The present invention relates to a vibrating centrifuge, in particular to a drive mechanism for a vibrating centrifuge.
Vibrating centrifuges use radial g force to separate solids and liquids on a screen basket. Materials that are processed by vibrating centrifuges include, for example, coal, salt, potash, with a particle size normally between, for example, 0.5 mm to 75 mm.
Vibrating centrifuges use axial vibration to help convey solids axially along the basket. The g force developed in the machine is typically low, less than 60 g's. Feed is introduced to the small diameter of a rotating screen basket. As the feed accelerates with the basket, it tends to lock to the screen. Axial vibration is added to the basket by rotating eccentric weights attached to the basket drive shaft or to a separate vibration transfer shaft, or by an eccentric shaft attached to a vibration transfer shaft, or by vibratory motors attached to the machine case or the housing vibrating the machine case and/or the housing and the rotating element. The vibration causes the solids retained on the screen to hop from the small to the large diameter of the basket and eventually off the end.
Some prior vibrating centrifuges include complicated eccentric weight mechanisms that are either belt driven or directly driven by a motor connected to an eccentric shaft. These arrangements result in high production costs, increased maintenance requirements, and difficulty in adapting the vibrating centrifuge to process changes.
Some prior art vibrating centrifuges include two large vibrating motors mounted to the sides of the centrifuge housing to vibrate the entire housing the rotating shaft and the basket. This increases the cost of the housing and may result in frequent cracks in the housing. The vibrating motors are also large and expensive. As the vibrating motors must drive the rotating shaft and basket, including any slurry contained in the basket, and must also drive the housing, power consumption is increased.
According to a sample embodiment, a vibrating centrifuge comprises a housing; a basket rotatably supported by the housing; a main drive motor operatively connected to the basket to rotate the basket; a vibration transfer shaft operatively connected to the basket at a first end of the vibration transfer shaft to vibrate the basket; and a vibration motor resiliently connected to the housing and operatively connected to the vibration transfer shaft at a second end of the vibration transfer shaft.
According to another sample embodiment of the invention, a vibration drive for a centrifuge including a basket rotatably supported in a housing comprises a vibration transfer shaft operatively connected to the basket at a first end of the vibration transfer shaft; and a vibration motor connected to a mount, the mount being resiliently connectable to the housing, and the vibration transfer shaft being connected to the mount at a second end of the vibration transfer shaft.
Referring to
A main drive motor 12 is configured to rotate the basket 6 through an endless belt 16 which is connected to a pulley 14. The main drive motor 12 may be connected to the housing 4 by a vibration dampener, or buffer, 38.
A vibration motor 20 is connected to a vibration motor mount 36 that is mounted to a vibration shaft mount 34. The vibration shaft mount 34 is connected to the housing by a plurality of springs 22, for example, leaf springs.
A vibration transfer shaft 18 is connected to the vibration shaft mount 34 at a first end and is supported by bearings 30 at a second end. The second end of the vibration transfer shaft 18 is supported by the bearings 30 and is connected to a resonance buffer 26. A main buffer 28 is provided between the rotating basket 6 and the resonance buffer 26. The main buffer 28 is operatively connected to the pulley 14 which is supported in the housing 4 by a plurality of main bearings 24.
The vibration motor 20 comprises two eccentrically mounted weights 58 that are provided in housings 32 at opposite ends of the vibration motor 20. Rotation of the shaft of the vibration motor 20 causes rotation of the eccentrically mounted weights 58 which causes vibration of the vibration motor 20 which is transferred to the vibration shaft mount 34 which is resiliently connected to the housing 4 by the springs 22. The vibration of the motor 20 is thus transferred to the vibration shaft mount 34 which is transferred to the vibration transfer shaft 18. The vibration of the vibration transfer shaft 18 is transferred to the rotating basket 6 through the resonance buffer 26.
Referring to
The vibration transfer shaft 18 is connected to the resonance buffer 26 and the resonance buffer 26 is supported in a resonance buffer drum 52 which is connected to the main buffer outer drum 46. A cover plate 44 covers the resonance buffer 26 and separates the resonance buffer 26 from an acceleration cone 42 which receives material to be processed from an inlet chute (not shown).
The main buffer inner drum 48 is connected to a rotation shaft 56 that is connected to the pulley 14 by a rotation shaft mount 54. Rotation of the pulley 14 through the endless belt 16 from operation of the main drive motor 12 is transferred through the rotation shaft 56 to the main buffer inner drum 48 and subsequently to the main buffer outer drum 46 which is connected to the back plate 40 of the basket 6. The main buffer 28 dampens vibrations transmitted to the rotating basket 6 by the vibration transfer shaft 18 from being transmitted to the housing 4.
The connection of the vibration transfer shaft 18 to the rotating basket 6 reduces fabrication and maintenance costs. The connection of the vibration transfer shaft 18 to the rotating basket 6 also improves process adaptability. The vibration motor 20 is easily accessible and replaceable and allows the vibrating centrifuge 2 to be standardized and easily adjusted or replaced to facilitate process changes. The vibration motor 20 drives only the “live load” in the rotating basket 6 and therefore the size of the vibration motor 20 may be smaller than prior art arrangements. In addition, no vibration stress is added to the housing, or frame, 4 and the housing 4 may be reduced in size. As the housing 4 is not vibrated by the vibration motor 20 and because the main buffer 28 dampens vibrations transmitted to the housing 4, housing failures and cracking are reduced.
Referring to
As shown in
Although two vibration motors are shown in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application claims priority to U.S. Application 61/112,980 filed Nov. 10, 2008, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61112980 | Nov 2008 | US |