The present invention relates to an apparatus for holding and supporting a vial, test tube, ampoule, syringe or other containers.
A side effect of the ever increasing number of medications in the hospital and clinical settings is the increased need for additional storage space. More concerning however, is that the increase in the number of medications also increases the likelihood of medication errors occurring. Hospitals are becoming increasingly aware that errors in medication are occurring as a result of poor storage solutions.
It is estimated that between about 40,000 and 100,000 individuals die in hospitals each year as a result of preventable errors. The number-one case of adverse and preventable patient events is medication error which leads to an estimated 7,000 deaths annually. According to insurers, medication error is the most frequent cause of procedural related malpractice claims. Commonly these mistakes are made when two products have similar packaging and one drug is mistaken for the other. Medication errors may also occur when similarly packaged vials contain the same medicine, but have different concentrations.
Another problem associated with multi-dose vials is the transmission of infections. While many vials contain antibacterial preservatives, many do not contain antiviral agents. Adding to the problem can be faulty aseptic techniques adding to the contamination rate of the vials. Studies have revealed that the contamination rate may reach as high as 27%. The current storage devices used in the hospital and clinical setting are not addressing these concerns.
Traditional vial storage devices may attempt to save as much space as possible and store the vials in a manner that renders the vial packaging and label hidden. Obscuring portions of the vial label can possibly lead to an increased occurrence of medication error. Especially in an emergency room setting where timely treatment is so important, having vial labels or portions thereof hidden may lead to a health care provider administering the incorrect medication, possibly causing harm to the patient.
In addition, traditional vial storage devices position the vials where it is necessary to touch the top portion of the vial for removal from the storage device. The necessity to touch the area where the syringe interfaces with the vial could lead to the transmission of infections if aseptic techniques are not followed.
Another problem with traditional vial storage devices is the need for secondary labeling. The secondary labeling is typically needed as vial labels are hidden from view in the storage device. The use of secondary labeling results in health care providers using the secondary labels for identification instead of following the correct procedure of reading the label on the vial. This use of the secondary labeling for identification purposes results in an increase in medication errors.
In addition, as space is generally at a premium in a hospital or clinical setting, traditional vial storage can be rather large and bulky requiring additional space for storage. This is especially true in crash carts or other similar devices. Furthermore, although traditional vial storage provides actual storage of the vials or ampoules, there is little in the way of protection. In instances of use such as in connection with crash carts or processing trays, the vials or ampoules often undergo jostling. Many of these traditional storage devices thus may result in breakage of vials or ampoules.
Accordingly, being able to effectively store vials and other containers in a manner that can minimize medication errors and infection transmission is an ongoing challenge in the industry. Consequently, there is a need for a vial holder providing a storage system that can assist in the elimination of these medication errors and reduce the risk of infection transmission by properly positioning the vials as well as meet the space needs in today's hospital and clinical settings while protecting the vials and ampoules from breakage.
Accordingly, exemplary embodiments of the present invention have been made to remedy the previous mentioned problems. One objective of the exemplary embodiments is to provide storage for a variety of vial and ampoule sizes as well as test tubes, syringes and a variety of other containers (all which are referred to generally herein as “vials”). In the exemplary embodiments, the vials are stored so that a care provider or other user can make a clear visual inspection of the vial's labels and contents. This ability to clearly see the vial's labels eliminates the need for secondary labeling reducing the risk of medication errors. In addition, the positioning of the vials or other containers eliminates the need to touch or contact the top portions of the containers thus reducing the possibility of the transmission of infection. Furthermore, the configuration of the grippers allows for maximum protection of the vials container therein while also maximizing spacing.
Exemplary embodiments of the vial gripper are made from elastomeric materials and have a base that in some embodiments may be designed to lie flat in a storage medium such as a drawer of a crash cart other similar storage mediums typically found in a hospital or clinical setting, or in other embodiments may be designed for insertion into and retention by a guide on an elevated body having a top surface. The base of the gripper is sized in the former embodiments so as to be substantially coextensive with the vial or other container to be held therein. The elastic material guards against breakage while the sizing eliminates unnecessary material from the gripper thus allowing a greater number to be stored in a storage medium over traditional storage devices.
A clamp extends from the base and is also made from an elastomeric material. The clamp is configured to have a slotted aperture therein allowing a vial or other container to be passed through the slot to rest within the aperture. Since the clamp is made from an elastomeric material the clamp deforms while the vial or container is passed through the slot and conforms back to substantially its original shape once the vial or other container resides in the aperture. The elastomeric material applies a pressure on the vial or other container thus preventing the rotation in the aperture ensuring visibility of the label on the vial of other container. The vial or other container is simply removed by grasping the body of the vial or other container and pulling it back through the slot in the clamp.
Although discussed as residing flat in a drawer, it should also be noted that the base may be affixed to any surface using known adhesives or devices. This allows the gripper to be used vertically or horizontally, or any angle there between. Since the elastomeric material of the clamp is sufficient to hold the vial or other container within the clamp, vertical storage is possible.
The customization of the vial holder also allows for the addition of color coding further reducing the risk of medication error.
One objective of the exemplary embodiments is to provide storage for a variety of vial sizes as well as test tubes and a variety of other containers. In the exemplary embodiments, the vials are stored so that a care provider or other user can make a clear visual inspection of the vial's labels and contents. This ability to clearly see the vial's labels eliminates the need for secondary labeling reducing the risk of medication errors. In addition, the positioning of the vials or other containers eliminates the need to touch or contact the top portions of the containers thus reducing the possibility of the transmission of infection.
The vial holder may be used in a variety of ways including insertion into a tray unit, simply resting on a surface, or attached to a wall or other surface. The vial holder may also accommodate a variety of containers shapes and sizes allowing for customization based on the needs of the healthcare provider. The customization of the vial holder also allows for the addition of color coding further reducing the risk of medication error.
Exemplary embodiments provide for a vial holder. The vial holder includes a body and readily attachable clamps that are used to secure containers such as vials and test tubes. The body has an inclined surface against which the container may rest. A vertical piece is also provided and intersects with the inclined surface. The vertical piece may have tabs to allow the vial holder to be inserted into a tray unit or other similar slotted device.
A guide is present in the inclined surface near the intersection of the inclined surface and the vertical piece. The guide allows for the insertion of the clamps for holding the containers. A portion of the clamp is inserted into and through the guide and the remainder of the clamps protrudes from the inclined surface. The portion of the clamp extending from the inclined surface has a slot therein terminating in a circular aperture. The container to be held can then be inserted into the slot and come to rest in the circular aperture.
It is an object of this invention to provide a vial gripper and gripper assembly of the types generally described herein, being adapted for the purposes set forth herein, and overcoming disadvantages found in the prior art. These and other advantages are provided by the invention described and shown in more detail below.
The advantages and other characteristics of the disclosed embodiments will be better understood when attention is directed to the accompanying drawings, wherein identical elements are indentified with identical reference numerals and wherein:
Exemplary embodiments of the present invention will now be described in greater detail. It should be recognized that the present invention can be practiced in a wide range of other embodiments besides those explicitly described, and the scope of the exemplary embodiments described are expressly not limited.
Directing attention to the drawings and particularly to
As seen in
As shown in
In some embodiments, the base 20 of the gripper 5 is sized to be at least coextensive with the vial 45, ampoule, or other container held within the clamp 25. This ensures that the vial 45 or container is protected from damage. The gripper 5 is made from an elastic material that can protect the vial from breakage. Likewise, the base 20 of the gripper 5 should not be significantly bigger than the vial 45 or container held therein so that the gripper 5 will not be cumbersome while in storage. Although shown in a single size, it should be noted that the gripper 5 and the base 20 thereof, could be sized to accommodate standard sizes of vials 45 and other containers typically used in the hospital or clinical setting. This customization ensures that the base 20 of the gripper 5 does not have to substantially extend past the boundaries of the vial 45 or other container taking up valuable space within a storage unit, such a drawer. Alternative, the base 20 may include various notches, tabs, contoured surfaces, protrusions or the like for gripping, or in order to provide retention of the gripper in combination with a storage container, unit tray or the like. Additionally, the clamp 25 portion of the gripper 5 is also specifically sized to match the type and size of vial 45 or container held therein. This ensures a proper fit between the gripper 5 and the vial 45 or container held therein to maximize protection.
As noted in connection with
The exemplary embodiment illustrated in
Turning to
Directing attention next to
The body 120 has a top surface 110 having a generally rectangular perimeter and sized generally to be coextensive with a variety of vials and other containers stored thereon. The elevated body 120 includes a guide 150 or slot running a substantial portion of the entire longitudinal length of the elevated body 120. The guide 150 is defined by the body 120 and is preferably substantially parallel to a top edge 130 of the elevated body 120. Although shown with rounded ends it should be understood that the guide 150 may have a variety of dimensions and shapes.
The body 120 is elevated from a work surface (not shown) on which the gripper assembly rests 105 at a sufficient distance such that the base portion 180 of the insertable gripper 115 may be inserted into the guide 150 and retained therein without interference from the work surface. The work surface may be, for example, a counter top, hospital pharmacy work surfaces, processing trays, and the like. The gripper assembly 105 may be provided such that the elevated body 120 may rest horizontally, vertically, or at in inclined angle therebetween, and the resting position of the body 120 may be determined by the configuration of the work surface, tray unit, support body or combination thereof as further described herein.
As illustrated in
The second component that makes up gripper assembly 105 is the insertable embodiment of the vial gripper 115 that includes a clamp 125 portion and an insertable base 180 portion as described in connection with
Now directing attention to
The bottom member 170 may also be used to affix the assembly 105 to a wall or other surface. In this embodiment, adhesive may be placed on the bottom member 170 to adhere the assembly 105 to a wall or other support. In still other embodiments, mechanical fasteners may be used to attach the bottom member 170 to a wall to support the assembly 105. Such attachments may be made to the support body 135 generally in many such embodiments.
In either of the two previous embodiments, a user determines the arrangement of vials, or test tubes, etc. (e.g., 116 and 118) to be held in the gripper assembly 105. The insertable grippers 115 are then inserted into the guide 150. After the grippers 115 are secured within the guide 150, the vials are placed in the clamps 125. The elevated body 120 allows the vials to rest at an angle on the top surface 110 so that the labels are clearly visible whether the assembly 105 is used with a tray unit 190, attached to a wall or other surface, or simply resting on a surface. In addition, the inclined arrangement allows for the removal and insertion of the vials without the need to touch the area accessed by a syringe. By allowing a user to grasp the labeled portion of the container, the spread of infection may be reduced.
The customizable feature of the invention generally also allows for color coordination of all of the embodiments of the grippers. In some embodiments, the clamps, ridges, aperture walls or the like may have different colors signifying different types or classes of medication. This added level of visual notification may also help reduce the risk of medication error.
As shown in
Another exemplary embodiment of a gripper assembly 105 is illustrated in perspective view in
The embodiment of the assembly 105 depicted in
The customizable feature of the gripper 5 also allows for color coordination with color schemes already in place at the hospital or clinic. In some embodiments, the grippers 5 may have different colors signifying different types or classes of medication. This added level of visual notification may also help reduce the risk of medication error.
While the embodiments disclosed described the best modes known to the inventor at the time of filing, the scope of the invention is not to be limited to only the embodiments disclosed herein. Any embodiment of the present invention may include any of the optional or preferred features of the other embodiments of the present invention. The exemplary embodiments herein disclosed are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain some of the principles of the present invention so that others skilled in the art may practice the invention. Having shown and described exemplary embodiments of the present invention, those skilled in the art will realize that many variations and modifications may be made to the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 14/120,360 filed 14 May 2014 which in turn claims priority to U.S. Patent Application No. 61/823,245 filed 14 May 2013. U.S. patent application Ser. No. 14/120,360 is also a continuation in part of and claims priority to U.S. patent application Ser. No. 14/067,251 filed 30 Oct. 2013 which in turn claims priority to U.S. Provisional Application No. 61/720,200 filed 30 Oct. 2012. The content of each of the aforementioned applications is hereby incorporated by reference as if fully recited herein.
Number | Date | Country | |
---|---|---|---|
61823245 | May 2013 | US | |
61720200 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14120360 | May 2014 | US |
Child | 15656215 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14067251 | Oct 2013 | US |
Child | 14120360 | US |