The present invention relates to a vibration and noise reducing pad. More specifically, the invention relates to a pad for positioning under a machine, such as for example, an air conditioner unit, a furnace, a heater, a refrigerator or washing and drying machines, and which supports the machine and absorbs the vibration and noise that emanate from the machine.
Heating, ventilation and air conditioning equipment are generally large machines with numerous mechanical parts on the inside such as compressors, condensers, heaters, evaporators, fans and motors to name just a few. The functioning of the parts inside these machines is generally loud and causes a significant amount of vibration. In many of these machines, vibration from a compressor, fan or motor often causes soldered joints to break and oftentimes to leak refrigerant of other fluids (some which may be caustic) which can lead to rapid degradation of components inside the unit. The breakage and degradation of these internal components often require costly unnecessary repairs and may also lead to possible damage to the ozone layer. Additionally, the operation of these machines is generally very noisy.
Oftentimes, these large machines are placed directly on a surface such as the floor in a home or on the grass outside a house. Other times, these machines are elevated off the floor surface and sit on a block or slab of material such as concrete, foam, fiberglass, plastic or wood. The slab keeps the machine off the floor so as to avoid coming in contact with water in the event there is a flood, and oftentimes to provide some degree of cushioning.
The invention provides a base pad for supporting mechanical machines and is configured such that it reduces the noise and vibration emanating from these machines. Additionally, the configuration of the pad in accordance with the present invention provides for the efficient run-off and/or draining of any moisture generated from under the machine unit.
In addition to saving the machine unit from damage caused by floor water, the inventive pad plays a vital role in extending the life of the unit since it reduces the vibration of the unit caused by its internal components. Furthermore, the inventive pad reduces the noise generated by the machine unit thus rendering the machine more amenable to various interior locations inside a home or office.
In accordance with the present invention, the inventive pad is composed entirely from rubber shredded from used tires. Rubber from used tires provides a very cost-effective and environmentally friendly material from which the inventive pads are constructed. It is known that the disposal of scrap or used tires poses a serious threat to our environment. Unlike other waste products, tires do not readily break down in air or soil. It has been estimated that three billion tires have been discarded into U.S. dumps and land fills. Often, whole tires are simply piled onto vacant space within the dump, creating an eyesore. There, the inner cavities of these tires collect rain water and provide a breeding ground for mosquitoes. As a further hazard, the discarded tires in these piles are often worn to the point where their reinforcing wires are exposed. The exposed wire can injure persons handling the tires or children that attempt to climb the piles. In other instances, the tires are buried. Chemical reactions between the tires, soil, and air trapped in the cavity can create sufficient heat to ignite the tires, creating a dangerous fire hazard. For these reasons, there have been many attempts to recycle tires into useful products.
The pad in accordance with the present invention is molded and formed from 100% comminuted rubber tires. The overwhelming majority of the tires used in preparing these pads will come from waste dumps and recycle centers. As such, the use of these tires in the manufacture of the inventive pad in accordance with the present invention provides an extremely valuable use for a very undesirable waste product and as such eliminates a troublesome disposal problem and environmental nuisance.
The above and other features of the invention, including various novel details of construction and combinations of parts, will now be more particularly described with reference to the accompanying drawings and pointed out in the claims. It will be understood that the particular device embodying the invention is shown by way of illustration only and not as a limitation of the invention. The principles and features of this invention may be employed in various and numerous embodiments without departing from the scope of the invention.
These and other features, aspects, and advantages of the apparatus and methods of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
A monolithic pad 10 in accordance with one embodiment of the present invention is illustrated in
In
Pad 10 may be provided in a wide range of sizes depending upon the size and weight of the machine to be placed upon it. It is anticipated that pad 10 be provided in sizes ranging from approximately 1 ft×1 ft to approximately 6 ft×6 ft though the invention is not limited with respect to the size of the pad.
In use, pad 10 can be placed on a surface in new constructions, beneath a new unit, used to replace the block, slab or support pad of an existing unit, or placed on top of an existing pad. Pad 10 may have a variety of different thicknesses which can depend upon that size and weight of machine it is supporting, as well as the degree of vibration and/or noise to be abated. Pad 10 is generally lightweight for easy handling. Without being limited to a specific thickness, it is intended that pad 10 may have a thickness in the range of from approximately ½ inch to approximately 6 inches in order to provide a stable, level platform. Side surfaces 16 may be substantially vertical or may be slanted outward. When side surfaces 16 slant outward, underside 14 has a surface area greater than that of upper side 12.
Pad 10 is comprised of shredded or comminuted rubber from tires. The shredded rubber from tires which may be obtained from waste dumps and recycling facilities (i.e. scrap tires), is heat-pressed into various sizes. A mold or cast (not shown) is generally used to provide the channels 18 and cups 20 on upper side 12 and underside 14 of pad. The shredded rubber may then be heated and then poured, injected and/or pressed into the mold. In one embodiment, the mold will include ribs and nubs on the internal surfaces to form channels 18 and pockets 20 on pad 10. Upon cooling, the mold is removed to provide a pad 10 having a desired size based on the mold used, and having channels 18 and pockets 20 as described hereinabove. Pad 10 made from 100% comminuted rubber tires will not crack, break or rot.
While there has been shown and described what is considered to be preferred embodiments of the invention, it will, of course, be understood that various modifications and changes in form or detail could readily be made without departing from the spirit of the invention. It is therefore intended that the invention be not limited to the exact forms described and illustrated, but should be constructed to cover all modifications that may fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1628090 | Weiss | May 1927 | A |
1948327 | Berwick | Feb 1934 | A |
2512310 | Corson | Jun 1950 | A |
2534137 | Lewis | Dec 1950 | A |
2667654 | Goessele et al. | Feb 1954 | A |
2975089 | Hargreaves | Mar 1961 | A |
3026224 | Rogers, Jr. | Mar 1962 | A |
3436042 | Van Goubergen | Apr 1969 | A |
3459400 | Rothermel | Aug 1969 | A |
3817939 | Allen | Jun 1974 | A |
4002315 | Van Goubergen | Jan 1977 | A |
4273213 | Munz | Jun 1981 | A |
4493471 | McInnis | Jan 1985 | A |
4709781 | Scherzer | Dec 1987 | A |
5209968 | Sweeney | May 1993 | A |
5221702 | Richards | Jun 1993 | A |
5268226 | Sweeney | Dec 1993 | A |
5367007 | Richards | Nov 1994 | A |
5573220 | Whittaker et al. | Nov 1996 | A |
5664394 | Sweeney | Sep 1997 | A |
5728458 | Sweeney | Mar 1998 | A |
5762312 | Whittaker | Jun 1998 | A |
5925296 | Leese | Jul 1999 | A |
5950980 | Folmar | Sep 1999 | A |
6050539 | Millen | Apr 2000 | A |
6171540 | Ibaragi | Jan 2001 | B1 |
6583211 | Wayts | Jun 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20060163440 A1 | Jul 2006 | US |