |
Gómez et al., “Nitric oxide inhibits Kv4.3 and human cardiac transient outward potassium current (Ito1),” Cardiovasc Res., Dec. 2008; 80(3):375-84. |
Gros et al., “Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate,” Cardiovascular Research, Jan. 2010; 85(1):45-55. |
Guenther et al., “Substernal Lead Implantation: A Novel Option to Manage OFT Failure in S-ICD patients,” Clinical Research Cardiology, Feb. 2015; Epub Oct. 2, 2014; 104(2):189-91. |
Guillem et al., “Noninvasive mapping of human atrial fibrillation,” J Cardiovasc Electrophysiol., May 2009; 20(5):507-513. |
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003. |
Hakacova et al., “Septal atrial pacing for the prevention of atrial fibrillation,” Europace, 2007; 9:1124-1128. |
Hasan et al., “Safety, efficacy, and performance of implanted recycled cardiac rhythm management (CRM) devices in underprivileged patients,” Pacing Clin Eiectrophysiol., Jun. 2011; 34(6):653-8. |
Hawkins, “Epicardial Wireless Pacemaker for Improved Left Ventricular Reynchronization (Conceptual Design)”, Dec. 2010, A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo, 57 pp. |
He et al., “Three-dimensional cardiac electrical imaging from intracavity recordings,” IEEE Trans Biomed Eng., Aug. 2007; 54(8):1454-60. |
Heist et al., “Direct visualization of epicardial structures and ablation utilizing a visually guided laser balloon catheter: preliminary findings,” J Cardiovasc Eiectrophysiol., Jul. 2011; 22(7):808-12. |
Henz et al., “Synchronous Ventricular Pacing without Crossing the Tricuspid Valve or Entering the Coronary Sinus—Preliminary Results,” J Cardiovasc Eiectrophysiol., Dec. 2009; 20(12):1391-1397. |
Hiippala et al., “Automatic Atrial Threshold Measurement and Adjustment in Pediatric Patients,” Pacing Clin Eiectrophysiol., Mar. 2010; 33(3):309-13. |
Ho, “Letter to the Editor” J Cardiovasc Eiectrophysiol., Mar. 2010; 21(3): E76. |
Höijer et al., “Improved cardiac function and quality of life following upgrade to dual chamber pacing after long-term ventricular stimulation,” European Heart Journal, Mar. 2002; 23(6):490-497. |
Huang et al., “A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block,” Can J Cardiol., Dec. 2007; Epub Sep. 22, 2017; 33(12):1736.e1-1736.e. |
Inter-Office Memo, Model 6426-85 Canine Feasibility AV Septal 8 mm Screw-In Right Single Pass DDD Lead Final Report (AR # 0120A0207). |
Ishigaki et al., “Prevention of immediate recurrence of atrial fibrillation with low-dose landiolol after radiofrequency catheter ablation,” Journal of Arrhythmia, Oct. 2015; 31(5):279-285. |
Israel, “The role of pacing mode in the development of atrial fibrillation,” Europace, Feb. 2006; 8(2):89-95. |
Janion et al., “Dispersion of P wave duration and P wave vector in patients with atrial septal aneurysm,” Europace, Jul. 2007; 9(7):471-4. |
Kabra et al., “Recent Trends in Imaging for Atrial Fibrillation Ablation,” Indian Pacing and Electrophysiology Journal, 2010; 10(5):215-227. |
Kalbfleisch et al., “Catheter Ablation with Radiofrequency Energy: Biophysical Aspects and Clinical Applications,” Journal of Cardiovascular Electrophysiology, Oct. 2008; 3(2):173-186. |
Katritsis et al., “Classification and differential diagnosis of atrioventricular nodal re-entrant tachycardia,” Europace, Jan. 2006; 8(1):29-36. |
Katritsis et al., “Anatomically left-sided septal slow pathway ablation in dextrocardia and situs inversus totalis,” Europace, Aug. 2008; 10(8):1004-5. |
Khairy et al., “Cardiac Arrhythmias In Congenital Heart Diseases,” Indian Pacing and Electrophysiology Journal, Nov.-Dec. 2009; 9(6):299-317. |
Kimmel et al., “Single-site ventricular and biventricular pacing: investigation of latest depolarization strategy,” Europace, Dec. 2007, 9(12):1163-1170. |
Knackstedt et al., “Electro-anatomic mapping systems in arrhythmias,” Europace, Nov. 2008; 10 Suppl 3:iii28-iii34. |
Kobayashi et al., “Successful Ablation of Antero-septal Accessory Pathway in the Non-Coronary Cusp in a Child,” Indian Pacing and Electrophysiology Journal, 2012; 12(3):124-130. |
Kojodjojo et al., “4:2:1 conduction of an AF initiating trigger,” Indian Pacing and Electrophysiology Journal, Nov. 2015; 15(5):255-8. |
Kołodzińska et al., “Differences in encapsulating lead tissue in patients who underwent transvenous lead removal,” Europace, Jul. 2012; 14(7):994-1001. |
Konecny et al., “Synchronous intra-myocardial ventricular pacing without crossing the tricuspid valve or entering the coronary sinus,” Cardiovascular Revascularization Medicine, 2013, 14:137-138. |
Kriatselis et al., “Ectopic atrial tachycardias with early activation at His site: radiofrequency ablation through a retrograde approach,” Europace, Jun. 2008; 10(6):698-704. |
Lalu et al., “Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart,” Eur Heart J., Jan. 2005; 26(1):27-35. |
Laske et al., “Excitation of the Intrinsic Conduction System Through His and Interventricular Septal Pacing,” Pacing Clin. Electrophysiol., Apr. 2006; 29(4):397-405. |
Leclercq, “Problems and troubleshooting in regular follow-up of patients with cardiac resynchronization therapy,” Europace, Nov. 2009; 11 Suppl 5:v66-71. |
Lee et al., “An unusual atrial tachycardia in a patient with Friedreich ataxia,” Europace, Nov. 2011, 13(11):1660-1. |
Lee et al., “Blunted Proarrhythmic Effect of Nicorandil in a Langendorff-Perfused Phase-2 Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., Feb. 2013; 36(2):142-51. |
Lemay et al., “Spatial dynamics of atrial activity assessed by the vectorcardiogram: from sinus rhythm to atrial fibrillation,” Europace, Nov. 2007; 9 Suppl 6:vi109-18. |
Levy et al., “Does the mechanism of action of biatrial pacing for atrial fibrillation involve changes in cardiac haemodynamics? Assessment by Doppler echocardiography and natriuretic peptide measurements,” Europace, Apr. 2000; 2(2):127-35. |
Lewalter et al., “Comparison of spontaneous atrial fibrillation electrogram potentials to the P wave electrogram amplitude in dual chamber pacing with unipolar atrial sensing,” Europace, Apr. 2000; 2(2):136-40. |
Liakopoulos et al., “Sequential deformation and physiological considerations in unipolar right and left ventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S188-197. |
Lian et al., “Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing,” IEEE Transactions on Biomedical Engineering, Aug. 2006; 53(8):1512-1520. |
Lim et al., “Right ventricular lead implantation facilitated by a guiding sheath in a patient with severe chamber dilatation with tricuspid regurgitation,” Indian Pacing and Electrophysiology Journal, Sep. 2011; 11(5):156-8. |
Lim et al., “Coupled pacing improves left ventricular function during simulated atrial fibrillation without mechanical dyssynchrony,” Europace, Mar. 2010; 12(3):430-6. |
Lou et al., “Tachy-brady arrhythmias: The critical role of adenosine-induced sinoatrial conduction block in post-tachycardia pauses,” Heart Rhythm., Jan. 2013; 10(1):110-8. |
Lutomsky et al., “Catheter ablation of paroxysmal atrial fibrillation improves cardiac function: a prospective study on the impact of atrial fibrillation ablation on left ventricular function assessed by magnetic resonance imaging,” Europace, May 2008; 10(5):593-9. |
Macedo et al., “Septal accessory pathway: anatomy, causes for difficulty, and an approach to ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2010; 10(7):292-309. |
Mafi-Rad et al., “Feasibility and Acute Hemodynamic Effect of Left Ventricular Septal Pacing by Transvenous Approach Through the Interventricular Septum,” Circ Arrhythm Electrophysoil., Mar. 2016; 9(3):e003344. |
Mani et al., “Dual Atrioventricular Nodal Pathways Physiology: A Review of Relevant Anatomy, Electrophysiology, and Electrocardiographic Manifestations,” Indian Pacing and Electrophysiology Journal, Jan. 2014; 14(1):12-25. |
Manios et al., “Effects of successful cardioversion of persistent atrial fibrillation on right ventricular refractoriness and repolarization,” Europace, Jan. 2005; 7(1):34-9. |
Manolis et al., “Prevention of atrial fibrillation by inter-atrial septum pacing guided by electrophysiological testing, in patients with delayed interatrial conduction,” Europace, Apr. 2002; 4(2):165-174. |
Marino et al., “Inappropriate mode switching clarified by using a chest radiograph,” Journal of Arrhythmia, Aug. 2015; 31(4):246-248. |
Markowitz et al., “Time course and predictors of autonomic dysfunction after ablation of the slow atrioventricular nodal pathway,” Pacing Clin Electrophysiol., Dec. 2004; 27(12):1638-43. |
Marshall et al., “The effects of temperature on cardiac pacing thresholds,” Pacing Clin Electrophysiol., Jul. 2010; 33(7):826-833. |
McSharry et al., “A Dynamical Model for Generating Synthetic Electrocardiogram Signals,” IEEE Transactions on Biomedical Engineering, Mar. 2003; 50(3):289-294. |
Meijler et al., “Scaling of Atrioventricular Transmission in Mammalian Species: An Evolutionary Riddle!,” Journal of Cfardiovascular Electrophysiology, Aug. 2002; 13(8):826-830. |
Meiltz et al., “Permanent form of junctional reciprocating tachycardia in adults: peculiar features and results of radiofrequency catheter ablation,” Europace, Jan. 2006; 8(1):21-8. |
Mellin et al., “Transient reduction in myocardial free oxygen radical levels is involved in the improved cardiac function and structure after long-term allopurinol treatment initiated in established chronic heart failure,” Eur Heart J., Aug. 2005; 26(15):1544-50. |
Mestan et al., “The influence of fluid and diuretic administration on the index of atrial contribution in sequentially paced patients,” Europace, Apr. 2006; 8(4):273-8. |
Metin et al., “Assessment of the P Wave Dispersion and Duration in Elite Women Basketball Players,” Indian Pacing and Electrophysiology Journal, 2010; 10(1):11-20. |
Mills et al., “Left Ventricular Septal and Left Ventricular Apical Pacing Chronically Maintain Cardiac Contractile Coordination, Pump Function and Efficiency,” Circ Arrhythm. Electrophysoil., Oct. 2009; 2(5):571-579. |
Mitchell et al., “How do atrial pacing algorithms prevent atrial arrhythmias?” Europace, Jul. 2004; 6(4):351-62. |
Mirzoyev et al., “Embryology of the Conduction System for the Electrophysiologist,” Indian Pacing and Electrophysiology Journal, 2010; 10(8):329-338. |
Modre et al., “Noninvasive Myocardial Activation Time Imaging: A Novel Inverse Algorithm Applied to Clinical ECG Mapping Data,” IEE Transactions on Biomedical Engineering, Oct. 2002; 49(10):1153-1161. |
Montgomery et al., “Measurement of diffuse ventricular fibrosis with myocardial T1 in patients with atrial fibrillation,” J Arrhythm., Feb. 2016; 32(1):51-6. |
Mulpuru et al., “Synchronous ventricular pacing with direct capture of the atrioventricular conduction system: Functional anatomy, terminology, and challenges,” Heart Rhythm, Nov. 2016; Epub Aug. 3, 2016; 13(11):2237-2246. |
Musa et al., “Inhibition of Platelet-Derived Growth Factor-AB Signaling Prevents Electromechanical Remodeling of Adult Atrial Myocytes that Contact Myofibroblasts,” Heart Rhythm, Jul. 2013; 10(7):1044-1051. |
Nagy et al., “Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and β-catenin expression,” Cardiovascular Research, Jan. 2010; 85(1):100-9. |
Namboodiri et al., “Electrophysiological features of atrial flutter in cardiac sarcoidosis: a report of two cases,” Indian Pacing and Electrophysiology Journal, Nov. 2012; 12(6):284-9. |
Nanthakumar et al., “Assessment of accessory pathway and atrial refractoriness by transesophageal and intracardiac atrial stimulation: An analysis of methodological agreement,” Europace, Jan. 1999; 1(1):55-62. |
Neto et al., “Temporary atrial pacing in the prevention of postoperative atrial fibrillation,” Pacing Clin Electrophysiol., Jan. 2007; 30(Suppl 1):S79-83. |
Nishijima et al., “Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology,” Cardiovasc Res., Jul. 2011; 91(1):71-9. |
Niwano et al., “Effect of oral L-type calcium channel blocker on repetitive paroxysmal atrial fibrillation: spectral analysis of fibrillation waves in the Holter monitoring,” Europace, Dec. 2007; 9(12):1209-1215. |
Okumura et al., “Effects of a high-fat diet on the electrical properties of porcine atria,” Journal of Arrhythmia, Dec. 2015; 31(6):352-358. |
Olesen et al., “Mutations in sodium channel βsubunit SCN3B are associated with early-onset lone atrial fibrillation,” Cardiovascular Research, Mar. 2011; 89(4):786-93. |
Ozmen et al., “P wave dispersion is increased in pulmonary stenosis,” Indian Pacing and Electrophysiology Journal, Jan. 2006; 6(1):25-30. |
Packer et al., “New generation of electro-anatomic mapping: Full intracardiac image integration,” Europace, Nov. 2008; 10 Suppl 3:iii35-41. |
Page et al., “Ischemic ventricular tachycardia presenting as a narrow complex tachycardia,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):203-210. |
Pakarinen et al., “Pre-implant determinants of adequate long-term function of single lead VDD pacemakers,” Europace, Apr. 2002; 4:137-141. |
Patel et al., “Atrial Fibrillation after Cardiac Surgery: Where are we now?” Indian Pacing and Electrophysiology Journal, Oct.-Dec. 2008; 8(4):281-291. |
Patel et al., “Successful ablation of a left-sided accessory pathway in a patient with coronary sinus atresia and arteriovenous fistula: clinical and developmental insights,” Indian Pacing and Electrophysiology Journal, Mar. 2011; 11(2):43-49. |
Peschar et al., “Left Ventricular Septal and Apex Pacing for Optimal Pump Function in Canine Hearts,” J Am Coll Cardiol., Apr. 2, 2003; 41(7):1218-1226. |
Physiological Research Laboratories, Final Report for an Acute Study for Model 6426-85 AV Septal Leads, Feb. 1996. |
Porciani et al., “Interatrial septum pacing avoids the adverse effect of interatrial delay in biventricular pacing: an echo-Doppler evaluation,” Europace, Jul. 2002; 4(3):317-324. |
Potse et al., “A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart,” IEEE Transactions on Biomedical Engineering, Dec. 2006; 53(12 Pt 1):2425-35. |
Prystowsky et al., “Case studies with the experts: management decisions in atrial fibrillation,” J Cardiovasc Electrophysiol., Feb. 2008; 19(Suppl. 1):S1-12. |
Prystowsky, “The history of atrial fibrillation: the last 100 years,” J Cardiovasc Electrophysiol, Jun. 2008; 19(6):575-582. |
Pytkowski et al., “Paroxysmal atrial fibrillation is associated with increased intra-atrial conduction delay,” Europace, Dec. 2008; 10(12):1415-20. |
Qu et al., “Dynamics and cardiac arrhythmias,” J Cardiovasc Electrophysiol., Sep. 2006; 17(9):1042-9. |
Ravens et al., “Role of potassium currents in cardiac arrhythmias,” Europace, Oct. 2008; 10(10):1133-7. |
Ricci et al., Efficacy of a dual chamber defibrillator with atrial anti tachycardia functions in treating spontaneous atrial tachyarrhythmias in patients with lifethreatening ventricular tachyarrhythmias, European Heart Journal, Sep. 2002; 23(18):1471-9. |
Roberts-Thomson et al., “Focal atrial tachycardia II: management,” Pacing Clin Electrophysiol., Jul. 2006; 29(7):769-78. |
Rossi et al., “Endocardial vagal atrioventricular node stimulation in humans: reproducibility on 18-month follow-up,” Europace, Dec. 2010; 12(12):1719-24. |
Rouzet et al., “Contraction delay of the RV outflow tract in patients with Brugada syndrome is dependent on the spontaneous ST-segment elevation pattern,” Heart Rhythm, Dec. 2011; 8(12):1905-12. |
Russo et al., “Atrial Fibrillation and Beta Thalassemia Major: The Predictive Role of the 12-lead Electrocardiogram Analysis,” Indian Pacing and Electrophysiology Journal, May 2014; 14(3):121-32. |
Ryu et al., “Simultaneous Electrical and Mechanical Mapping Using 3D Cardiac Mapping System: Novel Approach for Optimal Cardiac Resynchronization Therapy,” Journal of Cardiovascular Electrophysiology, Feb. 2010, 21(2): 219-22. |
Sairaku et al., “Prediction of sinus node dysfunction in patients with persistent atrial flutter using the flutter cycle length,” Europace, Mar. 2012; 14(3):380-7. |
Santini et al., “Immediate and long-term atrial sensing stability in single-lead VDD pacing depends on right atrial dimensions,” Europace, Oct. 2001; 3(4):324-31. |
Saremi et al., “Cardiac Conduction System: Delineation of Anatomic Landmarks With Multidetector CT,” Indian Pacing and Electrophysiology, Journal, Nov. 2009; 9(6):318-33. |
Savelieva et al., “Anti-arrhythmic drug therapy for atrial fibrillation: current anti-arrhythmic drugs, investigational agents, and innovative approaches,” Europace, Jun. 2008; 10(6):647-665. |
Schmidt et al., “Navigated DENSE strain imaging for post-radiofrequency ablation lesion assessment in the swine left atria,” Europace, Jan. 2014; 16(1):133-41. |
Schoonderwoerd et al., “Rapid Pacing Results in Changes in Atrial but not in Ventricular Refractoriness,” Pacing Clin Electrophysiol., Mar. 2002; 25(3):287-90. |
Schoonderwoerd et al., “Atrial natriuretic peptides during experimental atrial tachycardia: role of developing tachycardiomyopathy,” J Cardiovasc Electrophysiol., Aug. 2004; 15(8):927-32. |
Schoonderwoerd et al., “Atrial ultrastructural changes during experimental atrial tachycardia depend on high ventricular rate,” J Cardiovasc Electrophysiol., Oct. 2004; 15(10):1167-74. |
Sedmera, “Function and form in the developing cardiovascular system,” Cardiovasc Res., Jul. 2011; 91(2):252-9. |
Severi et al., “Alterations of atrial electrophysiology induced by electrolyte variations: combined computational and P-wave analysis,” Europace, Jun. 2010; 12(6):842-9. |
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering, vol. 60(8): 2067-2079, 2013. |
Shah et al., “Stable atrial sensing on long-term follow up of VDD pacemakers,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):189-93. |
Shenthar et al., “Permanent pacemaker implantation in a patient with situs solitus, dextrocardia, and corrected transposition of the great arteries using a novel angiographic technique,” Journal of Arrhythmia, Apr. 2014; 30(2):134-138. |
Shenthar et al., “Transvenous permanent pacemaker implantation in dextrocardia: technique, challenges, outcome, and a brief review of literature,” Europace, Sep. 2014; 16(9):1327-33. |
Shirayama, “Role of atrial fibrillation threshold evaluation on guiding treatment,” Indian Pacing and Electrophysiology Journal, Oct. 2003; 3(4):224-230. |
Sperzel et al., “Intraoperative Characterization of Interventricular Mechanical Dyssynchrony Using Electroanatomic Mapping System—A Feasibility Study,” Journal of Interventional Cardiac Electrophysiology, Nov. 2012, 35(2): 189-96. |
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970. |
Sreeram et al., “Indications for Electrophysiology Study in children,” Indian Pacing and Electrophysiology Journal, Apr.-Jun. 2008; 8(Suppl. 1):S36-S54. |
Stockburger et al., “Optimization of cardiac resynchronization guided by Doppler echocardiography: haemodynamic improvement and intraindividual variability with different pacing configurations and atrioventricular delays,” Europace, Oct. 2006; 8(10):881-6. |
Stroobandt et al., “Prediction of Wenckebach Behavior and Block Response in DDD Pacemakers,” Pacing Clin Electrophysiol., Jun. 2006; 9(6):1040-6. |
Suenari et al., “Idiopathic left ventricular tachycardia with dual electrocardiogram morphologies in a single patient,” Europace, Apr. 2010; 12(4):592-4. |
Sweeney et al., “Analysis of Ventricular Activation Using Surface Electrocardiography to Predict Left Ventricular Reverse Volumetric Remodeling During Cardiac Resynchronization Therapy,” Circulation, Feb. 9, 2010, 121(5): 626-34. |
Tan et al., “Electrocardiographic evidence of ventricular repolarization remodelling during atrial fibrillation,” Europace, Jan. 2008; 10(1):99-104. |
Taramasco et al., “Internal low-energy cardioversion: a therapeutic option for restoring sinus rhythm in chronic atrial fibrillation after failure of external cardioversion,” Europace, Jul. 1999; 1(3):179-82. |
Testa et al., “Rate-control or rhythm-control: where do we stand?” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):296-304. |
Thejus et al., “N-terminal Pro-Brain Natriuretic Peptide and Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2009; 9(1):1-4. |
Thornton et al., “Magnetic Assisted Navigation in Electrophysiology and Cardiac Resynchronisation: A Review,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):202-13. |
Tilz et al., “In vivo left-ventricular contact force analysis: comparison of antegrade transseptal with retrograde transaortic mapping strategies and correlation of impedance and electrical amplitude with contact force,” Europace, Sep. 2014; 16(9):1387-95. |
Tomaske et al., “Do daily threshold trend fluctuations of epicardial leads correlate with pacing and sensing characteristics in paediatric patients?” Europace, Aug. 2007; 9(8):662-668. |
Tomioka et al., “The effect of ventricular sequential contraction on helical heart during pacing: high septal pacing versus biventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S198-206. |
Tournoux et al., “A ‘Regularly Irregular’ tachycardia: What is the diagnosis?” Europace, Dec. 2008; 10(12):1445-6. |
Traykov et al., “Electrogram analysis at the His bundle region and the proximal coronary sinus as a tool to predict left atrial origin of focal atrial tachycardias,” Europace, Jul. 2011; 13(7):1022-7. |
Trudel et al., “Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing,” IEEE Trans Biomed Eng., Aug. 2004; 51(8):1319-29. |
Tse et al., “Cardiac dynamics: Alternans and arrhythmogenesis,” Journal of Arrhythmia, Oct. 2016; 32(5):411-417. |
Tse, “Mechanisms of cardiac arrhythmias,” Journal of Arrhythmia, Apr. 2016; 32(2):75-81. |
Ueda et al., “Outcomes of single- or dual-chamber implantable cardioverter defibrillator systems in Japanese patients,” Journal of Arrhythmia, Apr. 2016; 32(2):89-94. |
Van Dam et al., “Volume conductor effects involved in the genesis of the P wave,” Europace, Sep. 2005; 7 Suppl 2:30-8. |
Van den Berg et al., “Depletion of atrial natriuretic peptide during longstanding atrial fibrillation,” Europace, Sep. 2004; 6(5):433-7. |
Van Deursen, et al., “Vectorcardiography as a Tool for Easy Optimization of Cardiac Resynchronization Therapy in Canine LBBB Hearts,” Circulation Arrhythmia and Electrophysiology, Jun. 1, 2012, 5(3): 544-52. |
Van Opstal et al., “Paradoxical increase of stimulus to atrium interval despite His-bundle capture during para-Hisian pacing,” Europace, Dec. 2009; 11(12):1702-4. |
Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardia: part 1,” Pacing Clin Electrophysiol., Jun. 2011; 34(6):767-82. |
Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardias: part 2,” Pacing Clin Electrophysiol., Jun. 2012; 35(6):757-69. |
Veenhuyzen et al., “Principles of Entrainment: Diagnostic Utility for Supraventricular Tachycardia,” Indian Pacing and Electrophysiology Journal, 2008; 8(1):51-65. |
Verbrugge et al., “Revisiting diastolic filling time as mechanistic insight for response to cardiac resynchronization therapy,” Europace, Dec. 2013; 15(12):1747-56. |
Verrier et al., “Mechanisms of ranolazine's dual protection against atrial and ventricular fibrillation,” Europace, Mar. 2013; 15(3):317-324. |
Verrijcken et al., “Pacemaker-mediated tachycardia with varying cycle length: what is the mechanism?” Europace, Oct. 2009; 11(10):1400-2. |
Villani et al., “Reproducibility of internal atrial defibrillation threshold in paroxysmal and persistent atrial fibrillation,” Europace, Jul. 2004; 6(4):267-72. |
Violi et al., “Antioxidants for prevention of atrial fibrillation: a potentially useful future therapeutic approach? A review of the literature and meta-analysis,” Europace, Aug. 2014; 16(8):1107-1116. |
Weber et al., “Adenosine sensitive focal atrial tachycardia originating from the noncoronary aortic cusp,” Europace, Jun. 2009; 11(6):823-6. |
Weber et al., “Open-irrigated laser catheter ablation: relationship between the level of energy, myocardial thickness, and collateral damages in a dog model,” Europace, Jan. 2014; 16(1):142-8. |
Wegmoller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007. |
Wei et al., “Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models,” IEEE Trans Biomed Eng., Apr. 1995; 42(4):343-57. |
Weijs et al., “Clinical and echocardiographic correlates of intra-atrial conduction delay,” Europace, Dec. 2011; 13(12):1681-7. |
Weiss et al., “The influence of fibre orientation, extracted from different segments of the human left ventricle, on the activation and repolarization sequence: a simulation study,” Europace, Nov. 2007; 9(Suppl. 6):vi96-vi104. |
Wetzel et al., “A stepwise mapping approach for localization and ablation of ectopic right, left, and septal atrial foci using electroanatomic mapping,” European Heart Journal, Sep. 2002; 23(17):1387-1393. |
Wlodarska et al., “Thromboembolic complications in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy,” Europace, Aug. 2006; 8(8):596-600. |
Wong et al., “A review of mitral isthmus ablation,” Indian Pacing and Electrophysiology Journal, 2012; 12(4):152-170. |
Wu et al., “Acute and long-term outcome after catheter ablation of supraventricular tachycardia in patients after the Mustard or Senning operation for D-transposition of the great arteries,” Europace, Jun. 2013; 15(6):886-91. |
Xia et al., “Asymmetric dimethylarginine concentration and early recurrence of atrial fibrillation after electrical cardioversion,” Pacing Clin Electrophysiol., Aug. 2008; 31(8):1036-40. |
Yamazaki et al., “Acute Regional Left Atrial Ischemia Causes Acceleration of Atrial Drivers during Atrial Fibrillation,” Heart Rhythm, Jun. 2013; 10(6):901-9. |
Yang et al., “Focal atrial tachycardia originating from the distal portion of the left atrial appendage: Characteristics and long-term outcomes of radiofrequency ablation,” Europace, Feb. 2012; 14(2):254-60. |
Yiginer et al., “Advanced Age, Female Gender and Delay in Pacemaker Implantation May Cause TdP in Patients With Complete Atrioventricular Block,” Indian Pacing and Electrophysiology Journal, Oct. 2010; 10(10):454-63. |
Yoon et al., “Measurement of thoracic current flow in pigs for the study of defibrillation and cardioversion,” IEEE Transactions on Biomedical Engineering, Oct. 2003; 50(10):1167-1773. |
Yuan et al., “Recording monophasic action potentials using a platinum-electrode ablation catheter,” Europace, Oct. 2000; 2(4):312-9. |
Yusuf et al., “5-Hydroxytryptamine and Atrial Fibrillation: How Significant is This Piece in the Puzzle?” J Cardiovasc Electrophysiol., Feb. 2003; 14(2):209-14. |
Zaugg et al., “Current concepts on ventricular fibrillation: a vicious circle of cardiomyocyte calcium overload in the initiation, maintenance, and termination of ventricular fibrillation,” Indian Pacing and Electrophysiology Journal, Apr. 2004; 4(2):85-92. |
Zhang et al., “Acute atrial arrhythmogenicity and altered Ca(2+) homeostasis in murine RyR2-P2328S hearts,” Cardiovascular Research, Mar. 2011; 89(4):794-804. |
Zoghi et al., “Electrical stunning and hibernation: suggestion of new terms for short- and long-term cardiac memory,” Europace, Sep. 2004; 6(5):418-24. |
Zografos et al., “Inhibition of the renin-angiotensin system for prevention of atrial fibrillation,” Pacing Clin Electrophysiol., Oct. 2010; 33(10):1270-85. |
C00005397.WOU4 (PCT/US2014/066792) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority. |
C00001726.WOU3 (PCT/US2014/013601) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority. |
C00005682.WOU3 (PCT/US2014/036782) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Aug. 22, 2014, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2017/047378, 8 pages, dated Dec. 6, 2017. |
C00015339.WO01 (PCT/US2018/050988) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Nov. 14, 2018, 11 pages. |
C00015339.WO02 (PCT/US2018/050993) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Nov. 16, 2018, 7 pages. |
C00019193WO01 ( PCT US2019/023642) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Jun. 28, 2019, 14 pages. |
C00018366.WO01 (PCT/US2019/023645) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Sep. 4, 2019, 14 pages. |
C00019138.WO01 (PCT/US2019/023646) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Aug. 19, 2019, 15 pages. |
C00019428. WO01 (PCT/IB2019/057352) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Nov. 27, 2019, 123 pages. |
International Search Report and Written Opinion for Application No. PCT/US2020/023525, 10 pages, dated Jul. 9, 2020. |
Number | Date | Country | |
---|---|---|---|
20210060340 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62891599 | Aug 2019 | US |