In general, the present invention relates to toys that move on a surface due to an internal vibrating mechanism. More particularly, the present invention relates to the structure of the toy and the internal compartment that retains the internal vibration mechanism.
There are many toys that are designed to vibrate. Many of these toys use vibration mechanisms to move the toy across a surface. The vibration mechanism used within the toy often includes a small battery powered motor. The motor is used to turn an eccentric weight that is mounted to the motor. As the eccentric weight is rotated by the motor, a strong mechanical vibration is created that shares the same frequency as the rotational speed of the eccentric weight. Toys that utilize such vibration mechanisms are exemplified by U.S. Pat. No. 4,941,857 to Fujimaki, and U.S. Patent Application Publication No. 2012/0100777 to Hsu.
In the prior art, the motor used to rotate the eccentric weight is typically set into a fixed position within the structure of the toy. The eccentric weight rotates in a fixed compartment adjacent to the motor. The weight distribution within the toy and its center of gravity remains relatively constant, with only small variations caused by the rotational movement of the eccentric weight. Accordingly, the effects of the rotating weight on the overall toy remain relatively constant each time the motor is activated. The result is that each time the toy is utilized, the movements of the toy caused by the rotating weight remain standard and predictable.
Additionally, since the vibration mechanism is set within the toy, the toy is set in shape and appearance. This limits the play value of the toy because a user can quickly become bored with the fixed appearance and fixed movement pattern embodied by the toy.
A need exists for a toy with an internal vibration mechanism that has the ability to randomly change its weight distribution and center of gravity as it vibrates. The changes in weight distribution and center of gravity translate into random and altering movement patterns as the toy is propelled along a surface.
A need also exists for a toy with an internal vibration mechanism, wherein the facade of the toy can be altered, therein selectively changing the appearance of the toy.
These needs are met by the present invention as described and claimed below.
The present invention is a vibrating toy assembly that can travel along a surface in an unpredictable pattern. The toy assembly is powered by a vibration mechanism. The vibration mechanism has a motor and batteries that are held in a housing. When the batteries power the motor, the motor turns an eccentric weight and vibrations are produced.
The vibration mechanism is placed into a hollow casing. The hollow casing defines an internal compartment having a bottom surface and at least one side wall, wherein said internal compartment is large enough to receive the vibration mechanism in a variety of orientations.
The vibration mechanism is positioned within the internal compartment and activated. Once activated, the vibration mechanism vibrates and changes orientation within the casing. As the vibration mechanism changes orientations, the movement patterns of the casing are altered. This causes the overall toy assembly to move in random patterns. Additionally, since the vibration mechanism is separate and distinct from the casing, different casing can be used to increase the play value of the vibrating toy assembly.
For a better understanding of the present invention, reference is made to the following description of an exemplary embodiment thereof, considered in conjunction with the accompanying drawings, in which:
Although the present invention toy assembly can have many embodiments, only a few exemplary embodiments are shown. The exemplary embodiments are selected in order to set forth some of the best modes contemplated for the invention. The illustrated embodiments, however, are merely exemplary and should not be considered limitations when interpreting the scope of the claims.
Referring to
A vibration mechanism 20 is placed into the internal compartment 14 of the casing 12. The vibration mechanism 20 has a motor 22 that rotates an eccentric weight 24, therein causing vibrations in a traditional manner. The motor 22 is powered by a battery 26. The flow of electricity from the battery 26 to the motor 22 is selectively controlled using an on/off switch 28. The motor 22, eccentric weight 24, battery 26 and on/off switch 28 are all retained in a housing 30. It will therefore be understood, that when the on-off switch 28 is turned “on”, the motor 22 rotates the eccentric weight 24 and the entire housing 30 vibrates along with its contents.
The housing 30 of the vibration mechanism 20 is elongated between a first end 32 and second end 34. As such, the housing 30 has a length that is significantly longer than its width. Furthermore, due to the position of the eccentric weight 24, the vibration mechanism 20 has a center of gravity that varies and that is not at the geometric center of the housing 30. Additionally, the two ends 32, 34 of the housing 30 need not be flat. The result is that when the housing 30 of the vibration mechanism 20 is stood upon either of its ends 32, 34, the vibration mechanism 20 is unstable and will naturally fall to the side, even when not vibrating.
The vibration mechanism 20 is placed into the internal compartment 14 of the casing 12. Within the casing 12, the internal compartment 14 has a base 36 and peripheral sidewalls 38. The base 36 has a length and a width. The sidewalls 38 have a given height. The length and the width of the base 36 within the internal compartment 14 are smaller than the length of the vibration mechanism 20. Accordingly, the only way the vibration mechanism 20 will fit into the internal compartment 14 is to orient the vibration mechanism 20 so that one of the ends 32, 34 of the vibration mechanism 20 rest upon the base 36. This will cause the vibration mechanism 20 to lean at an angle inside the internal compartment 14 of the casing 12. Consequently, the vibration mechanism 20 will lean against one or more of the side walls 38 of the casing 12. The center of gravity for the overall toy assembly 10, therefore, depends upon the position of the vibration mechanism 20 within the internal compartment 14 of the casing 12 at any given point in time.
As will be explained, the casing 12 can be made from a variety of materials, including folded paper. If the structural integrity of the material is too insubstantial to support the vibration mechanism 20, then a secondary liner 40 can be used. Such a secondary liner 40 is shown in
Referring to
The vibration mechanism 20 can fit inside the internal compartment 14 of the casing 12 in a multitude of different orientations. The orientation of the vibration mechanism 20 within the casing 12 greatly affects the center of gravity for the overall toy assembly 10. In some orientations, the vibration mechanism 20 is leaning in a first direction within the internal compartment 14. In other orientations, the vibration mechanism 20 leans in different directions. Furthermore, the angle of inclination A1 against any of the walls 38 can vary within a wide range. The range is typically between 10 degrees and 40 degrees. However, a larger range can be achieved if the internal compartment 14 is significantly larger than the vibration mechanism 20. However, the internal compartment 14 should never be so large that the vibration mechanism 20 can fall flat against the bottom surface 18 of the internal compartment 14.
In some orientations, the vibration mechanism 20 rests upon one of the windows 44 in the bottom surface 18 of the casing 12. When in such an orientation, the vibration mechanism 20 can contact the surface 46 outside the casing 12 upon which the casing 12 rests. In other orientations, the vibration mechanism 20 can rest upon the bottom surface 18 of the casing 12 or the liner 40 inside the internal compartment 14. The same would be true if the toy assembly 10 were made without the windows 44.
Referring to
The casing 12 can be molded of thin plastic. However, the casing 12 can also be made of a foldable sheet material, such as paper or paperboard. Referring to
The graphics 16 on the casing 12 can represent the body of a character. To add arms or other appendages to the casing 12, slots 52 can be formed in the sidewalls 38 of the casing 12. Appendages 54, in the form of folded pieces of paperboard, can be inserted into the slots 52 so that the appendages 54 extend away from the casing 12. The appendages 54, in addition to improving aesthetics, also prevent the casing 12 from falling in the directions of the extending appendages 54. Rather, should the internal vibration mechanism 20 cause the casing 12 to fall forward, the extending appendages 54 can hold the casing 12 at an inclined angle that can enable the casing 12 to stand up straight once the vibration mechanism 20 again shifts within the internal compartment.
Referring to
In this embodiment, the casing 62 of the toy assembly 60 is shaped as a cylindrical tube. The casing 62 is made by bending a blank of cut paper. No liner is used in this embodiment. Graphics 64 are printed onto the casing 62. Additionally, slits 66 are formed in the casing 62 so that folded segments of paper 68 can serve as extending appendages. It will be understood that the embodiments of the present invention that are illustrated and described are merely exemplary and that a person skilled in the art can make many variations to those embodiments. All such alternate embodiments are intended to be included within the scope of the present invention as defined by the claims.
This application claims benefit of U.S. Provisional Application No. 62/586,034, filed Nov. 14, 2017.
Number | Date | Country | |
---|---|---|---|
62586034 | Nov 2017 | US |