Embodiments of the present invention may relate to an architecture of a configurable logic block (CLB) that may be used, e.g., in a semiconductor device.
A configurable logic block (CLB) may be an element of field-programmable gate array (FPGA), structured application-specific integrated circuit (ASIC) devices, and/or other devices. CLBs may be configured, for example, to implement different logic cells (combinational, such as NANDs, NORs, or inverters, and/or sequential. such as flip-flops or latches).
Various embodiments of the invention will now be discussed in further detail in conjunction with the attached drawings, in which:
In particular, various embodiments of the present invention may provide devices that may include a via-configurable logic block (VCLB) architecture. VCLB configuration may be performed by changing properties of so called “configurable vias” —connections between VCLB internal nodes. A programmable via may be in one of two possible states: it may be either enabled or disabled. If a programmable via is enabled, then it can conduct a signal (i.e., the via exists and has low resistance). If a via is disabled, then it cannot practically conduct a signal (i.e., the via has very high resistance or does not physically exist). VCLBs may used in structured ASIC devices (see eASIC® Nextreme®-2 architecture), as well as in FPGAs (see, e.g., the Actel antifuse FPGA).
There may be a number of different VCLB architectures used. One possible VCLB architecture may be based on look-up tables (LUTs) (see, e.g., the eASIC® Nextreme®-2 architecture). A second type of VCLB may be based on programmable logic arrays (PLAs) (see, e.g., “PLA-based regular structures and their synthesis” by Brayton et al.). A third type of VCLB may use serial/parallel transistor structures (see, e.g., “The Magic of a Via-Configurable Regular Fabric” by Yajun Ran and Malgorzata Marek-Sadowska; “Standard Cell Like Via-Configurable Logic Block for Structured ASICs” by Li et al.). A proposed architecture, according to various embodiments of the invention, may relate to the third VCLB type.
One may consider two or more serially connected transistors. In other words the drain of the first transistor may be connected to the source of the second transistor; the drain of the second transistor may be connected to the source of the third transistor, and so on. The drain of the first transistor and the source of the last transistor may be left hanging (i.e., unconnected). One may call this group of interconnected transistors a “transistor chain”.
According to an embodiment of the invention, e.g., as shown in
By inserting vias in the routing fabric it may be possible to establish connections between the transistors. VDD/Ground lines and/or external ports. In so doing, one may create different types of combinational and/or sequential logic blocks by means of such connections. Such logic blocks need not be limited to a single logic function, such as NAND or NOR, but may include multiple logic functions in a single block. So, too, combination and/or sequential logic functions may be implemented.
While the via-configurable connection fabric may be implemented so as to form configurable connections between metal layers 1 and 2 (M1 and M2) of a multi-layer circuit architecture, the invention is not thus limited. It is contemplated that, according various embodiments of the invention, configurable vias may be established to permit connections involving one or more metal layers higher than M2 (e.g., M3 and above), or which may be implemented at one or more of such higher metal layers.
In
In
In
In various embodiments of the invention, the via-configurable routing fabric may include programmable vias. These may be of particular use in designs having the via-configurable routing fabric in or between higher metal layers (as discussed above), and which may be used to permit a user to program functionality of the device. Such programmable vias may be constructed of various types of materials, such as, but not limited to, fuses, anti-fuses, and/or phase-change materials (e.g., but not limited to, graphene) and/or by one or micro- or nano-electromechanical system (MEMS/NEMS) devices. Such programmable vias may be programmed by various means, for example, but not limited to, heat, application of electric current, and/or application of light (e.g., lasers). A more detailed discussion of programmable vias may be found, e.g., in co-pending U.S. patent application Ser. No. 12/046,626, entitled, “Programmable Vias for Structured ASICs,” filed on Mar. 12, 2008, and U.S. patent application Ser. No. 12/562,812, entitled, “MEMS-Based Switching,” filed on Sep. 18, 2009, both of which are assigned to the assignee of this application. and which are incorporated herein by reference.
An architecture such as that described above may help to overcome some of the disadvantages of prior configurable logic architectures. Some of these improvements may relate to chip area, timing functions, and/or flexibility. Since some transistor gates are not hardwired, more complex logic functions (MUX21, XOR2, etc.) may be implemented by a single device incorporating a VCLB. That means that there may be no need to introduce multiple such device types, which may help to improve overall logic density and routability.
Various embodiments of the invention have been presented above. However, the invention is not intended to be limited to the specific embodiments presented, which have been presented for purposes of illustration. Rather, the invention extends to functional equivalents as would be within the scope of the appended claims. Those skilled in the art, having the benefit of the teachings of this specification, may make numerous modifications without departing from the scope and spirit of the invention in its various aspects.
The present application claims priority to U.S. Provisional Patent Application No. 61/426,176, filed Dec. 22, 2010, and incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5804986 | Jones | Sep 1998 | A |
6097221 | Sako | Aug 2000 | A |
6194914 | Sako | Feb 2001 | B1 |
6441642 | Jones et al. | Aug 2002 | B1 |
6466051 | Jones et al. | Oct 2002 | B1 |
6897543 | Huang et al. | May 2005 | B1 |
7797610 | Simkins | Sep 2010 | B1 |
7956421 | Becker | Jun 2011 | B2 |
7960242 | Or-Bach et al. | Jun 2011 | B2 |
8058691 | Becker | Nov 2011 | B2 |
20040159892 | Takizawa | Aug 2004 | A1 |
20050104621 | Kawahara et al. | May 2005 | A1 |
20060033124 | Or-Bach et al. | Feb 2006 | A1 |
20090278229 | Yang et al. | Nov 2009 | A1 |
20100134141 | Bertin et al. | Jun 2010 | A1 |
20100259296 | Or-Bach | Oct 2010 | A1 |
Entry |
---|
F. Mo and R. Brayton, “PLA-Based Regular Structures and Their Synthesis,” IEEE Trans. on Comp.-Aided Design of Int. Circ. and Syst., vol. 22, No. 6, Jun. 2003. |
M.-C. Li et al , “Standard Cell Link Via-Configurable Logic Block for Structured ASICs,” IEEE Computer Soc. Ann. Symp. on VLSI, 2008. |
Y. Ran and M. Marek-Sadowska, “The Magic of a Via-Configurable Regular Fabric,” IEEE Intl. Conf. on Computer Design: VLSI in Computers and Processors, 2004. |
International Search Report and Written Opinion issued in PCT/US11/66457 mailed May 2, 2012. |
International Preliminary Report on Patentability and Written Opinion issued in PCT/US11/66457 date of issuance Jun. 25, 2013. |
Number | Date | Country | |
---|---|---|---|
20120161093 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61426176 | Dec 2010 | US |