The present invention relates to a power tool. More specifically, the present invention relates to a vibration dampener for a power tool.
Hand-held power tools, for example, power hammers, drills and saws are typically powered by an electric motor. Such powered tools may alternately be powered by pneumatic motors. The motors generate vibrations and frequently some tools, for example cutting tools such as saws, may generate vibrations as well. The vibrations from the tools and motors of power tools migrate toward the handles and cause fatigue as well as interference with the control of the power tool.
Attempts have been made to minimize the effect of vibration by, for example, providing padded handles or other low cost devices to dampen some of the vibrations. The use of a padded handle may not be effective in reducing the vibration to a sufficient level to minimize fatigue of an operator. There is, thus, a need to find a solution to a problem that is cost effective and also conforms to new regulations. Such new regulations exist, for example, in the European Union.
Further, the use of a vibration isolation system that provides the operator lateral stability and torsion control over the tool when shear and compression loads are present is desirable.
The vibration dampened handle of the present invention is used on, for example, a hand tool that may have a two piece housing that is split along a transverse handle axis and the longitudinal axis of the hand tool. In general, the vibration reducing feature may be in the form of a compressive, resilient material that is positioned between the motor and the handle to isolate the motor vibration from the handle. In particular, the vibration reducing feature is in the form of four hollow cylindrical compressible, resilient dampeners positioned in interference in openings between tubular bosses and pockets in the housing halves, with two bosses and two pockets in each housing half.
The dampeners absorb mechanical energy as it is transferred from the body of the tool to the handle portion. One handle portion of the two piece handle housing is secured to the other handle portion by two spaced apart cap screws. Each screw fits into a boss on each housing half, with the dampeners surrounding the bosses. In an alternate configuration the central openings of the dampeners are in interference with the bosses in the housing as well.
The present invention provides a vibratory tool which has cylindrical vibration dampeners to isolate the handle from vibration generated by the vibration tool in vibrations induced during cutting applications.
An embodiment of the invention provides a power tool including a tool body and a handle composed of two halves mounted to the tool body at two upper vibration isolation joints and two lower isolation joints. The four joints provide the means of absorption in isolation of vibrations by allowing the handle to move relative to the tool body while giving the operator lateral stability and torsion control over the tool. The tool body has clearance all the way around the handle to avoid any contact between the handle and the tool body.
Each joint of the four joints has a cylindrical dampener element that is captured between the tool body and the handle. The cylindrical element can be captured in at least two different ways. The first way is to capture the cylindrical dampener element by having a tight fit between a cylindrical pocket on a tool body and the outside of the cylindrical dampener element at the same time having a tight fit between cylindrical pocket and the outside diameter of the cylindrical dampener element. In addition, the cylindrical dampener element bottoms onto a rim in the tool body and an interior wall of the handle housing. This first configuration will allow the cylindrical dampener element to isolate and absorb vibrations under shear conditions.
The present invention may include a further embodiment that provides a power tool including a tool body and a handle composed of two halves similar to the first-mentioned embodiment. In the second embodiment the cylindrical dampener central opening is tightened against the bosses for supporting the fasteners. This configuration allows the cylinder to isolate and absorb vibrations under compression conditions. The device includes screw bosses going through the center of the cylindrical dampeners. These screw bosses provide a safety feature against separation of the handle from the motor.
The proposed embodiments of the present invention including the arrangement of the dampener or isolators allows for a very easy assemble. The dampeners can be put into position while the two clam shells are open. Later the clam shells are closed around the motor housing. This simple assembly and the fact that the proposed dampeners or isolators can all be made of the same material size and shape allows for a cost effective design.
Depending on the characteristics of the vibrations, in another aspect of the present inventions, a different stiffness may be used for the upper and lower dampener elements, allowing for an optimal reduction of the vibration levels that are transferred to the user's hand.
In one embodiment of the invention, a power tool is provided. The power tool includes a body and a housing surrounding at least a portion of the body. The power tool also includes a first isolator positioned between the body and the housing and in contact with the body and the housing. The power tool also includes a first fastener connected to the housing to position the first isolator with respect to the housing.
According to an aspect of the invention, the power tool also includes a second isolator positioned between the body and the housing and in contact with the body and the housing and a second fastener connected to the housing to position the second isolator with respect to the housing.
According to another aspect of the invention, the body includes a first boss defining a first pocket. The first pocket receives at least a portion of the first isolator. The body includes a second boss defining a second pocket for receiving at least a portion of the second isolator. The housing defines a first cavity positioned adjacent the first boss and a second cavity positioned adjacent the second boss. The housing defines the first cavity and the second cavity providing a restraint for the first boss and the second boss.
According to another aspect of the invention, the first isolator and the second isolator have substantially the same dimensions.
According to another aspect of the invention, the first isolator and the second isolator are made of resilient, compressible materials. The first isolator has a first isolator stiffness and the second isolator has a second isolator stiffness. The first isolator stiffness being substantially different than the second isolator stiffness.
According to another aspect of the invention, the first isolator and the second isolator have substantially the same dimensions.
According to another aspect of the invention, the body defines a pocket for receiving at least a portion of the first isolator.
According to another aspect of the invention, the pocket of the body is generally cylindrical.
According to another aspect of the invention, the body defines a rim extending inwardly from the pocket. The power tool also includes a second isolator. The pocket of the body is adapted for receiving at least a portion of the second isolator. The rim separates the first isolator from the second isolator.
According to another aspect of the invention, the first isolator has a generally cylindrical shape.
According to another aspect of the invention, the housing defines a boss having an opening therein for receiving at least a portion of the first fastener.
According to another aspect of the invention, the first isolator defines an opening the isolation and the boss is positionable at least partially in the opening of the first isolator.
According to another aspect of the invention, the isolator is spaced from the boss.
According to another aspect of the invention, the body defines a rim extending inwardly from the pocket. The power tool also includes a second isolator defining an opening through the isolator. The pocket of the body is adapted for receiving at least a portion of the second isolator. The rim separates the first isolator from the second isolator.
According to another aspect of the invention, the first isolator and the second isolator have generally cylindrical shapes. The cylindrical outer peripheries of the first isolator and the second isolator closely conform to the pocket of the body. The outer periphery of the boss is generally cylindrical and the openings of the first isolator and the second isolator are adapted to receive the outer periphery of the boss.
According to another aspect of the invention, the outer periphery of the boss is spaced from the first isolator and the second isolator.
According to another aspect of the invention, the housing includes a first component and a second component connected to the first portion by the first fastener.
According to another aspect of the invention, the first component defines a first planar surface. The second component defines a first planar surface and the first component and the second component are connected at the planar surfaces.
According to another aspect of the invention, the power tool also includes a motor connected to the housing.
According to another aspect of the invention, the motor is an electric motor.
According to another aspect of the invention, the motor is a pneumatic motor.
In another embodiment, a power tool is provided with a body and a housing surrounding at least a portion of the body. The power tool also includes a first isolator positioned between the body and the housing and in contact with the body and the housing. The power tool also includes a first fastener connected to the housing to position the first isolator with respect to the housing. The power tool also includes a second isolator positioned between the body and the housing and in contact with the body and the housing.
According to another aspect of the invention, the body defines a pocket for receiving at least a portion of the first isolator. The housing defines a boss having an opening therein for receiving at least a portion of the first fastener. The first isolator defines an opening and the second isolator defines an opening. The boss is positionable at least partially in the opening of the first isolator and at least partially in the opening of the second isolator.
According to another aspect of the invention, the body defines a rim extending inwardly from the pocket and the pocket of the body is adapted for receiving at least a portion of the second isolator.
According to another aspect of the invention, t the body defines a rim extending inwardly from the pocket and the rim separates the first isolator from the second isolator.
According to another aspect of the invention, the first isolator and the second isolator have generally cylindrical shapes. The cylindrical outer peripheries of the first isolator and the second isolator closely conform to the pocket of the body. The outer periphery of the boss is generally cylindrical and the openings of the first isolator and the second isolator are adapted to receive the outer periphery of the boss.
In yet another embodiment, a power tool is provided with a body defining a first pocket and a spaced apart second pocket. The power tool also includes a housing surrounding at least a portion of the body and a first isolator positioned between the body and the housing and in contact with the body and the housing. The first pocket of the body receives at least a portion of the first isolator. The first isolator defines an opening through the first isolator. The power tool also includes a second isolator positioned between the body and the housing and in contact with the body and the housing. The second pocket of the body receives at least a portion of the second isolator. The second isolator defines an opening through the second isolator.
The power tool also includes a first fastener connected to the housing to position the first isolator with respect to the housing. At least a portion of the first fastener is positionable in the opening of the first isolator. The power tool also includes a second fastener connected to the housing to position the second isolator with respect to the housing. At least a portion of the second fastener is positionable in the opening of the second isolator.
According to another aspect of the invention, the first isolator and the second isolator have generally cylindrical shapes. The cylindrical outer peripheries of the first isolator and the second isolator closely conform to the first pocket of the body and to the first pocket of the body, respectively.
According to another aspect of the invention, the housing defines a first boss having an opening therein for receiving at least a portion of the first fastener; at least a portion of the first boss is positionable in the opening of the first isolator. The housing defines a second boss having an opening therein for receiving at least a portion of the second fastener. At least a portion of the second boss is positionable in the opening of the second isolator.
According to another aspect of the invention, the first isolator and the second isolator have generally cylindrical shapes. The cylindrical outer peripheries of the first isolator and the second isolator closely conform to the first pocket of the body and to the first pocket of the body, respectively. The outer periphery of the first boss is generally cylindrical and the openings of the first isolator and the second isolator are adapted to receive the outer periphery of the first boss and the outer periphery of the second boss, respectively.
The technical advantages of the present invention include the ability to use the same dampeners in multiple locations. For example, according to an aspect of the present invention a power tool is provided including a body and a housing surrounding at least a portion of the body. A first isolator is positioned between the body and the housing. The first isolator is in contact with the body and the housing. The power tool also includes a first fastener connected to the housing to position first isolator with respect to the housing.
The power tool also includes a second isolator positioned between the body and the housing in contact with the body and the housing. The power tool also includes a second fastener connected to the housing to position the second isolator with respect to the housing. The first isolator and the second isolator may have substantially the same dimensions. When the first isolator and second isolator have substantially the same dimensions, these same dampeners may be utilized in multiple locations. Thus, the present invention provides for use of the same dampeners in multiple locations.
The technical advantages of the present invention further include the ability to provide for very easy assembly. For example, according to an aspect of the present invention a power tool is provided including a body and a housing surrounding at least a portion of the body. A first isolator is positioned between the body and the housing and is in contact with the body and the housing. A first fastener is attached to the housing to position the first isolator with respect to the housing.
For example the dampeners can be put in position while the two handle housing halves or clam shells are open. Later the clam shells may be closed around the housing. Further, the proposed dampeners or isolators may all have an identical cylindrical shape to allow for a very cost effective design. Thus, the present invention provides for a very easy assembly of a power tool.
The technical advantages of the present invention further include the ability to provide isolators with different stiffness to optimize vibration reduction. For example, according to another aspect of the present invention a power tool is provided including a housing, a body, a first isolator and a first fastener. The housing is surrounded by at least a portion of the body and the first isolator is positioned between the body and the housing and in contact with the body and the housing. The first fastener is connected to the housing to position the first isolator with respect to the housing.
The power tool also includes a second isolator positioned between the body and the housing and in contact with the body and the housing as well as a second fastener connected to the housing to position the second isolator with respect to the housing. The first isolator and the second isolator are made of resilient, compressible materials. The first isolator has a first isolator stiffness and the second isolator has a second isolator stiffness. The first isolator stiffness is substantially different from the second isolator stiffness. For example, the upper dampeners and the lower dampener elements may have different stiffness to allow for an optimal reduction of vibration levels that are transferred to the user's hand. Thus, the present invention provides for isolators with different stiffness to optimize vibration reduction.
The technical advantages of the present invention further include the ability to provide a safety feature against separation of the handle from the motor housing. For example, according to an aspect of the present invention, a power tool is provided including a housing, a body, first and second isolators, and first and second fasteners. The housing includes a boss with a longitudinal opening for receiving a fastener. The boss is positioned at least partially in the opening of the first isolator. The body has a rim extending inwardly from the boss. The power tool also includes a second isolator and the pocket is adapted to receive at least a portion of the second isolator. The first and second isolators may have a generally cylindrical shape and the peripheries of the isolators closely conform to the pocket of the bodies. The outer periphery of the boss is cylindrical and the openings of the isolators are adapted to receive the outer peripheries of the boss. The bosses and the fasteners cooperate with the pockets of the body to provide a safety feature against separation of the handle from the motor housing. The screw bosses go through the center of the cylindrical isolators. The screw bosses provide a safety feature against separation of the handle from the motor housing. The safety elements provide a safe connection between the handle and the motor housing. Thus, the present invention provides for a safety feature against separation of the handle from the motor housing.
The technical advantages of the present invention further include the ability to isolate and absorb vibration under the compression condition. For example, according to another aspect of the present invention a power tool including a body, a housing, a first isolator, and a first fastener are provided. The first isolator defines an opening in the isolator and the housing defines a boss having an opening for positioning the first fastener. The body defines a body boss defining a pocket in the boss to receive the first isolator. A rim extends from the boss. The power tool also includes a second isolator defining an opening. The pocket of the body boss is adapted to receive the second isolator. The first isolator and the second isolator have cylindrical shapes and the peripheries of the isolators closely conform to the pocket. The outer periphery of the boss is generally cylindrical and the openings of the first and second isolator are adapted to receive the peripheries of the boss. The isolators are closely conformed to the boss. By providing the isolators in closely conformance to the bosses, the cylindrical isolator isolates and absorbs vibration under compression conditions. Thus, the present invention provides for ability to isolate and absorb vibrations under a compression condition.
The technical advantages of the present invention include the ability to isolate and absorb vibrations under shear conditions. For example, according to another aspect of the present invention a power tool is provided including a housing having screw bosses that go through the center of cylindrical isolators. The screw bosses provide a safety feature against separation of body from the housing. The cylindrical dampener elements bottom onto a rim of the boss of the body and an interior wall of the handle housing. The configuration will allow the cylindrical dampener elements to isolate and absorb vibrations under shear conditions. Thus the present invention provides for the ability to isolate and absorb vibrations under shear conditions.
The technical advantages of the present invention further include the ability to provide a simple cost effective vibration isolator that may comply with government regulations. For example, according to another aspect of the present invention a power tool is provided with a cylindrical dampener element that is captured between the tool body and the housing of the power tool. Thus the present invention provides for a simple cost effective means of isolating vibrations in a power tool.
These and other objects of the invention will become apparent upon consideration of the following written description taken together with the accompanying figures.
The accompanying drawings illustrate various embodiments of the present invention and together with a description serve to explain the principles of the invention. In the drawings:
Corresponding reference characters indicate corresponding parts throughout the several views. Like reference characters tend to indicate like parts throughout the several views.
Reference will now be made in detail to various presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. In the various FIGS. some of the structures are referenced with similar reference numerals.
According to the present invention and referring now to
As shown in
The power tool 2 may, as is shown in
The power tool 2, as is shown in
The first isolator 8 may include a transverse opening 22 for receiving first fastener 10. The opening 22 may provide clearance for the first fastener 10 or may be interferencely fitted to the first fastener 10.
Referring now to
By providing the first housing portion 24 and the second housing portion 26, the components of the power tool 2 may be easily assembled into the housing 6. For example, the first isolator 8 may be easily positioned in the housing 6 so that first fastener 10 may be utilized to position the first isolator 8. It should be appreciated that the first fastener 10 may be utilized not only to secure the first isolator 8, but also to secure the first housing portion 24 to the second housing portion 26. The first fastener 10 may include external thread 34 which mates with the housing 6. Alternatively, the first fastener 10 may cooperate with a nut 36. The nut 36 may be threadably engaged with the thread 34 of the first fastener 10. The first isolator 8 as shown in
As shown in
According to the present invention and referring now to
The power tool 102 may, as is shown in
Similarly to the power tool 2 of
As shown in
The first pocket 120 may be adapted to closely conform to the first isolator 108. The first isolator 108 may have any suitable shape and may for simplicity have a generally cylindrical shape. Likewise, the first pocket 120 may similarly have a cylindrical shape to closely conform to the first isolator 108.
The body 104, as shown in
As shown in
As shown in
As shown in
Referring again to
The first isolator 108, the second isolator 146, the third isolator 156 and the fourth isolator 160 may have any suitable shape and may all, for example, have a generally cylindrical shape. The isolators 108, 146, 156 and 160 may all have a longitudinal opening for receiving the respective fasteners and may all be of the same size and shape such that each of the isolators is interchangeable with each other.
The isolators may be made of identical materials with identical mechanical properties. It should be appreciated however, that to minimize vibration and to avoid harmonic resonance it may be desirable to provide the isolators with some of the isolators having different stiffnesses or different mechanical properties. The different properties may be used even if the isolators have identical shapes. For example, it may be that the lower isolators, for example, second isolator 146 and fourth isolator 160 may have a stiffer or a weaker isolator such as to minimize vibration in the power tool 102. Such selections of the materials for the isolators may be experimentally or empirically derived.
Referring now to
For example, and referring now to
As shown in
As shown in
The first isolator 208 and the second isolator 248 may be made of a resilient and/or compressible material. The first isolator 208 may have a first isolator stiffness and the second isolator 246 may have a second isolator stiffness that is different than the first isolator stiffness.
As shown in
As shown in
Referring again to
The first isolator 208 defines a first isolator opening 222. The first isolator opening 222 is sized such that the first boss 264 is positioned at least partially in the opening 222 of the first isolator 208. The cross section of the opening 222 of the first isolator 208 and the periphery of the first boss 264 may have a round or polygonal shape, including a circular, oval or other arcuate shape. The cross section of the opening 222 of the first isolator 208 and the periphery of the first boss 264 may alternatively be polygonal. For example the cross section of the opening 222 of the first isolator 208 and the periphery of the first boss 264 may be triangular, square, pentagonal, hexagonal, octagonal or have any other polygonal shape.
Similarly, the second isolator 246 defines a second isolator opening 247 through the second isolator 246. The opening 247 is sized to fit in the boss 268 of the housing 206. It should be appreciated that the opening 247 of the second isolator 246 and the opening 222 of the first isolator 208 may be sized such that the isolators 208 and 246 are spaced from the respective bosses. For example, and referring to
Alternatively, the isolators may be spaced from the fasteners and for example, a fastener, for example second fastener 248, may be spaced from the second isolator 246 and, for example, the second isolator 246 may have an inside surface 272, as shown in phantom, spaced from the second fastener 248.
The power tool 202 may be driven by for example motor 212 which may be an electric motor, a pneumatic motor or a fuel powered motor. The motor 212 may drive for example an outward shaft 214 for operating a cutting tool 216.
The first housing boss 264 cooperating with the first fastener 210 and the second housing boss 268 cooperating with the second fastener 248 provides for a safety connection between the housing 206 and the body 204 if the isolators deteriorate.
In addition to the cooperation of the isolators and the fasteners, as shown in
Referring now to
While the first fastener 210 may cooperate with a solitary isolator, as shown in
The isolators may have any shape to conform to the pockets in the housing boss. The circumference of the isolators and the pockets may be round or have a polygonal shape or any other suitable shape. For example the circumference of the isolators and the pockets may be for example, circular, oval or any arcuate shape. Alternatively the circumference of the isolators and the pockets may be polygonal, for example, triangular, square, pentagonal, hexagonal, octagonal or any other polygonal shape.
Rim 242 serves to center or properly position the housing 206 with respect to the body 204. It should be appreciated that the opposed faces of the first isolator 208 and the third isolator 256 may be in interference with the first wall 238 and the second wall 240, respectively, of the housing 206 and with the rim 242. It should also be appreciated that the outside surfaces of the first isolator 208 and the third isolator 256 may be in interference with the first body boss 250 and with the first housing boss 264.
Referring now to
As shown in
Referring again to
Referring now to
The power tool 302 further includes a second isolator 346 positioned between the body 304 and the housing 306. The second isolator 306 is in contact with the body 304 and the housing 306. The power tool 302 further includes a second fastener 348 as shown in phantom. The second fastener 348 is connected to the housing 306 to position the second isolator 346 with respect to the housing 306.
The body 304, as shown in
As shown in
The first isolator 308 and the second isolator 346 may have substantially the same dimensions. The first isolator 308 and the second isolator 346 may have any suitable shape and may be hollow cylinders. The first isolator 308 and the second isolator 346 may be made of any suitable durable material. The first isolator 308 may have a first isolator stiffness and the second isolator 346 may have a second isolator stiffness. The first isolator stiffness may be substantially different from the second isolator stiffness.
The isolators may be made of suitable durable material. The isolators may be made of a resilient compressible material. For example. the isolators may be made of a polymer. For example, the isolators may be made of a natural or a synthetic rubber.
Referring now to
While it should be appreciated that the fasteners may be in direct contact with the isolators, to provide a more rigid structure and an additional safety feature, the housing 304 may define a first housing boss 364 having a first housing boss opening 366 in the first housing boss 364 for receiving the first fastener 310. The first housing boss 364, as shown in
The circumference of the isolator has one of a round or polygonal shape wherein round can be circular, oval etc., polygonal can be triangular, square, pentagonal, hexagonal, octagonal or any other polygonal shape. The first isolator 308 and the third isolator 356 may, as shown in
The construction around the second fastener 348 may, as shown in
Referring now to
Referring now to
Referring now to
Unlike the power tool 302 the housing bosses are in interference with the isolators. Such a configuration provides for absorption of vibrations of compression loads. For example, the first isolator 408 is interferencely fitted with first housing boss 464. Similarly, second isolator 446 is interferencely fitted with second housing boss 468. An end of first isolator 408 is interferencely fitted with the housing 406. Similarly, second isolator 446 is interferencely fitted with a wall of housing 406. The first isolator 408 is interferencely fitted with first body boss 450 and second isolator 446 is interferencely fitted with second body boss 452.
Referring now to
Referring now to
As a compression load is applied in the direction of arrow 490 to the power tool 402, the first isolator 408 compresses into first compressed shape 492 as shown in hidden line. Similarly, third isolator 456, when exposed to the load in the direction of arrow 490, compresses to the second compressed shape 494 as shown in the hidden lines. Thus the power tool 402 is designed for use under compression vibration loads.
The illustrated embodiments are suited for use for power tools of all types, particularly for hand held electric power tools.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/001536 | 2/5/2008 | WO | 00 | 2/3/2011 |
Number | Date | Country | |
---|---|---|---|
60899952 | Feb 2007 | US |