The invention is directed to therapeutic apparel having a vibrating device and particular to sleeves and socks configured to reduce phantom limb pain
Amputees experience phantom limb pain (PLP), a painful sensation that seems to be coming from the amputated limb. The pain occurs soon after surgery and can manifest as a twisting, burning, itching or pressure sensation. This PLP can last for several second to minutes, to hours or even days. Phantom limb pain usually diminishes during the first six months after surgery but may continue to occur for years. Phantom limb pain may emanate from various locations on the nub.
There are a number of medications that can be used to treat PLP including, acetaminophen, opioids, antidepressants, anticonvulsants, beta-blockers, muscle relaxants. Many of these medications come with undesirable side effects however. Some non-medication treatments include acupuncture, massaging of the residual limb, transcutaneous electrical nerve stimulation (TENS), biofeedback and use of a shrinker. These non-medical treatment options require an amputee to go out of their way for treatment, stop their activities and plug in a device, for example.
In addition, amputees typically have a lot of sensitivity to contact from the amputation site that is uncomfortable. Patients have to go through desensitization procedures to slowly become comfortable with contact. These procedures include rubbing the amputation site with fabrics and progressively more abrasive materials.
There exists a need for a treatment device that can be used to treat phantom limb pain and improve the desensitization process that is quick and effective and that is portable. There also exists a need for a treatment device that enables a user to select the area for treatment
The invention is directed to a therapeutic apparel article system comprising a wearable fabric article that may be a sock or a sleeve configured to be donned over a limb, such as an amputated or residual limb. The therapeutic apparel article system may include mechanical stimulation, wherein vibrating devices provide mechanical stimulation to a body part, thermal stimulation, wherein the wearable article comprises an inflatable bladder that can be filed with a heated or cooled fluid, and visual stimulation, wherein a light or plurality of lights are configured on the wearable apparel article and configured to produce a light display that distracts a wearer of the apparel article from pain and discomfort. The therapeutic apparel article comprises a plurality of nodes, wherein each node comprises a node attachment for detachable attaching a vibrating device. A user or wearer of an exemplary therapeutic apparel article may elect to attach one or more vibrating devices to the nodes as desired. In addition, in an exemplary embodiment, a control unit comprising a power source, such as a battery, is detachably attachable to the wearable fabric article. A conductive network may extend from the control unit and/or the power source to the nodes, for the delivery of electrical power to the vibrating devices, through the nodes. A control unit may comprise a user input feature for controlling the vibrating device function such as, powering the vibrating devices off/on, controlling the vibrating level or intensity, and/or controlling the vibrating frequency or mode, such as oscillating more, ramping mode, random mode and the like. A wearable article may be configured as a glove or any other article for donning on or over part of the body. In one embodiment, the wearable article is wrapped around or over part of the body to form a sleeve or sock.
In an exemplary embodiment, the wearable fabric article is a supple article that can be folded over upon itself without damage. A user of the therapeutic apparel article may detach the vibrating device and the control unit and wash the wearable fabric article without damage, for example. In this way, a user may wash the therapeutic apparel article after use. The wearable fabric article may be made from fabric, such as a knitted or woven fabric. In a preferred embodiment, the fabric is a seamless fabric, wherein there are no seams that might cause irritation to a wearer. An exemplary wearable fabric article may comprise one or more layers, such as one or more layers of fabric or a synthetic material such as foam, an elastomeric material and the like. A synthetic material may comprise an elastomeric material including, but not limited to elastomeric foam, such as urethane or silicone foam. An exemplary wearable article may provide some compression when fitted on or over a limb. The wearable article may be elastomeric, wherein it can be stretched and upon removal of a tensile load, return substantially to an original shape. For example, a sock or sleeve may stretch to extend over a nub or limb and provide a compressive force and when removed it may then shrink back and return to an original shape or dimension. In an exemplary embodiment, a wearable fabric article comprises an inner layer, an outer layer and a conductive network extending therebetween.
An exemplary conductive network comprises one or more electrical leads that extend along the wearable fabric article and carry electrical current from the power source to the nodes. A vibrating device can then be attached to the node to receive said power for operation. The electrical leads may be insulated electrical wires that are woven into a fabric or fabric layer or extend between layers of the wearable fabric article. In an exemplary embodiment, electrical leads of the conductive network extend between an inner layer and an outer layer of the wearable fabric article, such as between woven fabric layers, between a synthetic layer and a fabric layer, or two synthetic layers. In another exemplary embodiment, the conductive network or the electrical leads are interwoven with a fabric. The conductive network or electrical leads are connected electrically with the nodes to supply power to the detachable vibrating devices. A conductive network may comprise conductive fabric that is interwoven with the wearable article and may comprise two separate layers of conductive fabric that are separated by a non-conductive layer. One of the conductive fabric layers may provide electrical current to a node and the other conductive fabric layer may be an electrical return from the node to the power source.
A node for attachment of a vibrating device may be comprise any conventional detachable attachment mechanism including a snap or snaps wherein a mating snap on the vibrating device are configured to be pressed to and couple with the node snaps. In an exemplary embodiment, a node is a locking attachment node, requiring at least two separate motions to attach and lock the vibrating device to the node. For example, the vibrating device may require insertion and then rotation to lock the vibrating device to the node. In an exemplary embodiment, a node comprises an electrical supply portion and an electrical return portion and the vibrating device comprises an electrical supply and electrical return portions. In another embodiment, a node comprises a conductive patch, such as a conductive fabric. A node may comprise hook-and-loop fastener material and the vibrating device may comprise hook-and-loop fastener material for detachably attaching thereto. A hook-and-loop fastener material may comprise a conductive element or be an electrically conductive fabric.
A control unit may also be detachably attachable to the wearable fabric article. A control unit may comprise an interface for connecting to the wearable fabric article. The wearable fabric article may comprise a controller interface that is configured to receive the control unit interface. For example, a control unit may snap on to a matching snap or snaps or may comprise terminal that plug into a receptacle of the controller interface, for example. A power source configured with the control unit, such as a battery, may supply electrical power to the conductive network and the vibrating devices through the controller interface. A user may turn the vibrating devices on and off through a user interface of the control unit. A user may change the output of the vibrating devices through the user interface of the control unit. For example, a user may want to increase the vibration or change the frequency of vibration and may use the user interface to change these vibrating device outputs.
An exemplary vibrating device may employ an electrical motor that spins an eccentric mass, or an ERM motor. ERM motors are rotary motors with attached eccentric mass at a fixed amplitude. As current is supplied to the motor, it spins up and vibration is created as the eccentric mass rotates. Vibrations are transmitted through the motor, and into the device, which causes the motor to wear out rapidly. An exemplary vibrating device may employ a piezoelectric device that produces vibration. A controller may have a user input feature to all adjustment of the intensity or frequency of vibration. An exemplary vibration device may operate in a frequency range of between about 20 and 200 Hz, which has been shown to reduce phantom limb pain.
A controller may allow a user to set a vibration time, such as about 5 minutes or more and may provide a display screen to show time, remaining time, frequency and/or intensity. A user may set a desired vibration time and desired frequency for treatment.
An exemplary therapeutic apparel article may comprise a control and/or power source that is detachably attachable to the wearable fabric article. An exemplary controller may clip or snap into a docking station that is coupled to the fabric article. In an exemplary embodiment a docking retainer is configured between the outer and inner fabric layers and retains the docking station to the outside fabric layer, through fasteners that extend through the outer fabric layer. In addition, a plurality of pockets may be configured between the inner and outer layers of the fabric article to allow a user to place vibrating devices in a desired location. The vibration device of devices may be connected to the controller through an electrical lead that may detachably attach to the docking retainer, by an electrical connector. In this way, a user may detach the power source, controller and vibrating device as well as the electrical leads from the fabric article to allow washing of the fabric article. A fastener, such as snaps, a zipper, or a hook-and-loop fastener may couple the outer and inner fabric layers together and enable access between these layers for placement of the vibrating devices and/or removal for washing.
The exemplary therapeutic apparel article may comprise an inflatable bladder, also referred to as an inflatable cuff, that can be inflated to a desired pressure to secure the apparel article to a limb or around a person and to apply compression to the limb or a portion of the limb. A user may interface with an inflator to inflate the inflatable bladder to a desired pressure. An exemplary inflator may be a manual pump, such as a diagram that can be squeezed to inflate the inflatable bladder or a pump that is powered by a power source. In an exemplary embodiment, the pump is configured with the controller and receives power from a battery. An exemplary bladder of an inflatable bladder may be configured on an outer portion of the apparel article or sleeve to create a force that presses the vibrating devices against the user. This increased force of the vibrating device against the user may enhance and improve effectiveness of the device. An inflatable bladder may extend along a portion of the therapeutic apparel article or may extend substantially over the entire apparel article. In an exemplary embodiment, the inflatable bladder is configured to extend around a user's limb to compress the limb or a portion thereof. In another embodiment, an inflatable bladder is configured outside, or in an outer location with respect to the vibrating device, and produces a force on the vibrating device that presses the vibrating device against the user when in use with the inflatable bladder inflated.
The inflatable bladder may be filled with a fluid and this fluid may be heated to provide thermal stimulation, such as being cold and preferably heated. The fluid may be heated above ambient temperature and may be heated above body temperature, or above about 38° C., and may be heated to about 40° C. or more, about 42° C. or more, 45° C. or more, about 50° C. or more and any range between and including the temperature values provided.
By applying a peripheral stimulus like vibration to the pain site of an amputated limb, the pain signals can be overridden and disrupted. For example, vibrations can trigger primary sensory receptors located in the human skin that can override pain signals. There are four primary sensory receptors known as mechanoreceptors, which sense touch, pressure, and distortion (stretch). These receptors include the Merkel's disk, Meissner's corpuscles, Ruffini endings, and Pacinian corpuscles. Studies have shown that these deep and superficial mechanoreceptors are sensitive to both vibration frequency and amplitude. For example, it is known that Meissner corpuscles respond to light touch and can adapt rapidly to changes in texture and vibrations around 50 Hz while, Pacinian corpuscles are located deep in the skin's fascia and can detect rapid vibrations of about 200-300 Hz. Furthermore, it has been shown that these receptors are highly sensitive to combinations of different magnitudes of vibration frequencies and amplitudes. However, due to lack of adequate and accurate vibrating devices, there are contradictory clinical results in literature in regards about what should be optimal vibration therapy for treating neuropathic pain. Mechanical stimulation therapy is highly individualized process, meaning that each person has its own unique combination of vibration frequencies and amplitudes that triggers mechanoreceptors to inhibit pain signals.
However, the problem of solving phantom limb pain using current vibrating devices for pain treatments lays in the fact that their design is inadequate and not suitable for clinical practice. Most vibrating motors that are currently used in therapeutic markets have very unreliable vibration outputs or they provide very limited range of amplitudes and frequencies. Not a single, currently available medical vibrating device is capable of supplying, accurately and simultaneously, vibration frequencies in a range of 50-300 Hz and amplitudes in 0-3 G. The proposed smart vibrating motor will provide a wider range of vibration frequencies and varying amplitudes, and provide vibration therapy that could be personalized, to fit the needs of targeted patients. A smart vibrating device is a vibrating device that has separate control of frequency and amplitude.
An exemplary smart vibrating device is a linear resonance actuator (LRA) that integrates a shape memory alloy (SMA) spring to improve actuator performance, and enable changing of the spring stiffness through a heater. Changing the stiffness of the shape memory alloy spring enables control and optimize vibration output within a wide range of vibration frequencies and amplitudes. Through a change in temperature of the shape memory alloy, the spring stiffness properties are manipulated, and the frequency and amplitude ranges of the vibrating motor can be significantly increased. The exemplary vibrating motor allows for resonant vibration frequency shift and transformation in the same system. This will provide a wider range of LRA motor's vibration frequencies and amplitudes available for personalize vibration therapy drug-free pain treatment.
A shape memory alloy may include any number of alloys but the two most common shape-memory alloys are copper-aluminum-nickel and nickel-titanium (NiTi). Other SMAs include alloys of zinc, copper, gold and iron. Some examples of iron and copper SMAs include, but are not limited to, Fe—Mn—Si, Cu—Zn—Al and Cu—Al—Ni, and are cheaper than NiTi, NiTi-based SMAs. NiTi, NiTi SMAs may be preferred for this application however due to their superior thermo-mechanic performance. SMAs can exist in two different phases, with three different crystal structures (i.e. twinned martensite, detwinned martensite and austenite) and six possible transformations. Shape memory alloys have a change in crystal structure at one or more transition temperatures.
An LRA may preferably operate at a frequency that is a resonance frequency of the spring and with a shape memory alloy this resonance frequency can be changed by heating. A shape memory alloy may provide small, medium or high dampening as a result of the heat state and crystal structure resulting therefrom.
A heater is configured to heat the SMA to change or modify the stiffness of the SMA, by having changes phases and crystal structure. A heater may include a resistive heater, a radiant heater, an inductive heater and any combination thereof. A heater may be configured around the SMA spring, within the a SMA coil and may be insulated or configured within an enclosure to prevent the heat from damaging other components or from heating the exterior of the vibrating device.
Any of the vibrating devices or motors as described herein may be a linear resonance actuator which may incorporate a shape memory alloy spring to enable separate control of the frequency and amplitude. To overcome the limitations of existing vibratory devices used to manage and treat neurological pain, a smart linear resonance actuator, is described herein. When describing vibration, vibration frequency and amplitudes are two main vibration parameters used. With vibration therapy, these parameters are crucial in understanding how vibration affects the body's response to such treatment. What makes a linear resonance actuator (LRA) ideal for vibration therapy is the decoupling of vibration amplitude and frequency. An LRA uses a mass spring system, where a small mass and magnet attached to a spring moves in a linear fashion to create force when driven by a voice coil. An LRA's design is similar to that of a loudspeaker, however, instead of a cone that generates sound pressure waves, there is a mass that generates vibrations. When driven properly, using an alternating current, to produce an alternating driving signal, LRA motors can be highly efficient and provide good acceleration. The ability to miniaturize these motors down to a few millimeters enables their use in an exemplary therapeutic apparel article.
Typically, LRA vibrating motors must be driven at a narrow band (±2 Hz) around the resonant frequency because of the spring constant, which is governed by steel spring stiffness (Youngs Modulus). Due to its rigid molecular architecture, steel stiffness is invariable to change in temperature or pressure. When the input signal frequency is moved too far from the resonant frequency, the vibration performance and frequency vs. amplitude, can drop off significantly. Unfortunately, this narrow operating bandwidth centered around the resonant frequency of steel makes current LRA's unsuitable for research on vibration therapy pain management and hinders the commercial potential of vibration therapy as a reliable medical modality for pain treatment.
An exemplary linear resonance actuator incorporates a shape memory alloy spring, that is heated by a heater to change the stiffness of the spring and therefore change the amplitude and/or frequency of vibration. An electromagnet creates a magnetic force on the actuator mass via a voice coil 109. The actuator mass is actuated back and forth by the changing magnetic field and the shape memory alloy spring is configured between the actuator mass and the end plate to translate the motion to the end plate. A change in the stiffness of the spring will change the frequency and/or amplitude of motion of the end plate. A heater is controlled by the heater controller and may be used to adjust the temperature of the shape memory alloy spring and therefore the stiffness. A barrier sleeve 105 extends around the heater and a thermal insulation layer is configured between the barrier sleeve and an actuator cover. The voice coil controller controls the voice coil to change the frequency and magnitude of the magnetic field.
A linear resonance actuator may be coupled with a controller that has separate user input features for frequency and amplitude. An exemplary user input feature on the controller may have an amplitude user input feature that has an amplitude up and an amplitude down control button and a frequency user input feature that has a frequency up and a frequency down control button. The frequency and amplitude of the output vibration of the LRA may be changed by the change in spring stiffness, or spring constant, as a function of changing the temperature of the shape memory alloy spring.
The summary of the invention is provided as a general introduction to some of the embodiments of the invention and is not intended to be limiting. Additional example embodiments including variations and alternative configurations of the invention are provided herein.
The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the description serve to explain the principles of the invention.
Corresponding reference characters indicate corresponding parts throughout the several views of the figures. The figures represent an illustration of some of the embodiments of the present invention and are not to be construed as limiting the scope of the invention in any manner. Further, the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Also, use of “a” or “an” are employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
In cases where the present specification and a document incorporated by reference include conflicting and/or inconsistent disclosure, the present specification shall control.
Certain exemplary embodiments of the present invention are described herein and are illustrated in the accompanying figures. The embodiments described are only for purposes of illustrating the present invention and should not be interpreted as limiting the scope of the invention. Other embodiments of the invention, and certain modifications, combinations and improvements of the described embodiments, will occur to those skilled in the art and all such alternate embodiments, combinations, modifications and improvements are within the scope of the present invention.
Referring to
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in 12, the exemplary wearable fabric article 12 has snaps 50 as a node. The electrical supply portion 52 is coupled electrically with the conductive network 16 by a connection portion 39, such as an electrical lead.
As shown in
A locking feature, as used herein, required two or more separate motions to detach the vibrating device from the attachment node, such as pushing in and rotating to lock to insert and counter rotating and pulling out to detach.
Referring now to
As shown in
As shown in
Referring now to
As shown in
Referring now to
It is to understood that one or more shape memory alloy springs may be utilized in a vibrating device, such as an LRA, and may be configured in series or parallel and may have different sizes, spring constants, and may be made out of different alloys and thereby have different changes in stiffness as a function of temperature. For example, a series arrangement of shape memory alloys springs may be used wherein a first spring becomes stiffer at a first transition temperature but the second spring does not change at a first transition temperature and at a second, higher transition temperature, both the first and second shape memory alloy springs have a different stiffness from ambient conditions. This arrangement of two or more springs, which may be shape memory alloy springs or conventional springs may enable a smoother transition from one frequency or amplitude to another.
A linear resonance actuator may be coupled with a controller 41 that has separate user input features for frequency and amplitude. As shown, the user input feature 42 on the controller 41 has an amplitude input feature 242 that has an amplitude up 248 and an amplitude down 249 control button and a frequency input feature 142 that has a frequency up 148 and a frequency down 149 control button. The frequency and amplitude may be decoupled by the change in spring stiffness, or spring constant, as a function of changing the temperature of the shape memory alloy spring.
It will be apparent to those skilled in the art that various modifications, combinations and variations can be made in the present invention without departing from the spirit or scope of the invention. Specific embodiments, features and elements described herein may be modified, and/or combined in any suitable manner. Thus, it is intended that the present invention cover the modifications, combinations and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application is a continuation in part of U.S. patent application Ser. No. 16/021,613, filed on Jun. 28, 2018 and currently pending which is a continuation in part of U.S. patent application Ser. No. 15/367,090, filed on Dec. 1, 2016 and now abandoned, which claims the benefit of priority to U.S. Provisional Application No. 62/320,031, filed on Apr. 8, 2016, and application Ser. No. 16/021,613, claims the benefit of priority to U.S. Provisional Patent Application No. 62/526,178, filed on Jun. 28, 2017; the entirety of each of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4922893 | Wright | May 1990 | A |
5274885 | Hellweg | Jan 1994 | A |
6093134 | Worsham | Jul 2000 | A |
6093164 | Davis et al. | Jul 2000 | A |
6223565 | Cooper | May 2001 | B1 |
6319015 | Faunce | Nov 2001 | B1 |
8523793 | Waldon, Sr. | Sep 2013 | B1 |
8948876 | Gozani et al. | Feb 2015 | B2 |
D754355 | Ganapathy et al. | Apr 2016 | S |
9468762 | Kishawi et al. | Oct 2016 | B2 |
9474898 | Gozani et al. | Oct 2016 | B2 |
9656070 | Gozani et al. | May 2017 | B2 |
9675801 | Kong et al. | Jun 2017 | B2 |
9731126 | Ferree et al. | Aug 2017 | B2 |
9827420 | Ferree et al. | Nov 2017 | B2 |
20040260211 | Maalouf | Dec 2004 | A1 |
20070027411 | Ella et al. | Feb 2007 | A1 |
20080108914 | Brouqueyre et al. | May 2008 | A1 |
20080288007 | Malak | Nov 2008 | A1 |
20100249637 | Walter et al. | Sep 2010 | A1 |
20100268130 | Khan | Oct 2010 | A1 |
20110054576 | Robinson et al. | Mar 2011 | A1 |
20130184623 | Fraser | Jul 2013 | A1 |
20140207219 | Dunbar et al. | Jul 2014 | A1 |
20160030281 | Shafieloo | Feb 2016 | A1 |
20160181729 | Barth et al. | Jun 2016 | A1 |
20160228325 | Kologrivov et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
WO 2009-044400 | Apr 2009 | WO |
WO 2010-028042 | Mar 2010 | WO |
WO 2012-156052 | Nov 2012 | WO |
WO 2016-051414 | Apr 2016 | WO |
WO-2022130382 | Jun 2022 | WO |
Number | Date | Country | |
---|---|---|---|
20210251844 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62320031 | Apr 2016 | US | |
62526178 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16021613 | Jun 2018 | US |
Child | 17307670 | US | |
Parent | 15367090 | Dec 2016 | US |
Child | 16021613 | US |