This application relates generally to devices for gaining access to the contents of vials and, more specifically, to spiked cannulae used to pierce an elastomeric stopper of a vial, and to the provision of a luer engaging member.
In order to deliver the contents of a vial to an intravenous bag or administration set, medical professionals typically first have to puncture the stopper of the vial with a syringe needle disposed on the distal end of a barrel of a syringe, if the contents are lyophilized, then inject a diluent into the vial and reconstitute the contents, draw the contents of the vial up into the syringe barrel, withdraw the syringe needle from the vial stopper, and then re-cap or remove the needle. This procedure is time consuming, involves a number of steps prior to delivery of the vial contents to the intravenous bag or administration set, and exposes medical professionals to sharp syringe needles. While recapping appliances are known, there are still times when the syringe needle is exposed.
Moreover, the introduction of luer compatible connectors on infusion administration sets and flexible bags or containers removes much of the need for a needle to provide fluid connection to these sets or bags. If the syringe is withdrawn from the vial with the attached needle, the needle must be removed prior to connection to these luer compatible connectors.
It would be desirable to provide a system in which a vial stopper may be pierced in a manner that permits the luer end of a typical syringe barrel to be selectively placed into communication with the interior of the vial without the use of a sharp needle, so that, if necessary, a diluent may be injected to reconstitute the contents of the vial, the vial contents may be drawn into the syringe barrel, and the syringe may be disengaged from the vial with only an end configured as a male luer tip to eliminate needle sticks.
In a first embodiment of the present disclosure, a spike assembly 10 is provided. The spike assembly 10 includes an elongate spike 12 having a frangible tip portion 14 and a luer connection portion 16 at a proximal end 18 thereof, extending coaxially with the elongate spike 12. The spike assembly 10 defines a hollow cannula with an opening 20 at or adjacent a distal end 22.
The spike assembly 10 preferably includes an intermediate section 24 between the frangible tip portion 14 and the luer connection portion 16 including a plurality of axially-extending ribs 26 that extend from the luer connection portion 16 to a location along the intermediate section 24. An axially-extending region of the intermediate section 24 extending from the axially-extending ribs 26 to the frangible tip portion 14 is referred to herein as a luer stem 28. Preferably, the portion of the luer stem 28 extending proximally from the frangible tip portion 14 is dimensioned, upon removal of the frangible tip portion, to form a male luer configured to engage a standard female luer connection fitting (not shown).
The luer connection portion 16 of the spike assembly 10 is selectively engageable by a luer fitting 30 at the distal end of a syringe barrel 32. The spike assembly 10 preferably has a wall thickness in the luer stem 28 thicker than along the frangible tip portion 14. At an intersection of the frangible tip portion 14 and the luer stem 28, the spike assembly 10 includes an annular reduced-thickness channel 34. The annular reduced-thickness channel 34 provides a weakened location of the spike assembly 10 at which the frangible tip portion 14 may be broken away from the remaining intermediate section 24 and luer connection portion 16. The annular reduced-thickness channel 34 may be v-shaped in cross-section, with a first wall 36 along the luer stem 28 extending perpendicularly to the longitudinal axis of the elongate spike 12, and a second wall 38, along the frangible tip portion 14, preferably forming a 45° angle with the first wall 36, and an apex of the v-shaped annular reduced-thickness channel 34 being radially inwardly of the outer diameters of the luer stem 28 and the frangible tip portion 14.
In use, a sharp point 40 at the distal end 22 the spike assembly 10 is used to pierce a stopper 42 of a vial 44. If the contents of the vial 44 are lyophilized, diluent within the syringe barrel 32 is injected into the vial and the contents are reconstituted. The liquid contents of the vial 44 may then be drawn into the syringe barrel 32 by pulling on a plunger (not shown) received in the syringe barrel 32. The syringe barrel 32 may then be tilted to force the frangible tip portion 14 against an inner wall of the vial 44, and additional force may then be applied to break the frangible tip portion 14 away from the intermediate section 24 of the spike assembly 10 along the annular reduced-thickness channel 34 to expose the luer stem portion 28. The syringe barrel 32 may then be used to withdraw the remaining luer connection portion 16 and intermediate section 24 of the spike assembly 10 from the stopper 42 of the vial 44. The luer stem 28 may now be utilized to directly access a female luer connector (not shown). Such female luer connectors may include luer activating valves or devices on such medical components such as infusion sets or containers, flexible or rigid.
Turning to
As in the previous embodiment, the luer connection portion 56 is selectively engageable by a luer fitting at the distal end of a syringe barrel, as shown in cross-section in
The neck 54 includes a first end 68 and a second end 70, equally spaced from the longitudinal axis of the elongate spike 52 on opposite sides of the neck 54. A first gripping wing member 72 is provided at the first end 68 of the neck 54, and a second gripping wing member 74 is provided at the second end 70 of the neck 54. Each of the first and second gripping wing members 72, 74 preferably curves parabolically outwardly, away from the opposing gripping wing member 74, 72, with increasing distance from the neck 54. The parabolic configurations of the first and second gripping wing members 72, 74 allow the wing members to accommodate a variety of sizes of vials and syringe barrels with diameters which may exceed the spacing between the first 68 and second end 70 of the neck.
The gripping wing members 72, 74 serve several functions. One function is to protect the user's fingers from inadvertent contact with the sharp point of the elongate spike 52. A second function is to preserve the sterility of a tip 33 of the syringe luer fitting 30, and the luer connection portion 56 by shielding the users fingers from contact with these elements particularly during attachment and removal of the spike assembly 50 from the syringe. A further function is to allow the wings to be squeezed toward each other as shown particularly in
The gripping wing members 72, 74 may each be provided with a plurality of ridges 76 on the exterior surface 78, 80 thereof. The ridges 76 enhance gripping the spike assembly 50 to facilitate insertion of the elongate spike 52 into the stopper of a vial, inasmuch as the fingers of the user may be covered by latex or non-latex medical gloves. The gripping wing members 72, 74 may also be used to hold the spike assembly while attaching and/or removing the syringe.
In use, the user withdraws the spike assembly 50 from sterile packaging not shown by gripping the wing members 72, 74. The user then engages the spike assembly 50 to the syringe by interconnection of luer connection portion 56 to the male luer tip of the syringe while maintaining the grip of the wing members 72, 74. The user then engages the interconnected syringe and spike assembly 50 to a vial pushing the elongate spike 52 into the elastomeric stopper of the vial thereby penetrating the vial stopper. The gripping wings 72, 74 may be squeezed to thereby engage the vial. The user may then inject a diluent into the vial if necessary to reconstitute a solid drug and then remove the liquid contents of the vial into the syringe. The user may then twistingly disengage the assembly 50 from the syringe while keeping the elongage spike 52 safely shielded in the interior of the vial. Such disengagement also exposes the luer tip of the syringe which may now be used to form a connection with a female luer connector.
In an embodiment, the gripping wings 72, 74 do not form inwardly extending latching projections opposite the tip 62 which may be utilized to grip beneath the top rim of a vial. These latches may create difficulty in accepting vials having a top rim with a diameter greater than the distance between the inward tips of these latches.
A pointed tang 114 extends from the first face 94 of the neck 96, in the same direction as the elongate spike 92. The pointed tang 114 serves to provide a stabilizing second point of engagement of the spike assembly 90 with a vial stopper. This stabilizing second point of engagement is off-center, i.e. spaced from the longitudinal axis of the elongate spike 92, to prevent rotation of the spike assembly 90 when the syringe is rotated counterclockwise to effect disengagement with the spike assembly. The user only needs to grip the vial and syringe, thereby avoiding contact with the spike assembly.
In
Turning now to
The second diameter d2 is at least slightly greater than the diameter of an axially-extending locking bore 156 provided at a proximal end 158 of the rotating luer lock collar 142. The intermediate section 144 of the spike assembly 140 has a constant diameter d3 between the distal end 148 of the annular frustoconical locking projection 146 and a neck portion 160 disposed between the intermediate section 144 and a luer connection portion 162 at a proximal end 164 of the spike assembly 140. The diameter d3 is less than the second diameter d2 and at least slightly less than the diameter of the axially-extending locking bore 156 at the proximal end 158 of the rotating luer lock collar 142. As a result, the rotating luer lock collar 142 is rotatably secured onto the intermediate section 144 of the spike assembly 140 by inserting the frangible tip portion 154 into the axially-extending locking bore 156 of the rotating luer lock collar 142, pushing the axially-extending locking bore 156 of the rotating luer lock collar 142 over the annular frustoconical locking projection 146 until the axially-extending locking bore 156 passes the proximal end 150 of the annular frustoconical locking projection 148.
The luer connection portion 162 of the spike assembly 140 may be provided with one or more threads, such as male threads 166, to provide threaded securement of a syringe barrel (not shown) with complementary female threads to the spike assembly 140. The sidewall 168 of the rotating luer lock collar 142 defines an axially-extending cavity 170. The cavity 170 may be provided with one or more threads, such as male threads 172, to secure a female luer (not shown) within the cavity 170. The ability to rotate the luer lock collar 142 facilitates selective securement of the male threads 172 within complementary female threads of such a female luer.
An axially-extending bore 174 in the form of a hollow cannula extends substantially the entire length of the needle assembly 140, from the luer connection portion 162 to an opening 176 at a distal end 178 of the spike assembly 140. The spike assembly 140 terminates at a sharp tip 180 provided at the distal end 178.
While various embodiments have been described herein, it will be understood that variations can be made to the disclosed embodiments that are still within the scope of the following claims.