Vibration absorber

Information

  • Patent Grant
  • 12251973
  • Patent Number
    12,251,973
  • Date Filed
    Tuesday, May 16, 2023
    2 years ago
  • Date Issued
    Tuesday, March 18, 2025
    8 months ago
Abstract
A tuned mass damper includes a damper mass having a first mass portion and a second mass portion connected by a third mass portion. The first mass portion, the second mass portion, and the third mass portion form a U-shaped configuration of the damper mass. The damper mass is configured to separate within the third mass portion in response to a force transferred to the damper mass of the tuned mass damper to allow relative motion between the first mass portion and the second mass portion. The damper mass may include geometric features that promote rotation of the tuned mass damper relative to an axis, when subjected to impact loads.
Description
FIELD

The present disclosure relates generally to the field of vibration absorption.


BACKGROUND

A vibration absorption system reduces the transmission of vibrations between two components, typically a sprung mass and an unsprung mass. The tuned mass damper reduces the effects of vibration.


SUMMARY

One aspect of the disclosure is a tuned mass damper. The tuned mass damper includes a damper mass including a first mass portion and a second mass portion connected by a third mass portion. The first mass portion, the second mass portion, and the third mass portion form a U-shaped configuration of the damper mass. The damper mass is configured to separate within the third mass portion in response to a force transferred to the damper mass of the tuned mass damper to allow relative motion between the first mass portion and the second mass portion.


In some implementations of the tuned mass damper, the third mass portion is thinner in a lateral direction than the first mass portion and the second mass portion.


In some implementations of the tuned mass damper, the damper mass includes a portion of stress concentration within the third mass portion such that the third mass portion is configured to separate within the portion of stress concentration in response to the force transferred to the damper mass of the tuned mass damper to allow relative motion between the first mass portion and the second mass portion.


In some implementations of the tuned mass damper, the first mass portion is larger and has a greater mass than the second mass portion.


In some implementations of the tuned mass damper, the first mass portion has a first curved surface defined at a first end of the damper mass facing a first direction away from the second mass portion and the second mass portion has a second curved surface defined at a second end of the damper mass facing in a second and opposite direction away from the first mass portion, and the force transferred to the damper mass is applied at the first curved surface of the first mass portion and causes rotation of the damper mass.


In some implementations of the tuned mass damper, the force transferred to the damper mass includes a first force applied at the first curved surface of the damper mass and a second force applied at the second curved surface of the damper mass to induce rotation of the tuned mass damper.


In some implementations of the tuned mass damper, the tuned mass damper further includes a first spring and fluid-operated damper assembly that is configured to regulate motion of the damper mass with respect to an external portion and a second spring and fluid-operated damper assembly that is configured to regulate motion of the damper mass with respect to the external portion. The first mass portion includes a first bore and the second mass portion includes a second bore. The first spring and fluid-operated damper assembly extends at least partially through the first bore in the first mass portion and the second spring and fluid-operated damper assembly extends at least partially through the second bore in the second mass portion.


In another aspect of the disclosure, a vehicle assembly includes a brake system including a rotor connected to a wheel assembly that includes a wheel and a caliper coupled to a wheel support and configured to apply a braking force to the rotor. The vehicle assembly also includes a tuned mass damper coupled to the wheel support. The tuned mass damper includes a damper mass including a first mass portion, a second mass portion, and a third mass portion extending between the first mass portion and the second mass portion. The caliper is positioned relative to the damper mass such that the third mass portion of the damper mass is diametrically opposite the caliper. The first mass portion has a first curved surface at a first end of the damper mass facing a first direction away from the second mass portion and the second mass portion has a second curved surface at a second end of the damper mass facing in a second and opposite direction away from the first mass portion. A force applied at the first curved surface of the first mass portion causes rotation of the first mass portion and the second mass portion.


In some implementations of the vehicle assembly, the first mass portion, the second mass portion, and the third mass portion of the damper mass form a U-shaped configuration of the damper mass.


In some implementations of the vehicle assembly, the vehicle assembly further includes a first engagement portion coupled to a vehicle body such that a force applied to the vehicle body causes the first engagement portion to transfer the force applied to the vehicle body to the first mass portion of the damper mass such that the tuned mass damper and the wheel assembly rotate relative to a longitudinal axis of the vehicle body.


In some implementations of the vehicle assembly, the vehicle assembly further includes a second engagement portion coupled to the vehicle body such that the force applied to the vehicle body causes the second engagement portion to transfer the force applied to the vehicle body to the second mass portion of the damper mass such that the first engagement portion and the second engagement portion cooperatively rotate the wheel assembly from a first position to a rotated position relative to the longitudinal axis of the vehicle body.


In some implementations of the vehicle assembly, a first position of the caliper is an upward position relative to the wheel support such that the caliper is above an axis of rotation of the wheel assembly and a second position of the damper mass is a downward position relative to the wheel support such that the third mass portion is diametrically opposite from the caliper relative to the axis of rotation of the wheel assembly.


In some implementations of the vehicle assembly, a first position of the caliper is a bottom position relative to the wheel support and a second position of the damper mass is a top position relative to the wheel support.


In some implementations of the vehicle assembly, the third mass portion includes a portion of stress concentration for the force applied at the first mass portion of the damper mass.


Another aspect of the disclosure is a vibration absorption system. The vibration absorption system includes a damper mass coupled to a wheel assembly and including a first mass portion and a second mass portion connected by a third mass portion and an engagement portion coupled to a vehicle body and extending toward the wheel assembly. The engagement portion has a geometric configuration that is configured to induce rotation of the wheel assembly away from a longitudinal axis of the vehicle during an impact to the vehicle body by interaction of the engagement portion with the damper mass.


In some implementations of the vibration absorption system, the third mass portion is thinner in a lateral direction than the first mass portion and the second mass portion such that the third mass portion includes a portion of stress concentration such that the third mass portion is configured to separate within the portion of stress concentration in response to the impact to allow relative motion between the first mass portion and the second mass portion.


In some implementations of the vibration absorption system, the engagement portion is a geometric feature of the vehicle body that extends toward the wheel assembly.


In some implementations of the vibration absorption system, the vehicle further includes a second engagement portion extending from the vehicle body. The second engagement portion functions as a reaction surface for the impact to the vehicle body such that the interaction between the second engagement portion and the second mass portion of the damper mass rotates the wheel assembly away from the longitudinal axis of the vehicle.


In some implementations of the vibration absorption system, the engagement portion is a first engagement portion positioned forward of the wheel assembly and the second engagement portion is positioned rearward of the wheel assembly such that the first engagement portion and the second engagement portion cooperatively induce outward rotation of the wheel assembly upon a frontal force applied to the vehicle body.


In some implementations of the vibration absorption system, the first mass portion has a first curved surface at a first end of the damper mass facing laterally inward relative to a lateral axis of the vehicle body, the second mass portion has a second curved surface facing laterally outward relative to the lateral axis of the vehicle body, and the impact causes interaction between the engagement portion and the first curved surface to rotate the damper mass.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a vehicle that includes a tuned mass damper system.



FIG. 2A is a block diagram that illustrates a portion of a vehicle, according to an implementation.



FIG. 2B is a block diagram that illustrates a portion of a vehicle, according to an implementation.



FIG. 3 is a schematic side view illustration of a wheel assembly for a vehicle, according to an implementation.



FIG. 4 is a schematic side view illustration of a wheel assembly for a vehicle, according to another implementation.



FIG. 5 is a schematic cross-sectional illustration of the wheel assembly of FIG. 3.



FIG. 6 is a schematic cross-sectional illustration of the wheel assembly of FIG. 3 in response to a force applied to the vehicle.





DETAILED DESCRIPTION

A tuned mass damper can be used to reduce unwanted vibration effects, such as wheel hop, which may be transmitted to a vehicle body. The tuned mass damper includes a damper mass coupled to a wheel assembly. The damper mass is smaller than the mass of a primary mass, such as the vehicle body, and oscillates to counter vibrations experienced by the wheel assembly. The oscillations of the damper mass result in a reduction of unwanted vibration effects.


The tuned mass damper systems, included as part of a vehicle suspension system, include a damper mass that is coupled to an unsprung mass of the vehicle, such as a suspension knuckle (e.g., a hub retainer or wheel support) or vehicle wheel assembly. The damper mass of the tuned mass damper system is shaped such that a frontal force applied to the vehicle body, such as a side overlap impact, is transferred from the vehicle body to the damper mass by one or more engagement portions. The damper mass receives the transmitted force on one or more curved surfaces such that the damper mass and the attached wheel assembly rotate away from a longitudinal axis of the vehicle body. Throughout this disclosure, the same or similar reference numbers refer to the same or similar components.



FIG. 1 is a schematic block diagram of a vehicle assembly 100 that includes a suspension system 106. A sprung mass 101 is coupled to an unsprung mass 103 with the suspension system 106. The sprung mass 101 may include a vehicle body, unibody, frame, and/or related components. The unsprung mass 103 may be a vehicle wheel assembly that includes, for example, a wheel, a tire, a wheel hub, a suspension knuckle, and friction braking components. The suspension system 106 includes a suspension component 116 that supports and/or regulates motion of the sprung mass 101 relative to the unsprung mass 103. The suspension component 116 may be a shock absorber, a spring, or a strut and may be one component of the suspension system 106 of the vehicle assembly 100.


The vehicle assembly 100 also includes a tuned mass damper system 108 (e.g., a vibration absorption system) coupled to the unsprung mass 103. The tuned mass damper system 108 includes a damper mass 110, a spring 112, and a fluid-operated damper 114. The tuned mass damper system 108, or wheel hop damper, is a passive device that is configured to reduce vibration of an external portion to which it is mounted, such as the unsprung mass 103. In the illustrated implementation shown in FIG. 1, the tuned mass damper system 108 is connected to the unsprung mass 103. The damper mass 110 moves with respect to and in response to movement of the unsprung mass 103. Selection of dynamic properties of the spring 112 and the fluid-operated damper 114 can tune the movement of the damper mass 110. The tuned movement of the damper mass 110 is regulated by the spring 112 and the fluid-operated damper 114 to counter vibration of the unsprung mass 103. The spring 112 is connected to the damper mass 110 and the unsprung mass 103 to resist motion of the damper mass 110 away from a neutral position with respect to the unsprung mass 103. The spring 112 also acts to bias the damper mass 110 toward the neutral position with respect to the unsprung mass 103. The neutral position of the damper mass 110 is a rest position with respect to the unsprung mass 103. The damper mass 110 will be located at the neutral position absent application of an external force to the unsprung mass 103. The spring 112 supports the damper mass 110 so that the damper mass 110 can move in two directions with respect to the neutral position (e.g., positive and negative displacements with respect to an axis). The fluid-operated damper 114 is connected to the damper mass 110 and the unsprung mass 103 to resist movement of the damper mass 110 with respect to the unsprung mass 103 (e.g., by resisting movements toward and away from the neutral position).


With reference to FIGS. 2A and 2B, a portion of the vehicle assembly 100 is schematically illustrated. The vehicle assembly 100 may be a conventional road-traveling vehicle such as an automobile, SUV, truck, etc. that is supported by two or more wheel assemblies that each include a wheel and a tire. As an example, the vehicle assembly 100 may be a passenger vehicle. In another example, the vehicle assembly 100 may be a cargo vehicle. In yet another example, the vehicle assembly 100 may be any vehicle such as an airplane, etc. that includes a wheel assembly and for which reduced wheel hop is desired.


In the implementation shown in FIGS. 2A and 2B, the vehicle assembly 100 includes a vehicle body 102, a wheel assembly 104, a brake system 105 that includes a rotor 130 and a caliper 132, the suspension system 106, and the tuned mass damper system 108. The vehicle body 102 includes components that are part of the sprung mass 101 of the vehicle assembly 100. In various implementations, the vehicle body 102 may be a multi-part structure or a unibody structure. The vehicle body 102 includes, in some implementations, a frame, a subframe, a body, a monocoque, and/or other types of vehicle frame and body structures. Various support components such as frame rails, structural pillars, etc. that define internal structural aspects of the vehicle assembly 100 are also included as part of the vehicle body 102. Additionally, external body panels or other external portions of the vehicle are part of the vehicle body 102.


The wheel assembly 104 includes a wheel 118, a tire 120, and a wheel hub 122 and each of the wheel 118, the tire 120, and the wheel hub 122 are conventional components. The wheel 118, in some implementations, is a steel or aluminum wheel that supports the tire 120, which may be a pneumatic tire. The wheel hub 122 is an interface between non-rotating components of the suspension system 106 of the vehicle assembly 100 and rotating components, such as the wheel 118 and the tire 120.


The suspension system 106 includes, in some implementations, the suspension component 116, a suspension knuckle 124 (e.g., a hub retainer or wheel support), an upper control arm 126, and a lower control arm 128. The suspension knuckle 124 is located at least partially inside an internal space of the wheel 118 and serves as a support structure for components of the wheel assembly 104 and the brake system 105. The suspension knuckle 124 is connected to the wheel hub 122 and supports the wheel 118 and the tire 120 to allow the wheel 118 and the tire 120 to rotate with respect to the suspension knuckle 124. The suspension knuckle 124 is also connected to non-rotating components of the brake system 105, such as the caliper 132. Rotating components of the brake system 105, such as the rotor 130, are connected to the wheel hub 122 and/or the wheel 118.


The upper control arm 126 and the lower control arm 128 connect the suspension knuckle 124 to the vehicle body 102. The suspension knuckle 124 is movable relative to the vehicle body 102, primarily in a generally vertical direction (e.g., generally perpendicular to the direction of travel of the vehicle). In one example, the upper control arm 126 and the lower control arm 128 are each connected to the vehicle body 102 and to the suspension knuckle 124 by pivot joints that allow rotation in one or more rotational degrees of freedom. The suspension component 116 is a suspension damper that is configured to regulate motion of the wheel assembly 104 with respect to the vehicle body 102. In various implementations, the suspension component 116 is a shock, a strut, a spring, a linear actuator, or other active suspension component or passive suspension component.


The brake system 105 provides deceleration torque for decelerating the vehicle assembly 100 using friction brake components, such as the rotor 130 and the caliper 132. The caliper 132 is configured to apply a braking force to the rotor 130. In the implementation shown in FIG. 2A, the caliper 132 is positioned at the top of the rotor 130 and above an axis of rotation R of the wheel 118 and the tire 120. In the implementation shown in FIG. 2B, the caliper 132 is positioned at the bottom of the rotor 130 and below the axis of rotation R of the wheel 118 and the tire 120. The position of the caliper 132 corresponds to the open end of the damper mass 110 of the tuned mass damper system 108. For example, the damper mass 110 may be positioned below the caliper 132 in the implementation shown in FIG. 2A, and the damper mass 110 may be positioned above the caliper 132 in the implementation shown in FIG. 2B. The position of the damper mass 110 is shown in FIGS. 3 and 4.


The tuned mass damper system 108 is a passive suspension component that is part of the suspension system 106 of the vehicle assembly 100. The tuned mass damper system 108 is configured to damp vibration of the wheel assembly 104, such as, for example, reducing the occurrence of wheel hop. The tuned mass damper system 108 damps vibration of the wheel assembly 104 by regulating movement of the damper mass 110. By damping vibration of the wheel assembly 104, the tuned mass damper system 108 can reduce a transmission of vibration from the unsprung mass 103 to the sprung mass 101 of the vehicle assembly 100.



FIG. 3 schematically illustrates a side view of the wheel assembly 104. The suspension knuckle 124 connects the upper control arm 126 and the lower control arm 128. The suspension knuckle 124 is also a support structure for the tuned mass damper system 108 and rotating and non-rotating components of the brake system 105, including the caliper 132 and the rotor 130.


In the illustrated implementation, the tuned mass damper system 108 includes the damper mass 110, first spring 112a, second spring 112b, third spring 112c, fourth spring 112d, first fluid-operated damper 114a, and second fluid-operated damper 114b. The damper mass 110 has a first mass portion 142, a second mass portion 144, and a third mass portion 146 that connects the first mass portion 142 and the second mass portion 144. The first mass portion 142, the second mass portion 144, and the third mass portion 146 are geometric features of the tuned mass damper system 108 that promote rotation of the damper mass 110 relative to a longitudinal axis of the vehicle when the vehicle is subjected to impact loads.


The first mass portion 142 includes a first bore 143 that extends generally vertically (e.g., perpendicular to the direction of travel of the vehicle) through the first mass portion 142. The first fluid-operated damper 114a is located within the first bore 143. The first spring 112a and the second spring 112b are mounted coaxially with the first fluid-operated damper 114a. The first spring 112a, the second spring 112b and the first fluid-operated damper 114a extend through the first bore 143. The first spring 112a extends from a first top mount 133 to an upper shoulder of the first bore 143. The second spring 112b extends from a lower shoulder of the first bore 143 to a first bottom mount 135. The upper shoulder of the first bore 143 and the lower shoulder of the first bore 143 act as bearing surfaces for the first spring 112a and the second spring 112b, respectively. The first spring 112a and the second spring 112b surround the first fluid-operated damper 114a and are configured to bias the damper mass 110 (i.e., a moving mass) toward a neutral or rest position of the damper mass 110 with respect to the external portion (e.g., the suspension knuckle 124 or other component of the unsprung mass 103) by acting against the bearing surfaces of the first shoulder and the second shoulder of the first bore 143, the first top mount 133, and the first bottom mount 135. The neutral position is a rest position for the damper mass 110 with respect to the suspension knuckle 124. The damper mass 110 will be located at the rest position absent application of an external force to the external portion (e.g., the suspension knuckle 124). The first fluid-operated damper 114a is configured to regulate motion of the damper mass 110 with respect to the external portion by movement of a fluid between first and second fluid chambers of the first fluid-operated damper 114a. The first fluid-operated damper 114a, the first spring 112a, and the second spring 112b define a first spring and fluid-operated damper assembly that extends at least partially through the first bore 143 in the first mass portion 142 of the damper mass 110 and is configured to regulate motion of the damper mass 110 with respect to an external portion, such as the suspension knuckle 124.


Similarly, the second mass portion 144 includes a second bore 145. The second bore 145 extends generally vertically through the second mass portion 144. The second fluid-operated damper 114b is located within the second bore 145. The third spring 112c and the fourth spring 112d are mounted coaxially with the second fluid-operated damper 114b. The third spring 112c, the fourth spring 112d, and the second fluid-operated damper 114b extend through the second bore 145. The third spring 112c extends from a second top mount 134 to an upper shoulder of the second bore 145. The fourth spring 112d extends from a lower shoulder of the second bore 145 to a second bottom mount 136. The upper shoulder of the second bore 145 and the lower shoulder of the second bore 145 act as bearing surfaces for the third spring 112c and the fourth spring 112d, respectively. The third spring 112c and the fourth spring 112d surround the second fluid-operated damper 114b are configured to bias the damper mass 110 toward the neutral position of the damper mass 110 relative to the externa structure by acting against the upper and lower bearing surfaces of the second bore 145, the second top mount 134 and the second bottom mount 136. The second fluid-operated damper 114b is configured to regulate motion of the damper mass 110 with respect to the external portion by movement of a fluid between first and second fluid chambers of the second fluid-operated damper 114b. The second fluid-operated damper 114b, the third spring 112c, and the fourth spring 112d define a second spring and fluid-operated damper assembly that extends at least partially through the second bore 145 in the second mass portion 144 and is configured to regulate motion of the damper mass 110 with respect to an external portion, such as the suspension knuckle 124.


The third mass portion 146 connects the first mass portion 142 and the second mass portion 144 such that the first mass portion 142, the second mass portion 144, and the third mass portion 146 form a compact, U-shaped configuration of the damper mass 110 that minimizes the stack of hardware components in the wheel assembly 104. The third mass portion 146 forms a bottom of the U-shape with an open end opposite the third mass portion 146. In various implementations the first mass portion 142 has a different shape and size than the second mass portion 144, that is, the first mass portion 142 is larger and has a greater mass than the second mass portion 144. In the implementation illustrated in FIG. 3, the first mass portion 142 is disposed forward of the second mass portion 144 relative to a longitudinal axis A of the vehicle assembly 100. As shown in FIG. 3, the first mass portion 142 is positioned forward of the axis of rotation R of the rotating components of the wheel assembly 104 and the second mass portion 144 is positioned rearward of the axis of rotation R of the rotating components of the wheel assembly 104. The third mass portion 146 is positioned below the axis of rotation R in FIG. 3. In various implementations, the first mass portion 142, the second mass portion 144, and the third mass portion 146 are unitarily formed from a stiff and dense material, such as a metal, so that the damper mass 110 has a mass that is sufficient to counteract vibrations experienced by the wheel assembly 104. While the implementation illustrated in FIG. 3 shows the damper mass 110 as having a U-shaped configuration, it is understood that the damper mass may be formed in other configurations that preserve the position of the first mass portion 142 and the second mass portion 144 on opposite sides of the axis of rotation R of the rotating components of the wheel assembly 104 (e.g., the first mass portion 142 positioned forward of the axis of rotation R and the second mass portion 144 positioned rearward of the axis of rotation R) to facilitate the motion of the first mass portion 142 relative to the second mass portion 144 in response to an applied force to the vehicle body 102.


With continued reference to FIG. 3, the wheel assembly 104 is disposed in a wheel opening defined in the vehicle body 102. The vehicle body 102 includes a first vehicle body portion 102a located forward of the wheel assembly 104 relative to the forward direction of travel of the vehicle and a second vehicle body portion 102b located rearward of the wheel assembly 104 relative to the forward direction of travel of the vehicle. The first vehicle body portion 102a is, in some implementations, a bumper or a forward portion of a wheel well. The first vehicle body portion 102a includes a first engagement portion 150. The first engagement portion 150 is a geometric feature coupled to or extruded from the vehicle body 102 that extends from the vehicle body 102 such that a force applied to the vehicle body 102 causes the first engagement portion 150 to transfer the force applied to the vehicle body 102 to the first mass portion 142 of the damper mass 110. As a result of the force transferred to the first mass portion 142 of the damper mass 110, the tuned mass damper system 108 and the wheel assembly 104 rotate relative to the longitudinal axis of the vehicle body 102. Prior to an impact event, the tuned mass damper system 108 is a non-rotated and non-rotating component of the vehicle assembly 100 (e.g., the tuned mass damper system 108 does not rotate relative to a longitudinal axis of the vehicle). The force applied to the vehicle body 102 may be a side offset impact force such that the force transferred to the first mass portion 142 of the damper mass 110 causes the wheel assembly 104 and the tuned mass damper system 108 to rotate outward (i.e., the front of the wheel assembly 104 rotates away from the longitudinal axis of the vehicle body 102). The first engagement portion 150 is configured to induce rotation of the wheel assembly 104 and the tuned mass damper system 108 during an impact event by interaction with the damper mass 110. Interaction includes the transfer of the force applied to the vehicle body 102 through intervening structures between the first engagement portion 150 and the damper mass 110 of the tuned mass damper system 108 (e.g., during deformation and/or breakage of the intervening structures). The intervening structures include components of the wheel assembly 104 such as the wheel 118 and the tire 120.


The second vehicle body portion 102b is located rearward of the wheel assembly 104 relative to a forward direction of travel of the vehicle and is, in some implementations, a rear portion of a wheel well enclosure of the vehicle body 102. In some implementations, a second engagement portion 152 is coupled to the second vehicle body portion 102b. The second engagement portion 152 is a geometric feature coupled to or extruded from the vehicle body 102 that extends from the vehicle body 102 such that the force applied to the vehicle body 102 causes the second engagement portion 152 to transfer the force applied to the vehicle body 102 to the second mass portion 144 of the damper mass 110. The second engagement portion 152 is configured to induce rotation of the wheel assembly 104 and the tuned mass damper system 108 during the impact event by interaction with the damper mass 110. Interaction includes the transfer of the force applied to the vehicle body 102 through intervening structures between the second engagement portion 152 and the damper mass 110 of the tuned mass damper system 108 (e.g., during deformation and/or breakage of the intervening structures). The intervening structures include components of the wheel assembly 104 such as the wheel 118 and the tire 120. In various implementations, the first engagement portion 150 and the second engagement portion 152 are portions of the tuned mass damper system 108 that cooperatively or together induce outward rotation of the wheel assembly 104 and the tuned mass damper system 108 and cooperatively rotate the wheel assembly 104 from a first position (shown in FIG. 5) to an outwardly rotated position (shown in FIG. 6) upon a frontal force applied to the vehicle body 102. The rotation of the tuned mass damper system 108 results in rotation of the damper mass 110.


In the illustrated implementation, the caliper 132 is positioned relative to the damper mass 110 such that the third mass portion 146 of the damper mass 110 is diametrically opposite the caliper 132 relative to the axis of rotation R of the wheel assembly 104. In various implementations, the caliper 132 is positioned relative to the damper mass 110 such that the third mass portion 146 of the damper mass 110 is generally opposite the caliper 132 in a radial direction and is positioned on an opposite side of the axis of rotation R of the wheel assembly 104. As shown in FIG. 4, the caliper 132 is in a first position that is an upward position relative to the suspension knuckle 124 and the caliper 132 is above the axis of rotation R of the wheel assembly 104. The damper mass 110 is in a second position that is a downward position relative to the suspension knuckle 124 such that the third mass portion 146 of the damper mass 110 is opposite from the caliper 132 and below the axis of rotation R of the wheel assembly 104, e.g., the damper mass 110 does not move relative to an external portion, such as the suspension knuckle 124. In various implementations, as shown in FIG. 4, the caliper 132 is positioned between the first top mount 133 and the second top mount 134.


In various implementations, as illustrated in FIG. 5, a wheel assembly 204 includes the caliper 132 and the damper mass 110 in positions opposite the positions of these components shown in FIG. 4. In this implementation, the caliper 132 is positioned at a bottom position relative to the suspension knuckle 124 and below the axis of rotation R of the wheel assembly 104. The third mass portion 146 of the damper mass 110 is positioned at a top position relative to the suspension knuckle 124 and above the axis of rotation R of the wheel assembly 104. In the illustrated implementation in FIG. 5, the damper mass 110 is positioned in an upside-down U-shape such that the third mass portion 146 is above the caliper 132.


As shown in FIG. 5, the damper mass 110 is oriented such that the second mass portion 144 is forward of the first mass portion 142, that is, the second mass portion 144 is forward of the axis of rotation R of the wheel assembly 104 and the first mass portion 142 is rearward of the axis of rotation R of the wheel assembly 104. In other configurations, the damper mass 110 is oriented as shown in FIG. 4 with the first mass portion 142 forward of the second mass portion 144 relative to the longitudinal axis A of the vehicle, that is, the first mass portion 142 is forward of the axis of rotation R of the wheel assembly 104 and the second mass portion 144 is rearward of the axis of rotation R of the wheel assembly while the third mass portion 146 is below the axis of rotation R of the wheel assembly. In the illustrated configuration, the first engagement portion 150 transfers an impact force to the wheel assembly 204 and through deformation and/or breakage of components of the wheel assembly 204 to the second mass portion 144 of the damper mass 110. The second engagement portion 152 transfers the impact force to the wheel assembly 204 and the first mass portion 142 of the damper mass 110. The first engagement portion 150 and the second engagement portion 152 cooperatively act to rotate the wheel assembly 204 away from the longitudinal axis of the vehicle assembly 100, that is to rotate the wheel assembly 204 outward and away from the longitudinal axis of the vehicle assembly 100.


With reference now to FIG. 5, the wheel assembly 104 is shown in cross-section. The wheel assembly 104 includes the wheel 118 and the tire 120, as well as a wheel hub (not shown) that acts as the interface between non-rotating components of the suspension system 106 of the vehicle assembly 100 and rotating components, such as the wheel 118 and the tire 120. A rotor 130 is connected to the wheel 118 for rotation with the wheel 118 (e.g., the rotor rotates in unison with the wheel 118).


The damper mass 110 includes the first mass portion 142, the second mass portion 144, and the third mass portion 146. The third mass portion 146 extends between the first mass portion 142 and the second mass portion 144 and connects the first mass portion 142 and the second mass portion 144.


The first mass portion 142 has a first curved surface 162 defined at a first end 148 of the damper mass 110. The first curved surface 162 faces a first direction, which is a forward direction as illustrated in FIG. 5, and the first direction is away from the second mass portion 144. The first curved surface 162 also faces laterally inward relative to a lateral axis B of the vehicle body 102. The first curved surface 162 extends vertically, that is, in a plane perpendicular to a lateral direction of the vehicle body 102, from the open end of the damper mass 110 to the third mass portion 146 that forms the closed end, or bottom of the U-shaped configuration, of the damper mass 110. This orientation of the first curved surface 162 of the first mass portion 142 induces rotation of the damper mass 110 and the wheel assembly 104 when the first curved surface 162 receives the force applied to the vehicle body 102 that is transferred through the first engagement portion 150 and the deformation and/or breakage of intervening components of the wheel assembly 104. The first engagement portion 150 has a geometric configuration that is designed to interact, through the intervening components of the wheel assembly 104, with the first curved surface 162 and rotate the first mass portion 142 laterally outward. The geometric configuration of the first engagement portion 150 is a configuration that directs the force applied to the vehicle body 102 to the area on the first curved surface 162 that induces lateral outward rotation of the first mass portion 142 of the damper mass 110. The first curved surface 162 is configured to receive a force applied to the vehicle body 102, such as during a small overlap impact where impact forces are concentrated on a front corner of the vehicle body 102 and rotate the connected wheel assembly 104 outward relative to the longitudinal axis A of the vehicle body 102. The force from the impact event is transferred through the first engagement portion 150 and through the crushable components of the wheel assembly 104 to the damper mass 110 such that the transferred force is applied at an area on the first curved surface 162 to rotate the wheel assembly 104 and tuned mass damper system 108 in a first or outward direction away from a center of the vehicle body 102. The force transferred to the damper mass 110 is applied at the first curved surface 162 of the first mass portion 142 and causes rotation between the first mass portion 142 and the second mass portion 144, that is, the first mass portion 142 rotates relative to the second mass portion 144.


The first mass portion 142 includes a first flat surface 164 that faces the rotor 130. The first flat surface 164 is part of a side surface of the damper mass 110 and is generally planar with the third mass portion 146. The outward facing side surface partially defined by the first flat surface 164 is generally planar and is adjacent to the rotor 130.


The second mass portion 144 includes a second curved surface 166 defined at a second end 149 of the damper mass 110. The second curved surface 166 faces a second direction and opposite direction from the first direction, which is a rearward direction as illustrated in FIG. 5, and the second direction is generally away or an opposite direction from the first mass portion 142. The second curved surface 166 also faces laterally outward relative to the lateral axis B of the vehicle body 102. The second curved surface 166 extends vertically, that is, in a plane perpendicular to a lateral direction of the vehicle body 102, from the open end of the damper mass 110 toward the third mass portion 146 that forms the closed end, or bottom of the U-shaped configuration, of the damper mass 110. This orientation of the second curved surface 166 of the second mass portion 144 induces inward rotation of the damper mass 110 when the second mass portion 144 receives the force applied to the vehicle body 102 that is transferred through the second engagement portion 152 and the deformation and/or breakage of intervening components of the wheel assembly 104. The second curved surface 166 is configured to receive the force applied to the vehicle body 102, such as a force from a small overlap impact, and rotate the connected wheel assembly 104 laterally inward relative to the longitudinal axis A of the vehicle body 102. The force from the impact event is transferred through the second engagement portion 152 and through the crushable components of the wheel assembly 104 to the damper mass 110 such that the transferred force is applied at an area on the second curved surface 166 to rotate the wheel assembly 104 and the tuned mass damper system 108 in a second or laterally inward direction toward a center of the vehicle body 102. In various implementations, the force applied to the vehicle body 102 is transferred by the first engagement portion 150 through the deformable components of the wheel assembly 104 to the first curved surface 162 of the first mass portion 142. The resultant translation and/or rotation of the wheel assembly 104 and the damper mass 110 results in interaction between the second engagement portion 152 and the second curved surface 166 of the second mass portion 144 through the deformable components of the wheel assembly 104. The second mass portion 144 includes a second flat surface 168 positioned on an opposite side of the damper mass 110 away from the rotor 130. In various implementations, the curved and flat surfaces of the first mass portion 142 and the second mass portion 144 are designed for packaging and force transfer considerations.


The third mass portion 146 has a width D in a lateral direction, that is, parallel to the lateral axis B of the vehicle body 102, that is smaller than a width of the first mass portion 142 and a width of the second mass portion 144 such that the third mass portion 146 is thinner in the lateral direction than the first mass portion 142 and the second mass portion 144. In various implementations, the width D of the third mass portion 146 is thinner than a minimum lateral dimension of the first mass portion 142 and a minimum lateral dimension of the second mass portion 144. In some implementations, the width D of the third mass portion 146 is thinner than an adjacent portion of the first mass portion 142 where the first mass portion 142 meets the third mass portion 146. In some implementations, the width D of the third mass portion 146 is thinner than an adjacent portion of the second mass portion 144 where the second mass portion 144 meets the third mass portion 146. The width D is, in some embodiments, a minimum lateral dimension of the third mass portion 146 at a position that is equidistant between the first mass portion 142 and the second mass portion 144. In various implementations, the third mass portion 146 has a cross-sectional area at a position between the first mass portion 142 and the second mass portion 144 that is smaller than other positions within the third mass portion 146 in a plane that extends perpendicular to the longitudinal axis of the vehicle body 102.


The third mass portion 146 is designed to be a deformable and frangible component of the damper mass 110 such that, in the event of an impact, the damper mass 110 separates within the third mass portion 146. In one example, the damper mass 110 is configured to separate by fracturing within the third mass portion 146. The width D of the third mass portion 146 is designed to be at an area where a maximum concentration of stress resultant from the applied force results in separation of the first mass portion 142 from the second mass portion 144 such that there is relative motion between the first mass portion 142 and the second mass portion 144. Stress on the damper mass 110 from the force applied to the vehicle body 102 may be present at different points on the damper mass 110, such as, for example, the area of impact on the first curved surface 162 of the first mass portion 142 by the first engagement portion 150. However, the position within the third mass portion 146 that has a minimum cross-sectional area as compared to other the cross-sectional area of adjacent areas of the third mass portion 146 is one area of high stress concentration that can result in separation of the first mass portion 142 from the second mass portion 144 by fracture at the minimum cross-sectional area of the third mass portion 146 such that the first mass portion 142 moves relative to the second mass portion 144. The area of high stress concentration within the third mass portion 146 depends on the material selection and manufacturing process of the damper mass 110. The selection of the material and manufacturing process of the damper mass 110 is controlled such that the motion of the first mass portion 142 relative to the second mass portion 144 is achieved via separation or fracture at the minimum cross-sectional area of the third mass portion 146.


In various implementations, the first engagement portion 150 is a geometric change to the underlying structure of the vehicle body 102. The first engagement portion 150 is coupled to or formed integrally with the vehicle body 102. The first engagement portion 150 can have any shape, such as a hammer, wedge, or other protrusion configured to transfer an impact force applied to the vehicle body 102 to the wheel assembly 104 and the damper mass 110 of the tuned mass damper system 108. The first engagement portion 150 is positioned forward of the wheel assembly 104. The first engagement portion 150 may be positioned inward of a vehicle bumper or inside a wheel well enclosure such that the first engagement portion 150 is not visible from a position exterior of the vehicle body 102. The first engagement portion 150 is positioned such that the force applied to the vehicle body 102 is transferred to the area on the first curved surface 162 of the first mass portion 142 to induce outward rotation of the damper mass 110 and the attached wheel assembly 104.


Similarly, the second engagement portion 152 is a geometric change to the underlying structure of the vehicle body 102. The second engagement portion 152 is coupled to or integrally formed with the vehicle body 102. The second engagement portion 152 protrudes from the underlying structure of the vehicle body 102 toward the second mass portion 144 of the damper mass 110 and is positioned such that the force applied to the vehicle body 102 is transferred to the area on the second curved surface 166 to induce inward rotation of the damper mass 110 and the attached wheel assembly 104. The second engagement portion 152 is positioned rearward of the wheel assembly 104 and tuned mass damper system 108 and may be inside the wheel well enclosure such that the second engagement portion 152 is not visible from a position exterior of the vehicle body 102.


The damper mass 110 is a generally rigid, noncrushable component, in contrast to the other components of the wheel assembly 104 (e.g., the wheel 118, tire 120) that crush or deform in response to the force applied to the vehicle body 102. FIG. 6 illustrates the reaction of the wheel assembly 104 and the tuned mass damper system 108 in response to an impact force F, such as a small overlap impact, applied to a front corner of the vehicle body 102. The force F is transferred from the first engagement portion 150 to the crushable components of the wheel assembly 104 (e.g., the wheel 118 and the tire 120). The force is applied at the area on the first curved surface 162 of the first mass portion 142 to rotate the wheel assembly 104 and tuned mass damper system 108 in a generally outward direction relative to the longitudinal axis A of the vehicle body 102. The impact force F also translates the wheel assembly 104 rearward such that the second engagement portion 152 contacts the crushable components of the wheel assembly 104. The force from the second engagement portion 152 is transferred through the crushable components and is applied at the area on the second curved surface 166 to further induce rotation of the wheel assembly 104 and tuned mass damper system 108 such that the second end 149 of the damper mass 110 rotates inward and toward the longitudinal axis A of the vehicle body 102. The second engagement portion 152 may function as a reaction surface for the impact force F applied to the vehicle body 102 such that the interaction between the second engagement portion 152 and the second mass portion 144 of the damper mass 110 rotates the wheel assembly 104 away from the longitudinal axis A of the vehicle body 102.


The third mass portion 146 includes a portion of stress concentration C that is positioned anywhere within the third mass portion 146. The portion of stress concentration C is generally where the lateral width D of the third mass portion 146 (shown in FIG. 5) is a minimum width such that a fracture of the damper mass 110 due to the impact force F is likely to occur within the portion of stress concentration C of the third mass portion 146. The portion of stress concentration C is the highest area of stress concentration between part of the first mass portion 142 and the second mass portion 144. The damper mass 110 may include multiple areas of stress concentration, but separation of the first mass portion 142 from the second mass portion 144 due to fracture of the third mass portion 146 is most likely to occur at the portion of stress concentration C.


As described above, one aspect of the present technology is suspension control, which may, in some implementations, include the gathering and use of data available from various sources to customize operation based on user preferences. As an example, such data may identify the user and include user-specific settings or preferences. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter ID's, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.


The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, a user profile may be established that stores user preferences for user comfort levels with regard to, for example suspension system stiffness. Accordingly, use of such personal information data enhances the user's experience.


The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.


Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of storing a user profile for identifying user comfort levels and preferences, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In another example, users can select not to provide data regarding usage of specific applications. In yet another example, users can select to limit the length of time that application usage data is maintained or entirely prohibit the development of an application usage profile. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.


Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.


Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, suspension control can be performed using non-personal information data or a bare minimum amount of personal information, other non-personal information available to the devices, or publicly available information.

Claims
  • 1. A tuned mass damper, comprising: a damper mass including a first mass portion and a second mass portion connected by a third mass portion such that the first mass portion, the second mass portion, and the third mass portion form a U-shaped configuration of the damper mass,wherein the damper mass includes a portion of stress concentration within the third mass portion such that the third mass portion is configured to separate within the portion of stress concentration in response to a force transferred to the damper mass of the tuned mass damper to allow relative motion between the first mass portion and the second mass portion.
  • 2. The tuned mass damper according to claim 1, wherein the third mass portion is thinner in a lateral direction than the first mass portion and the second mass portion.
  • 3. The tuned mass damper according to claim 1, wherein the first mass portion is larger and has a greater mass than the second mass portion.
  • 4. The tuned mass damper according to claim 1, wherein the first mass portion has a first curved surface defined at a first end of the damper mass facing a first direction away from the second mass portion and the second mass portion has a second curved surface defined at a second end of the damper mass facing in a second and opposite direction away from the first mass portion, the force transferred to the damper mass is applied at the first curved surface of the first mass portion, and the damper mass is configured to rotate in response to the force applied at the first curved surface.
  • 5. The tuned mass damper according to claim 4, wherein the force transferred to the damper mass includes a first force applied at the first curved surface of the damper mass and a second force applied at the second curved surface of the damper mass, and the tuned mass damper is configured to rotate in response to the first force applied at the first curved surface and the second force applied at the second curved surface.
  • 6. The tuned mass damper according to claim 1, further comprising: a first spring and fluid-operated damper assembly that is configured to regulate motion of the damper mass with respect to an external portion; anda second spring and fluid-operated damper assembly that is configured to regulate motion of the damper mass with respect to the external portion,wherein the first mass portion includes a first bore and the second mass portion includes a second bore, the first spring and fluid-operated damper assembly extends at least partially through the first bore in the first mass portion, and the second spring and fluid-operated damper assembly extends at least partially through the second bore in the second mass portion.
  • 7. A vehicle assembly defining a longitudinal axis and a lateral axis that is perpendicular to the longitudinal axis, the vehicle assembly comprising: a brake system including a rotor connected to a wheel assembly that includes a wheel and a caliper coupled to a wheel support and configured to apply a braking force to the rotor; anda tuned mass damper coupled to the wheel support, the tuned mass damper comprising a damper mass including a first mass portion, a second mass portion, and a third mass portion extending between the first mass portion and the second mass portion,wherein the caliper is positioned relative to the damper mass such that the third mass portion of the damper mass is diametrically opposite the caliper,wherein the first mass portion has a first curved surface at a first end of the damper mass,wherein the second mass portion has a second curved surface at a second end of the damper mass that is opposite the first end,wherein the first curved surface includes a first portion that faces away from the second mass portion relative to the longitudinal axis and a second portion that faces inward relative to the lateral axis, andwherein the first mass portion and the second mass portion are configured to rotate away from the longitudinal axis in response to a force applied at the first curved surface of the first mass portion.
  • 8. The vehicle assembly according to claim 7, wherein the first mass portion, the second mass portion, and the third mass portion of the damper mass form a U-shaped configuration of the damper mass.
  • 9. The vehicle assembly according to claim 7, further comprising a first engagement portion coupled to a vehicle body, the first engagement portion configured to transfer a force applied to the vehicle body to the first mass portion of the damper mass such that the tuned mass damper and the wheel assembly rotate outward relative to the longitudinal axis of the vehicle assembly.
  • 10. The vehicle assembly according to claim 9, further comprising a second engagement portion coupled to the vehicle body, the second engagement portion configured to transfer the force applied to the vehicle body to the second mass portion of the damper mass such that the first engagement portion and the second engagement portion cooperatively rotate the wheel assembly from a first position to a rotated position relative to the longitudinal axis of the vehicle assembly.
  • 11. The vehicle assembly according to claim 7, wherein a first position of the caliper is an upward position relative to the wheel support such that the caliper is above an axis of rotation of the wheel assembly and a second position of the damper mass is a downward position relative to the wheel support such that the third mass portion is opposite from the caliper relative to the axis of rotation of the wheel assembly.
  • 12. The vehicle assembly according to claim 7, wherein a first position of the caliper is a bottom position relative to the wheel support and a second position of the damper mass is a top position relative to the wheel support.
  • 13. The vehicle assembly according to claim 7, wherein the third mass portion includes a portion of stress concentration for the force applied at the first mass portion of the damper mass.
  • 14. The vehicle assembly according to claim 7, wherein the second curved surface of the second mass portion includes a first portion that faces away from the first mass portion relative to the longitudinal axis and a second portion that faces outward relative to the lateral axis.
  • 15. A vibration absorption system, comprising: a damper mass coupled to a wheel assembly of a vehicle and including a first mass portion and a second mass portion connected by a third mass portion, the first mass portion including a curved surface, wherein a first portion of the curved surface faces away from the second mass portion relative to a longitudinal axis that extends along a length of the vehicle, and wherein a second portion of the curved surface faces inward relative to a lateral axis that is perpendicular to the longitudinal axis; andan engagement portion coupled to a vehicle body of the vehicle and extending toward the wheel assembly, the engagement portion including a geometric feature that is shaped to induce rotation of the wheel assembly away from the longitudinal axis during an impact to the vehicle body by interaction of the geometric feature with the curved surface of the first mass portion.
  • 16. The vibration absorption system according to claim 15, wherein the third mass portion is thinner in a lateral direction than the first mass portion and the second mass portion such that the third mass portion includes a portion of stress concentration such that the third mass portion is configured to separate within the portion of stress concentration in response to the impact to allow relative motion between the first mass portion and the second mass portion.
  • 17. The vibration absorption system according to claim 15, wherein the geometric feature is formed from the vehicle body.
  • 18. The vibration absorption system according to claim 15, further comprising a second engagement portion extending from the vehicle body, wherein the curved surface of the first mass portion is a first curved surface, wherein the second mass portion includes a second curved surface, and wherein the second engagement portion functions as a reaction surface for the impact to the vehicle body and the wheel assembly is configured to rotate away from the longitudinal axis in response to an interaction between the second engagement portion and the second curved surface of the second mass portion of the damper mass.
  • 19. The vibration absorption system according to claim 18, wherein the engagement portion is a first engagement portion positioned forward of the wheel assembly and the second engagement portion is positioned rearward of the wheel assembly, the first engagement portion and the second engagement portion configured to cooperatively induce outward rotation of the wheel assembly upon a frontal force applied to the vehicle body.
  • 20. The vibration absorption system according to claim 15, wherein the curved surface of the first mass portion is a first curved surface, wherein the first curved surface is at a first end of the damper mass, wherein the second mass portion has a second curved surface at a second end of the damper mass that is opposite the first end, and wherein the second curved surface faces outward relative to the lateral axis.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and the benefit of U.S. Provisional Patent Application No. 63/351,070, filed Jun. 10, 2022, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (344)
Number Name Date Kind
2537479 Motte Jan 1951 A
2757938 Crowder Aug 1956 A
2901239 Sethna Aug 1959 A
2913252 Norrie Nov 1959 A
2955841 Faiver et al. Oct 1960 A
3089710 Ernest May 1963 A
3231058 Batchelor et al. Jan 1966 A
3236334 Wallerstein, Jr. Feb 1966 A
3322379 Flannelly May 1967 A
3368824 Julien Feb 1968 A
3441238 Flannelly Apr 1969 A
3781032 Jones Dec 1973 A
3970162 Le Salver et al. Jul 1976 A
4206935 Sheppard et al. Jun 1980 A
4379572 Hedenberg Apr 1983 A
4530514 Ito Jul 1985 A
4537420 Ito et al. Aug 1985 A
4589678 Lund May 1986 A
4613152 Booher Sep 1986 A
4614359 Lundin et al. Sep 1986 A
4634142 Woods et al. Jan 1987 A
4637628 Perkins Jan 1987 A
4643270 Beer Feb 1987 A
4656409 Shimizu Apr 1987 A
4659106 Fujita et al. Apr 1987 A
4784378 Ford Nov 1988 A
4834416 Shimoe et al. May 1989 A
4877098 Asanuma Oct 1989 A
4893832 Booher Jan 1990 A
4922159 Phillips et al. May 1990 A
4926978 Shibata et al. May 1990 A
4960290 Bose Oct 1990 A
4981309 Froeschle et al. Jan 1991 A
4991698 Hanson Feb 1991 A
5027048 Masrur et al. Jun 1991 A
5033028 Browning Jul 1991 A
5060959 Davis et al. Oct 1991 A
5103942 Schmitt Apr 1992 A
5172930 Boye et al. Dec 1992 A
5244053 Kashiwagi Sep 1993 A
5251926 Aulerich et al. Oct 1993 A
5364081 Hartl Nov 1994 A
5392882 Mackovjak et al. Feb 1995 A
5401053 Sahm et al. Mar 1995 A
5409254 Minor et al. Apr 1995 A
5468055 Simon et al. Nov 1995 A
5507518 Nakahara et al. Apr 1996 A
5517414 Hrovat May 1996 A
5612110 Watremez Mar 1997 A
5645250 Gevers Jul 1997 A
5678847 Izawa et al. Oct 1997 A
5785345 Barlas et al. Jul 1998 A
5810335 Wirtz et al. Sep 1998 A
5829764 Griffiths Nov 1998 A
5880542 Leary et al. Mar 1999 A
6032770 Alcone et al. Mar 2000 A
6113119 Laurent et al. Sep 2000 A
6142494 Higuchi Nov 2000 A
6152267 Iwai et al. Nov 2000 A
6170838 Laurent et al. Jan 2001 B1
6233510 Platner et al. May 2001 B1
6249728 Streiter Jun 2001 B1
6260869 Hanlon et al. Jul 2001 B1
6276710 Sutton Aug 2001 B1
6314353 Ohsaku et al. Nov 2001 B1
6357770 Carpiaux et al. Mar 2002 B1
6364078 Parison et al. Apr 2002 B1
6443436 Schel Sep 2002 B1
6470248 Shank et al. Oct 2002 B2
6502837 Hamilton et al. Jan 2003 B1
6513819 Oliver et al. Feb 2003 B1
6634445 Dix et al. Oct 2003 B2
6637561 Collins et al. Oct 2003 B1
6873891 Moser et al. Mar 2005 B2
6926288 Bender Aug 2005 B2
6940248 Maresca et al. Sep 2005 B2
6945541 Brown Sep 2005 B2
7017690 Burke Mar 2006 B2
7032723 Quaglia et al. Apr 2006 B2
7051851 Svartz et al. May 2006 B2
7140601 Nesbitt et al. Nov 2006 B2
7195250 Knox et al. Mar 2007 B2
7202577 Parison et al. Apr 2007 B2
7302825 Knox Dec 2007 B2
7308351 Knoop et al. Dec 2007 B2
7392997 Sanville et al. Jul 2008 B2
7401794 Laurent et al. Jul 2008 B2
7421954 Bose Sep 2008 B2
7427072 Brown Sep 2008 B2
7484744 Galazin et al. Feb 2009 B2
7502589 Howard et al. Mar 2009 B2
7543825 Yamada Jun 2009 B2
7551749 Rosen et al. Jun 2009 B2
7597169 Borroni-Bird et al. Oct 2009 B2
7641010 Mizutani et al. Jan 2010 B2
7644938 Yamada Jan 2010 B2
7654540 Parison et al. Feb 2010 B2
7734384 Konopa et al. Jun 2010 B2
7818109 Scully Oct 2010 B2
7823891 Bushko et al. Nov 2010 B2
7899607 Shin et al. Mar 2011 B2
7932684 O'Day et al. Apr 2011 B2
7962261 Bushko et al. Jun 2011 B2
7963529 Oteman et al. Jun 2011 B2
7976038 Gregg Jul 2011 B2
8047551 Morris et al. Nov 2011 B2
8067863 Giovanardi Nov 2011 B2
8095268 Parison et al. Jan 2012 B2
8099213 Zhang et al. Jan 2012 B2
8109371 Kondo et al. Feb 2012 B2
8112198 Parison, Jr. et al. Feb 2012 B2
8113522 Oteman et al. Feb 2012 B2
8127900 Inoue Mar 2012 B2
8157036 Yogo et al. Apr 2012 B2
8191874 Inoue et al. Jun 2012 B2
8282149 Kniffin et al. Oct 2012 B2
8336319 Johnston et al. Dec 2012 B2
8356861 Kniffin et al. Jan 2013 B2
8360387 Breen et al. Jan 2013 B2
8370022 Inoue et al. Feb 2013 B2
8387762 Kondo et al. Mar 2013 B2
8417417 Chen et al. Apr 2013 B2
8428305 Zhang et al. Apr 2013 B2
8466639 Parison, Jr. et al. Jun 2013 B2
8474801 Ishiguro et al. Jul 2013 B2
8490761 Kondo Jul 2013 B2
8499903 Sakuta et al. Aug 2013 B2
8525453 Ogawa Sep 2013 B2
8548678 Ummethala et al. Oct 2013 B2
8579311 Butlin, Jr. et al. Nov 2013 B2
8598831 Ogawa et al. Dec 2013 B2
8632078 Ehrlich et al. Jan 2014 B2
8641052 Kondo et al. Feb 2014 B2
8641053 Pare et al. Feb 2014 B2
8668060 Kondo et al. Mar 2014 B2
8682530 Nakamura Mar 2014 B2
8701845 Kondo Apr 2014 B2
8725351 Selden et al. May 2014 B1
8744680 Rieger et al. Jun 2014 B2
8744694 Ystueta Jun 2014 B2
8757309 Schmitt et al. Jun 2014 B2
8783430 Brown Jul 2014 B2
8890461 Knox et al. Nov 2014 B2
8930074 Lin Jan 2015 B1
8938333 Bose et al. Jan 2015 B2
9033121 Kazmirski et al. May 2015 B2
9038271 Huang et al. May 2015 B2
9062737 Hoult Jun 2015 B2
9062983 Zych Jun 2015 B2
9079473 Lee et al. Jul 2015 B2
9102209 Giovanardi et al. Aug 2015 B2
9291300 Parker et al. Mar 2016 B2
9316667 Ummethala et al. Apr 2016 B2
9349304 Sangermano et al. May 2016 B2
9399384 Lee et al. Jul 2016 B2
9428029 Job Aug 2016 B2
9533539 Eng et al. Jan 2017 B2
9550495 Tatourian et al. Jan 2017 B2
9625902 Knox Apr 2017 B2
9643467 Selden et al. May 2017 B2
9676244 Giovanardi et al. Jun 2017 B2
9702349 Anderson et al. Jul 2017 B2
9821835 Nieto et al. Nov 2017 B2
9855887 Potter et al. Jan 2018 B1
9868332 Anderson et al. Jan 2018 B2
9884545 Addanki et al. Feb 2018 B1
9909644 Cegar et al. Mar 2018 B2
9975391 Tseng et al. May 2018 B2
10054203 Fida Aug 2018 B2
10065474 Trangbaek Sep 2018 B2
10081408 Yoshida Sep 2018 B2
10093145 Vaughan et al. Oct 2018 B1
10245984 Parker et al. Apr 2019 B2
10300760 Aikin et al. May 2019 B1
10315481 Lu et al. Jun 2019 B2
10377371 Anderson et al. Aug 2019 B2
10378599 Mettrick et al. Aug 2019 B2
10407035 Gadda et al. Sep 2019 B1
10513161 Anderson et al. Dec 2019 B2
10960723 Hall et al. Mar 2021 B1
11078981 Zhang et al. Aug 2021 B2
11285773 Hall et al. Mar 2022 B1
11634167 Dowle Apr 2023 B1
11828339 Hall Nov 2023 B1
12054028 Carter Aug 2024 B1
12168375 Dawson et al. Dec 2024 B1
12215747 Hall et al. Feb 2025 B1
20010045719 Smith Nov 2001 A1
20020190486 Phillis et al. Dec 2002 A1
20030030241 Lawson Feb 2003 A1
20030080526 Conover May 2003 A1
20040054455 Voight et al. Mar 2004 A1
20040074720 Thieltges Apr 2004 A1
20040094912 Niwa et al. May 2004 A1
20040226788 Tanner Nov 2004 A1
20040245732 Kotulla et al. Dec 2004 A1
20050051986 Galazin et al. Mar 2005 A1
20050096171 Brown et al. May 2005 A1
20050199457 Beck Sep 2005 A1
20050206231 Lu et al. Sep 2005 A1
20050211516 Kondo et al. Sep 2005 A1
20050230170 Robinson Oct 2005 A1
20050241899 Rutz et al. Nov 2005 A1
20050247496 Nagaya Nov 2005 A1
20060043804 Kondou Mar 2006 A1
20060076828 Lu et al. Apr 2006 A1
20060119064 Mizuno et al. Jun 2006 A1
20060181034 Wilde et al. Aug 2006 A1
20060266599 Denys et al. Nov 2006 A1
20060273530 Zuber Dec 2006 A1
20070045036 Takeuchi et al. Mar 2007 A1
20070069496 Rinehart et al. Mar 2007 A1
20070107959 Suzuki et al. May 2007 A1
20070114706 Myers May 2007 A1
20070199750 Suzuki et al. Aug 2007 A1
20070210539 Hakui et al. Sep 2007 A1
20080017462 Mizutani et al. Jan 2008 A1
20080100020 Gashi et al. May 2008 A1
20080111334 Inoue et al. May 2008 A1
20080164111 Inoue et al. Jul 2008 A1
20080185807 Takenaka Aug 2008 A1
20080283315 Suzuki et al. Nov 2008 A1
20090033055 Morris et al. Feb 2009 A1
20090064808 Parison et al. Mar 2009 A1
20090071743 Gashi Mar 2009 A1
20090095584 Kondo et al. Apr 2009 A1
20090120745 Kondo et al. May 2009 A1
20090121398 Inoue May 2009 A1
20090173585 Kappagantu Jul 2009 A1
20090174158 Anderson et al. Jul 2009 A1
20090198419 Clark Aug 2009 A1
20090218867 Clark Sep 2009 A1
20090243402 O'Day et al. Oct 2009 A1
20090243598 O'Day Oct 2009 A1
20090273147 Inoue et al. Nov 2009 A1
20090286910 Bloomfield Nov 2009 A1
20090302559 Doerfel Dec 2009 A1
20090321201 Sakuta et al. Dec 2009 A1
20100044977 Hughes et al. Feb 2010 A1
20100059959 Kim Mar 2010 A1
20100116572 Schmitt et al. May 2010 A1
20100200343 Kondo et al. Aug 2010 A1
20100207344 Nakamura Aug 2010 A1
20100222960 Oida et al. Sep 2010 A1
20100230876 Inoue et al. Sep 2010 A1
20100252376 Chern et al. Oct 2010 A1
20100253019 Ogawa Oct 2010 A1
20110115183 Alesso et al. May 2011 A1
20110209938 Basadzishvili Sep 2011 A1
20110226570 Ludwig Sep 2011 A1
20110250477 Yoshida et al. Oct 2011 A1
20110277241 Schejbal Nov 2011 A1
20120013277 Ogawa Jan 2012 A1
20120059547 Chen et al. Mar 2012 A1
20120109483 O'Dea et al. May 2012 A1
20120153718 Rawlinson et al. Jun 2012 A1
20120181757 Oteman et al. Jul 2012 A1
20120187640 Kondo et al. Jul 2012 A1
20120193847 Muragishi et al. Aug 2012 A1
20120305348 Katayama et al. Dec 2012 A1
20120306170 Serbu et al. Dec 2012 A1
20130032442 Tuluie Feb 2013 A1
20130037362 Gartner et al. Feb 2013 A1
20130060422 Ogawa et al. Mar 2013 A1
20130060423 Jolly Mar 2013 A1
20130087420 Fraley et al. Apr 2013 A1
20130106074 Koku et al. May 2013 A1
20130112514 Hanna et al. May 2013 A1
20130221625 Pare et al. Aug 2013 A1
20130229074 Haferman et al. Sep 2013 A1
20130233632 Kim et al. Sep 2013 A1
20130253764 Kikuchi et al. Sep 2013 A1
20130277155 Huang et al. Oct 2013 A1
20130341143 Brown Dec 2013 A1
20140001687 Braman et al. Jan 2014 A1
20140005888 Bose et al. Jan 2014 A1
20140145498 Yamakado et al. May 2014 A1
20140156143 Evangelou et al. Jun 2014 A1
20140260233 Giovanardi et al. Sep 2014 A1
20140312580 Gale Oct 2014 A1
20140358378 Howard et al. Dec 2014 A1
20150047933 Keil et al. Feb 2015 A1
20150123370 Lee et al. May 2015 A1
20150197130 Smith et al. Jul 2015 A1
20150224845 Anderson et al. Aug 2015 A1
20150231939 Yamamotoya et al. Aug 2015 A1
20150231942 Trangbaek et al. Aug 2015 A1
20150343876 Yoshizawa et al. Dec 2015 A1
20150354647 Tironi et al. Dec 2015 A1
20160059658 Kuriki Mar 2016 A1
20160096458 Parker et al. Apr 2016 A1
20160159187 Mohamed Jun 2016 A1
20160167743 Melcher Jun 2016 A1
20160200164 Tabata et al. Jul 2016 A1
20160291574 Parison Oct 2016 A1
20160339823 Smith et al. Nov 2016 A1
20160347143 Hrovat et al. Dec 2016 A1
20170047823 Sangermano, III et al. Feb 2017 A1
20170100980 Tsuda Apr 2017 A1
20170129367 Hein May 2017 A1
20170129371 Knox May 2017 A1
20170129372 Hein et al. May 2017 A1
20170129373 Knox et al. May 2017 A1
20170137023 Anderson et al. May 2017 A1
20170144501 Wall May 2017 A1
20170203673 Parker et al. Jul 2017 A1
20170240018 Mettrick et al. Aug 2017 A1
20170241504 Delorenzis et al. Aug 2017 A1
20170253101 Kuriki Sep 2017 A1
20170253155 Knox et al. Sep 2017 A1
20180015801 Mohamed et al. Jan 2018 A1
20180022178 Xi Jan 2018 A1
20180029585 Tanimoto Feb 2018 A1
20180056748 Grimes Mar 2018 A1
20180056767 Dolgov et al. Mar 2018 A1
20180065438 Ogawa et al. Mar 2018 A1
20180079272 Aikin Mar 2018 A1
20180089901 Rober et al. Mar 2018 A1
20180105082 Knox Apr 2018 A1
20180126816 Kondo et al. May 2018 A1
20180134111 Toyohira et al. May 2018 A1
20180162186 Anderson et al. Jun 2018 A1
20180162187 Trangbaek Jun 2018 A1
20180195570 Churchill et al. Jul 2018 A1
20180208009 McGuire et al. Jul 2018 A1
20180222274 Davis et al. Aug 2018 A1
20180297587 Kasaiezadeh Mahabadi et al. Oct 2018 A1
20180345747 Boon et al. Dec 2018 A1
20180370314 Higle Dec 2018 A1
20190011004 Mettrick et al. Jan 2019 A1
20190023094 Panagis et al. Jan 2019 A1
20190118604 Suplin et al. Apr 2019 A1
20190248203 Krehmer et al. Aug 2019 A1
20190308484 Belter et al. Oct 2019 A1
20200088214 Woodard et al. Mar 2020 A1
20200171907 Hall et al. Jun 2020 A1
20200180386 Tabata et al. Jun 2020 A1
20200216128 Doerksen Jul 2020 A1
20210061046 Simon et al. Mar 2021 A1
20210070129 Keil Mar 2021 A1
20210199169 Morton et al. Jul 2021 A1
20210252935 Belter et al. Aug 2021 A1
20220250432 Hawkins Aug 2022 A1
20220388364 Fowle et al. Dec 2022 A1
Foreign Referenced Citations (49)
Number Date Country
108215946 Jun 2018 CN
208439009 Jan 2019 CN
111139730 Jun 2021 CN
109955704 Aug 2021 CN
115560031 Jan 2023 CN
115637638 Jan 2023 CN
4037223 Oct 1991 DE
19853876 May 2000 DE
19850169 Jul 2000 DE
102009060213 Jun 2011 DE
102010030700 Jan 2012 DE
102010041404 Mar 2012 DE
202012002846 Jul 2012 DE
102012004682 Sep 2013 DE
102015003530 Sep 2016 DE
102016000686 Jul 2017 DE
102016112240 Jan 2018 DE
102018208774 Dec 2019 DE
0344923 Dec 1989 EP
1693233 Apr 2009 EP
2072855 Jun 2009 EP
2233330 Feb 2013 EP
3088230 Nov 2016 EP
2976544 Nov 2018 EP
2220625 Jan 1990 GB
2437633 Oct 2007 GB
2539866 Jan 2017 GB
S61155211 Sep 1986 JP
H06183365 Jul 1994 JP
2004155258 Jun 2004 JP
2005289321 Oct 2005 JP
2006200734 Aug 2006 JP
2012002300 Jan 2012 JP
2012167757 Sep 2012 JP
2013244841 Dec 2013 JP
5796315 Oct 2015 JP
20060064917 Jun 2006 KR
101509600 Apr 2015 KR
20170095073 Aug 2017 KR
9304883 Mar 1993 WO
2011148792 Dec 2011 WO
2012028228 Mar 2012 WO
2014004118 Jan 2014 WO
2014004119 Jan 2014 WO
2014094934 Jun 2014 WO
2015153811 Oct 2015 WO
2015169530 Nov 2015 WO
2016120044 Aug 2016 WO
2017055151 Apr 2017 WO
Non-Patent Literature Citations (17)
Entry
Baumann et al., Protective device for protecting body of passenger car against impact during collision, has gliding wedge including support surface, which outwardly deflects vehicle wheel, Sep. 12, 2013, EPO, DE 10 2012 004 682 A1, Machine Translation of Description (Year: 2013).
Collins, S., “J Dampers in Formula One—Racecar Engineering”, Downloaded Apr. 18, 2023, https://www.racecar-engineering.com/articles/f1/understanding-the-j-damper/ (4 pp).
SAE International, “Michelin re-invents the wheel”, Oct. 14, 2008, Downloaded Sep. 7, 2017, http://articles.sae.org/4604/ (2 pp).
Monroe Intelligent Suspension, “CVSA2/KINETIC: Low Energy For High Performance”, www.monroeintelligentsuspension.com/products/cvsa2-kinetic/, Date Unknown, Downloaded Mar. 2, 2017, 2 pp.
Tenneco, “Integrated Kinetic, H2 CES System, Ride Control Innovation, Accelerated”, Rev. Sep. 2011, 4 pp.
porsche.com, “Porsche AG: Porsche 918 RSR—Racing Laboratory With Even Higher-Performance Hybrid Drive—Porsche USA”, Current Press Releases dated Jan. 10, 2011, Downloaded Mar. 13, 2017, www. porsche.com/usa/aboutporsche/pressreleases/pag/?pool=international-de&id-2011-01-10, 6 pp.
autoblog.com, “Porsche (finally) Unleashes Full, Official Details in 918 Spyder—Autoblog”, Sep. 9, 2013, www.autoblog.com/2013/09/09/porsche-official-detials-918-spyder-frankfurt/, Downloaded Mar. 13, 2017, 26 pp.
press.porsche.com, “Introducing the Porsche 918 Spyder”, Date Unknown, http://press.porsche.com/news/release.php?id-787, Downloaded Mar. 13, 2017, 7 pp.
Edren, Johannes, “Motion Modelling and Control Strategies of Over-Actuated Vehicles”, Doctoral Thesis, Stockholm 2014 (56 pp).
Bolognesi, P., et al., “FEM Modeling and Analysis of a Novel Rotary-Linear Isotropic Brushless Machine”, XIX International Conference of Electrical Machines—ICEM 2010, Rome (6 pp).
Xu, Lei, et al., “Design and Analysis of a Double-Stator Linear-Rotary Permanent-Magnet Motor”, IEEE Transactions on Applied Superconductivity, vol. 26, No. 4, Jun. 2016, (4 pp).
daimler.com, “Suspension: The world's first suspension system with ‘eyes’”, https://media.daimler.com/marsMediaSite/en/instance/ko/Suspension-The-worlds-first-suspension-system-with-eyes.xhtml?oid=9904306, May 15, 2013 (6 pp).
youtube.com., KSSofficial, “Miniature Ball Screw With Ball Spline / English”, Published on May 10, 2013, https://www.youtube.com/watch?v=vkcxmM0iC8U (2 pp).
Nippon Bearing, “Ball Screw Spline SPBR/SPBF”, Product Description, Date Unknown, Downloaded Jun. 28, 2019, https://www.nbcorporation.com/shop/ball-spline/spbr-spbf/ (2 pp).
Wikipedia, “Trailing-arm suspension”, https://en.wikipedia.org/wiki/Trailing-arm_suspension, downloaded Sep. 3, 2019 (2 pp).
Cosford, J., “Is it a fair fight? Hydraulics vs. electrics”, https://www.mobilehydraulictips.com/fair-fight-hydraulics-vs-electrics/, Mar. 28, 2014 (10 pp).
International Search Report and Written Opinion in Intl App No. PCT/US2022/027040 mailed Jul. 5, 2022 (15 pp).
Related Publications (1)
Number Date Country
20230398826 A1 Dec 2023 US
Provisional Applications (1)
Number Date Country
63351070 Jun 2022 US