The present invention is directed to a material adapted to reduce vibration and, more specifically, to a multi-layer material adapted to dissipate and distribute vibrations.
Handles of sporting equipment, bicycles, hand tools, etc. are often made of wood, metal or polymer that transmit vibrations that can make the items uncomfortable for prolonged gripping. Sporting equipment, such as bats, balls, shoe insoles and sidewalls, also transmit vibrations during the impact that commonly occurs during athletic contests. These vibrations can be problematic in that they can potentially distract the player's attention, adversely effect performance, and/or injure a portion of a player's body.
Rigid polymer materials are typically used to provide grips for tools and sports equipment. The use of rigid polymers allows users to maintain control of the equipment but is not very effective at reducing vibrations. While it is known that softer materials provide better vibration regulation characteristics, such materials do not have the necessary rigidity for incorporation into sporting equipment, hand tools, shoes or the like. This lack of rigidity allows unintended movement of the equipment encased by the soft material relative to a user's hand or body.
Prolonged or repetitive contact with excessive vibrations can injure a person. The desire to avoid such injury can result in reduced athletic performance and decreased efficiency when working with tools.
In another aspect, noise control solutions are becoming increasing critical in a vast array of fields including commercial and industrial equipment, consumer electronics, transportation, as well as countless other specialty areas. These applications require an efficient and economical sound insulating material with the ability to be adapted to fill a wide variety of damping requirements.
Viscoelastic materials are typically used in sound damping applications to provide hysteretic energy dissipation, meaning damping provided by the yielding or straining of the molecules of the material. These materials offer somewhat limited damping efficiency as a result of providing very few avenues for energy dissipation and absorption. Viscoelastic materials that do possess acceptable levels of energy dissipation do so at the expense of increased material thickness and further, fail to provide the structural stiffness required in many of today's applications. In contrast, conventional composite materials have high stiffness-to-weight ratios however they generally exhibit very poor damping characteristics.
The present invention provides a material that in at least one embodiment comprises a composite vibration dissipating and isolating material including first and second elastomer layers. A reinforcement layer is disposed between and generally separates the first and second elastomer layers.
The foregoing summary, as well as the following detailed description of the preferred embodiments of the present invention will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It is understood, however, that the invention is not limited to the precise arrangements and instrumentality shown. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The term “implement,” as used in the specification and in the claims, means “any one of a baseball bat, racket, hockey stick, softball bat, sporting equipment, firearm, or the like.” The above terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import. Additionally, the words “a” and “one” are defined as including one or more of the referenced item unless specifically stated otherwise.
Referring to
The material 10 is preferably generally non elastic in a direction generally perpendicular “X” to a major material surface 316A (shown in
The first elastomer layer 12A acts a shock absorber by converting mechanical vibrational energy into heat energy. The high tensile strength fibrous material layer 14 redirects vibrational energy and provides increased stiffness to the material 10 to facilitate a user's ability to control an implement 20 encased, or partially encased, by the material 10. It is preferred, but not necessary, that the high tensile strength fibrous material layer 14 be formed of aramid material.
In one embodiment, the composite material 10 may have three generally independent and separate layers including the first elastomer layer 12A and a second elastomer layer 12B. Elastomer material provides vibration damping by dissipating vibrational energy. Suitable elastomer materials include, but are not limited urethane rubbers, silicone rubbers, nitrile rubbers, butyl rubbers, acrylic rubbers, natural rubbers, styrene-butadiene rubbers, and the like. In general, any suitable elastomer material can be used to form the first and second elastomer layers without departing from the scope of the present invention. For example the elastomer layers may be thermoset elastomer layers. Alternatively, the elastomer layers 12A, 12B can be thermoplastic or any material suitable for thermoforming. As another example, the elastomer layers 12A, 12B can be manufactured as either on open cell foam or a closed cell foam having a foamed structure or as foam having a low or high density. In another aspect, when manufacturing some shaped articles, such as a golf club grip, it may be more efficient to first form the material 10 as a generally flat piece or sheet of material 10 which could then be reformed or thermoformed into the desired shaped article. Additionally, the material 10 may include a shrink wrap or shrinkable layer therein and/or thereon. The shrinkable layer can be heat and/or water activated.
The material 10 can include additional layers thereover, such as a generally rigid material or the like. For example, one or more generally rigid plates of rigid material can be positioned over the material 10 to distribute impact force over an increased amount of the material. This can be useful when using the material in umpire vests, bulletproof vests, shoulder pads, shoes, or in any other application where a generally rigid outer layer is desired.
The material 10 may also include additional elastomeric layers, comprising an open or closed cell structure foam and/or high or low density foam. For example, two foam layers can be positioned proximate the material 10 to provide optimal force distribution. This can be useful when using the material in umpire vests, bulletproof vests, sports protective apparel and accessories, shoulder pads, headbands, or in any other applications where protection from outwardly applied forces is desired.
The softness of elastomer materials can be quantified using Shore A durometer ratings. Generally speaking, the lower the durometer rating, the softer the material and the more effective an elastomer layer is at absorbing and dissipating vibration because less force is channeled through the elastomer. When a soft elastomer material is squeezed, an individual's fingers are imbedded in the elastomer which increases the surface area of contact between the user's hand and creates irregularities in the outer material surface to allow a user to firmly grasp any implement 20 covered, or partially covered, by the material. However, the softer the elastomer layers 12A, 12B, the less control a user has when manipulating an implement 20 covered by the elastomer. If the elastomer layer is too soft (i.e., if the elastomer layer has too low of a Shore A durometer rating), then the implement 20 may rotate unintentionally relative to a user's hand or foot. The material 10 of the present invention is preferably designed to use first and second elastomer layers 12A, 12B having Shore A durometer ratings that provide an optimum balance between allowing a user to precisely manipulate and control the implement 20 and effectively damping vibration during use of the implement 20.
It is preferable, but not necessary, that the elastomer used with the material 10 have a Shore A durometer of between approximately ten (10) and approximately eighty (80). It is preferred that the first elastomer layer have a Shore A durometer of between approximately ten (10) and approximately twenty-five (25) and that the second elastomer layer has a Shore A durometer of between approximately twenty-five (25) and approximately forty-five (45).
The first elastomer layer 12A is preferably used to slow down impact energy and to absorb vibrational energy and to convert vibrational energy into heat energy. This preferably, but not necessarily, allows the first elastomer layer to act as a pad as well as dissipate vibration. The second elastomer layer 12B is also used to absorb vibrational energy, but also provides a compliant and comfortable grip for a user to grasp (or provides a surface for a portion of a user's body, such as the under sole of a user's foot when the material 10 is formed as a shoe insert).
In one embodiment, the first elastomer layer 12A preferably has Shore A durometer of approximately fifteen (15) and the second elastomer layer has a Shore A durometer of approximately forty-two (42). If the first and second elastomer has generally the same Shore A durometer ratings, then it is preferable, but not necessary, that the first and second elastomer layers 12A, 12B have a Shore A durometer of fifteen (15), thirty-two (32), or forty-two (42).
The high tensile strength fibrous material layer 14 is preferably, but not necessarily, formed of aramid fibers. The fibers can be woven to form a cloth layer 16 that is disposed between and generally separates the first and second elastomer layers 12A, 12B. The cloth layer 16 can be formed of aramid fibers, high tensile strength fibers, fiberglass, or other types of fiber. It is preferred that the cloth layer 16 does not have suitable rigidity for use as an open gridwork having any significant energy storage capability. It is preferred that the material which forms the reinforcement layer 14 is generally bonded to the elastomer layers 12A, 12B. The cloth layer 16 preferably generally separates the first and second elastomer layers 12A, 12B causing the material 10 to have three generally distinct and separate layers 12A, 12B, 14. The high tensile strength fibrous material layer 14 blocks and redirects vibrational energy that passes through one of the elastomer layers 12A or 12B to facilitate the dissipation of vibrations. The high tensile strength fibers 18 redirect vibrational energy along the length of the fibers 18. Thus, when the plurality of high tensile strength fibers 18 are woven to form the cloth layer 16, vibrational energy emanating from the implement 20 that is not absorbed or dissipated by the first elastomer layer 12A is redistributed evenly along the material 10 by the cloth layer 16 and then further dissipated by the second elastomer layer 12B.
The cloth layer 16 is preferably generally interlocked in, generally affixed to, or generally fixed in position by the elastomer layers 12A, 12B in order for the cloth layer 16 to block and redirect vibrational energy to facilitate dissipation of vibrations.
It is preferable that the high tensile strength fibers 18 be formed of a suitable polyamide fiber of high tensile strength with a high resistance to elongation. However, those of ordinary skill in the art will appreciate from this disclosure that any aramid fiber suitable to channel vibration can be used to form the high tensile strength fibrous material layer 14 without departing from scope of the present invention. Additionally, those of ordinary skill in the art will appreciate from this disclosure that loose fibers or chopped fibers can be used to form the high tensile strength fibrous material layer 14 without departing from the scope of the present invention. The high tensile strength fibrous material may also be formed of fiberglass. The high tensile strength fibrous material preferably prevents the material 10 from substantially elongating in a direction parallel to the major material surfaces 316A, 316B during use. It is preferred that the amount of elongation is less than ten (10%) percent. It is more preferred that the amount of elongation is less than four (4%) percent. It is most preferred that the amount of elongation is less than one (1%) percent.
In another embodiment, where protection from outwardly applied forces is desired to prevent physical harm to, for example, an athlete, it may be preferable to utilize a specific combination of layers, such as for example, a generally rigid layer, a first elastomeric layer 12a, a high tensile strength fibrous material layer 14, a second elastomeric layer 12b, and one or more foam layers, including open or closed cell foam possessing a high or low durometer. In one such embodiment, for example, there may be at least a first elastomeric layer 12a, a high tensile strength fibrous material layer 14, a second elastomeric layer 12b, a layer of closed cell high durometer foam and a layer of closed cell low durometer foam, wherein the various layers may have varying degrees of thickness. By way of example, a low-density foam aspect may have a density of twelve to thirty-two pounds and most particularly may have a density of twenty pounds per square yard, while a high-density foam may have a density of three to twelve pounds, and most particularly nine pounds per square yard.
Those of ordinary skill in the art will appreciate from this disclosure that the material 10 can be formed of two independent layers without departing from the scope of the present invention. Accordingly, the material 10 can be formed of a first elastomer layer 12A and a high tensile strength fibrous material layer 14 (which may be woven into a cloth layer 16) that is disposed on the first elastomer 12A.
Referring to
When the material of the present invention forms an insert 310 for a shoe, the insert 310 includes a shoe insert body 312 having a generally elongated shape with an outer perimeter 314 configured to substantially conform to a sole of the shoe so that the shoe insert body 312 extends along an inner surface of the shoe from a location proximate to a heel of the shoe to a toe of the shoe. The shoe insert body 312 is preferably generally planar and formed by a reinforced elastomer material 10 that regulates and dissipates vibration. The shoe insert body 312 has first and second major surfaces 316A, 316B. The reinforced elastomer material 10 preferably includes first and second elastomer layers 12A, 12B. In one embodiment it is preferred that the first and second elastomer layers are generally free of voids therein and/or that the elastomer layers are formed by thermoset elastomer.
A reinforcement layer 14 is disposed between and generally separates the first and second elastomer layers 12A, 12B. The reinforcement layer 14 may include a layer formed of a plurality of high tensile strength fibrous material. Alternatively, the reinforcement layer may be formed of aramid, fiberglass, regular cloth, or the like. The reinforcement layer may be formed by woven fibers. In one embodiment, it is preferred that the reinforcement layer consist of only a single cloth layer of material.
The woven high tensile strength fibrous material is preferably connected to the first and second elastomer layers 12A, 12B generally uniformly throughout to provide substantially complete coverage between the first and second elastomer layers 12A, 12B. The cloth layer is generally compliant only in a direction “X” generally perpendicular to the first major surface 316A so as to be generally non energy storing in the direction “X”. Wherein the high tensile strength fibrous material 14 generally distributes impact energy parallel to the first major surface 316A and into the first and second elastomer layers 12A, 12B. The reinforcement layer 14 preferably prevents the shoe insert 310 from substantially elongating during use. The reinforced elastomer 10 can also be used as a sole for footwear or as part of a sole or insole for footwear. The reinforced elastomer can also be used to provide padding within or along a side or upper portion of a shoe or boot.
Referring to
In the alternative embodiment illustrated in
Referring to
The reinforced elastomer material 10 includes first and second elastomer layers 12A, 12B. A reinforcement layer 14 is disposed between and generally separates the first and second elastomer layers 12A, 12B. In some embodiments, the elastomer layer is generally free of voids and/or is a thermoset elastomer. As explained above, however, the elastomer layers are not limited to such and may have various forms, including thermoplastic forms as well as open or closed cell foam structure in one or both layers. The reinforcement layer 14 preferably includes a layer of high tensile strength fibrous material. The high tensile strength fibrous material can be woven into a cloth, chopped, or otherwise distributed. The reinforcement layer 14 may be formed by various high tensile strength fibrous material including a layer of fiberglass, aramid, or any other suitable material.
The high tensile strength fibrous material layer 14 is connected to the first and second elastomer layers 12A, 12B generally uniformly throughout to provide substantially complete coverage between the first and second elastomer layers. This preferably prevents sliding movement between the reinforcement layer 14 and the elastomer layers 12A, 12B. The cloth layer is preferably generally compliant only in the second direction “Z” so as to be generally non energy storing in the second direction “Z”. The high tensile fibrous material generally distributes impact energy parallel to the first direction “Y” and into the first and second elastomer layers. This causes vibrational energy to be reduced and dampened rather than bounced back against the hand grasping the grip.
While the grip 22 will be described below in connection with a baseball or softball bat, those of ordinary skill in the art will appreciate that the grip 22 can be used with any of the equipment, tools, or devices mentioned above without departing from the scope of the present invention.
When the grip 22 is used with a baseball or softball bat, the grip 22 preferably covers approximately seventeen (17) inches of the handle of the bat as well as covers the knob (i.e., the proximal end 26 of the implement 20) of the bat. The configuration of the grip 22 to extend over a significant portion of the bat length contributes to increase vibrational damping. It is preferred, but not necessary, that the grip 22 be formed as a single, contiguous, one-piece member.
The baseball bat (or implement 20) has a handle 24 including a handle body 28 having a longitudinal portion 30 and a proximal end 26. The material 10 preferably encases at least some of the longitudinal portion 30 and the proximal end 26 of the handle 24. The material 10 can be produced as a composite having two generally separate and distinct layers including a first elastomer layer 12A and a high tensile strength fibrous material layer 14 (which may be a woven cloth layer 16) disposed on the elastomer layer 12A. The high tensile strength fibrous material layer 14 is preferably formed of woven fibers 18. The second elastomer layer 12B may be disposed on a major surface of the high tensile strength fibrous material layer 14 opposite from the first elastomer layer 12A.
As best shown in
Referring to
The panel body 324 is formed by a reinforced elastomer material that regulates and dissipates vibration. As shown in
Multiple methods can be used to produce the composite or vibration dissipating material 10 of the present invention. One method is to extrude the material by pulling a high tensile strength fibrous cloth layer 16 from a supply roll while placing the first and second elastomer layers 12A, 12B on both sides of the woven high tensile strength fibrous cloth 16. A second method of producing the material 10 of the present invention is to mold the first elastomer layer 12A onto the implement 20, then to weave an aramid fiber layer thereover, and then to mold the second elastomer layer 12B thereover.
Alternatively, a cloth layer 16 can be pressured fit to an elastomer layer to form the material 10. Accordingly, the cloth layer 16 can be generally embedded in or held in place by the elastomer layer. The pressured fitting of the reinforcement layer, or fabric layer, 14 to an elastomer preferably results in the reinforcement layer, or fabric layer, 14 being generally interlocked in and/or bonded in position by the elastomer. Thus, the cloth layer can be generally interlocked with the elastomer layer. It is preferable that the high tensile strength cloth generally not be able to slide laterally between the first and second elastomer layers. The cloth layer in the resulting material would be generally fixed in position. One of ordinary skill in the art would realize that the cloth layer 14 in the resulting material would be generally interlocked and/or bonded in position by the elastomer 12A, 12B. Alternatively, the material 10 can be assembled by using adhesive or welding to secure the elastomer layer(s) to the reinforced layer.
It is preferred that the woven high tensile strength fibers are connected to the first and second elastomer layers generally uniformly throughout to provide substantially complete coverage between the first and second thermoset elastomer layers. The cloth layer is generally non energy storing in a direction generally perpendicular to a major material surface. This results in the vibrational energy being generally evenly redistributed throughout the material by the cloth layer. This is due to the high tensile strength fibers transmitting/storing energy unidirectionally along the length of the fiber and generally not storing energy in a direction generally perpendicular to the length of the fiber or perpendicular to a cloth layer formed by the fibers.
In other words, the cloth layer 16 is preferably compliant generally only in a direction generally perpendicular to a major material surface so as to be generally non energy storing in the direction perpendicular to the major material surface and to generally distribute energy parallel to the major material surface and into the first and second elastomer layers. The present invention preferably generally dissipates vibration throughout the material to prevent “bounce back” (e.g., to avoid having a runner's feet absorb too much vibration during athletics).
In some cases the high tensile fibrous material can be pulped to form an imperforate sheet that may be secured in position between the first and second elastomer layers 12A, 12B. Those of ordinary skill in the art will appreciate from this disclosure that any known method of making composite or vibration dissipating materials can be used to form the material 10.
The covering of the proximal end of an implement 20 by the grip 22 results in reduced vibration transmission and in improved counter balancing of the distal end of the implement 20 by moving the center of mass of the implement 20 closer to the hand of a user (i.e., closer to the proximal end 26). This facilitates the swinging of the implement 20 and can improve sports performance while reducing the fatigue associated with repetitive motion.
A characterizing feature of sleeve 210, as illustrated in
In a broad practice of this invention, sleeve 210 can be a single layer. The material would have the appropriate hardness and vibration dampening characteristics. The outer surface of the material would be tacky having high friction characteristics.
Alternatively, the sleeve 210 could be formed from a two layer laminate where the vibration absorbing material forms the inner layer disposed against the handle, with a separate tacky outer layer made from any suitable high friction material such as a thermoplastic material with polyurethane being one example. Thus, the two layer laminate would have an inner elastomer layer which is characterized by its vibration dampening ability, while the main characteristic of the outer elastomer layer is its tackiness to provide a suitable gripping surface that would resist the tendency for the user's hand to slide off the handle. The provision of the knob 220 also functions both as a stop member to minimize the tendency for the handle to slip from the user's hand and to cooperate in the vibration dampening affect.
Laboratory tests were carried out at a prominent university to evaluate various grips mounted on baseball bats. In the testing, baseball bats with various grips were suspended from the ceiling by a thin thread; this achieves almost a free boundary condition that is needed to determine the true characteristics of the bats. Two standard industrial accelerometers were mounted on a specially fabricated sleeve roughly in positions where the left hand and the right hand would grip the bat. A known force was delivered to the bat with a standard calibrated impact hammer at three positions, one corresponding to the sweet spot, the other two simulating “miss hits” located on the mid-point and shaft of the bat. The time history of the force as well as the accelerations were routed through a signal conditioning device and were connected to a data acquisition device. This was connected to a computer which was used to log the data.
Two series of tests were conducted. In the first test, a control bat (with a standard rubber grip, WORTH Bat-model #C405) was compared to identical bats with several “Sting-Free” grips representing practices of the invention. These “Sting-Free” grips were comprised of two layers of pure silicone with various types of high tensile fibrous material inserted between the two layers of silicone. The types of KEVLAR, a type of aramid fiber that has high tensile strength, used in this test were referenced as follows: “005”, “645”, “120”, “909”. Also, a bat with just a thick layer of silicone but no KEVLAR was tested. With the exception of the thick silicone (which was deemed impractical because of the excessive thickness), the “645” bat showed the best reduction in vibration magnitudes.
The second series of tests were conducted using EASTON Bats (model #BK8) with the “645” KEVLAR in different combinations with silicone layers: The first bat tested was comprised of one bottom layer of silicone with a middle layer of the “645” KEVLAR and one top layer of silicone referred to as “111”. The second bat test was comprised of two bottom layers of silicone with a middle layer of KEVLAR and one top layer of silicone referred to as “211”. The third bat tested was comprised of one bottom layer of silicone with a middle layer of KEVLAR and two top layers of silicone referred to as “112”. The “645” bat with the “111” configuration showed the best reduction in vibration magnitudes.
In order to quantify the effect of this vibration reduction, two criteria were defined: (I) the time it takes for the vibration to dissipate to an imperceptible value; and, (2) the magnitude of vibration in the range of frequencies at which the human hand is most sensitive.
The sting-free grips reduced the vibration in the baseball bats by both quantitative measures. In particular, the “645” KEVLAR in a “111” configuration was the best in vibration reduction. In the case of a baseball bat, the “645” reduced the bat's vibration in about ⅕ the time it took the control rubber grip to do so. The reduction in peak magnitude of vibration ranged from 60% to 80%, depending on the impact location and magnitude.
It was concluded that the “645” KEVLAR grip in a “111” combination reduces the magnitude of sensible vibration by 80% that is induced in a baseball bat when a player hits a ball with it. This was found to be true for a variety of impacts at different locations along the length of the bat. Hence, a person using the “Sting-Free” grips of the invention would clearly experience a considerable reduction in the sting effect (pain) when using the “Sting-free” grip than one would with a standard grip.
In view of the above tests a particularly preferred practice of the invention involves a multilayer laminate having an aramid such as KEVLAR, sandwiched between layers of pure silicone. The above indicated tests show dramatic results with this embodiment of the invention. As also indicated above, however, the laminate could comprise other combinations of layers such as a plurality of bottom layers of silicone or a plurality of top layers of silicone. Other variations include a repetitive laminate assembly wherein a vibration dampening layer is innermost with a force dissipating layer against the lower vibration dampening layer and then with a second vibration dampening layer over the force dissipating layer followed by a second force dissipating layer, etc. with the final laminate layer being a gripping layer which could also be made of vibration dampening material. Among the considerations in determining which laminate should be used would be the thickness limitations and the desired vibration dampening properties.
The various layers could have different relative thicknesses. Preferably, the vibration dampening layer, such as layer 222, would be the thickest of the layers. The outermost gripping layer, however, could be of the same thickness as the vibration dampening layer, such as layer 224 shown in
As shown in
In a preferred practice of the invention, as previously discussed, a force dissipating stiffening layer is provided as an intermediate layer of a multilayer laminate where there is at least one inner layer of vibration dampening material and an outer layer of gripping material with the possibility of additional layers of vibration dampening material and force dissipating layers of various thickness. As noted the force dissipating layer could be innermost. The invention may also be practiced where the laminate includes one or more layers in addition to the gripping layer and the stiffening layer and the vibration dampening layer. Such additional layer(s) could be incorporated at any location in the laminate, depending on its intended function (e.g., an adhesive layer, a cushioning layer, etc.).
The force dissipating layer could be incorporated in the laminate in various manners.
The vibration dampening grip cover of this invention could be used for a wide number of implements. Examples of such implements include athletic equipment, hand tools and handlebars. For example, such athletic equipment includes bats, racquets, sticks, javelins, etc. Examples of tools include hammers, screwdrivers, shovels, rakes, brooms, wrenches, pliers, knives, handguns, air hammers, etc. Examples of handlebars include motorcycles, bicycles and various types of steering wheels.
A preferred practice of this invention is to incorporate a force dissipating layer, particularly an aramid, such as KEVLAR fiber, into a composite with at least two elastomers. One elastomer layer would function as a vibration dampening material and the other outer elastomer layer which would function as a gripping layer. The outer elastomer layer could also be a vibration dampening material. Preferably, the outer layer completely covers the composite.
There are an almost infinite number of possible uses for the composite of laminate of this invention. In accordance with the various uses the elastomer layers may have different degrees of hardness, coefficient of friction and dampening of vibration. Similarly, the thicknesses of the various layers could also vary in accordance with the intended use. Examples of ranges of hardness for the inner vibration dampening layer and the outer gripping layer (which may also be a vibration absorbing layer) are 5-70 Durometer Shore A. One of the layers may have a range of 5-20 Durometer Shore A and the other a range of 30-70 Durometer Shore A for either of these layers. The vibration dampening layer could have a hardness of less than 5, and could even be a 000 Durometer reading. The vibration dampening material could be a gel, such as a silicone gel or a gel of any other suitable material. The coefficient of friction as determined by conventional measuring techniques for the tacky and non-porous gripping layer is preferably at least 0.5 and may be in the range of 0.6-1.5. A more preferred range is 0.7-1.2 with a still more preferred range being about 0.8-1. The outer gripping layer, when also used as a vibration dampening layer, could have the same thickness as the inner layer. When used solely as a gripping layer the thickness could be generally the same as the intermediate layer, which might be about 1/20 to ¼ of the thickness of the vibration dampening layer.
The grip cover of this invention could be used with various implements as discussed above. Thus, the handle portion of the implement could be of cylindrical shape with a uniform diameter and smooth outer surface such as the golf club handle 238 shown in
Referring to
For example,
In each of these embodiments, the panels include temple and ear covering panels 305A; forehead covering panels 305B; neck panels 305C; and top panels 305D, however, the panels 305 may otherwise be positioned. The panels 305 may be positioned within pockets formed in the flexible headgear 430′, 430″, 430′″ or may otherwise be attached thereto, for example, via an adhesive, stitching or hook and loop fastener. The hook and loop fastener may allow the user to position the panels 305 as desired. Similarly, multiple pockets may be provided to allow the user to position the panels 305 as desired. The pockets may include openings which allow the panels 305 to be removed, for example, for cleaning of the headgear or repositioning of the panels 305. The openings are preferably sealable, for example, by hook and loop fastener or the like.
The external adhesive surface 1352 allows the material 1300 to be secured in a desired location, for example, inside a batting helmet or football helmet, Again this allows the user to “retro-fit” an existing helmet or other product for improved vibration regulation without the need to buy a new product. The material 1300 may be cut to a desired configuration. As illustrated in
As an additional benefit of the retro-fit padding, it has been found that the panels 305, 1305 positioned over original padding attached to the inside of the helmet provided enhanced vibration reduction compared to applications wherein the inventive material was applied to the shell of the helmet and then had standard padding applied to the material of the present invention. In each of the padding applications, whether in a retro-fit application or a new product application, it is preferable that the material of the present invention be positioned as the layer closest to the users body.
As detailed above, the material 10 of the present invention can be used to form gloves or to form panels 305 incorporated into gloves. The preferred cross-section of the glove panels 305 is also shown in
With reference to
Referring to
Referring specifically to
Accordingly, the support structure 817 shown in
Referring again to
The fibers 814 are preferably, but not necessarily, formed of aramid fibers. Referring to
It is preferable that the aramid fibers 818 are formed of a suitable polyamide fiber of high tensile strength with a high resistance to elongation. However, those of ordinary skill in the art will appreciate from this disclosure that any high tensile strength material suitable to channel vibration can be used to form the support structure 817 without departing from scope of the present invention. Additionally, those of ordinary skill in the art will appreciate from this disclosure that loose high tensile strength fibers or chopped high tensile strength fibers can be used to form the support structure 817 without departing from the scope of the present invention. The high tensile strength fibers may be formed of aramid fibers, fiberglass or the like.
When the aramid fibers 818 are woven to form the cloth 816, it is preferable that the cloth 816 include at least some floating aramid fibers 818. That is, it is preferable that at least some of the plurality of aramid fibers 818 are able to move relative to the remaining aramid fibers 818 of the cloth 816. This movement of some of the aramid fibers 818 relative to the remaining fibers of the cloth converts vibrational energy to heat energy.
With reference to
In the situation where the support structure 917 is formed by a second elastomer layer, the two elastomer layers can be secured together via an adhesive layer, discreet adhesive locations, or using any other suitable method to secure the layers together. Regardless of the material used to form the support structure 917, the support structure is preferably located and configured to support the first elastomer layer (see
It is preferred that the material 910 have a single contiguous elastomer body 912. Referring to
Referring to
The fibers 914 are preferably, but not necessarily, formed of aramid fibers. However, the fibers can be formed from any one or combination of the following: bamboo, glass, metal, elastomer, polymer, ceramics, corn husks, and/or any other renewable resource. By using fibers from renewable resources, production costs can be reduced and the environmental friendliness of the present invention can be increased.
Particles 915 can be located in either an elastomer layer 912, 912A, and/or 912B and/or in the support structure 915. The particles 915 increase the vibration absorption of the material of the present invention. The particles 915 can be formed of pieces of glass, polymer, elastomer, chopped aramid, ceramic, chopped fibers, sand, gel, foam, metal, mineral, glass beads, or the like. Gel particles 915 provide excellent vibration dampening due to their low durometer rating. One exemplary gel that is suitable for use the present invention is silicone gel. However, any suitable gel can be used without departing from the present invention.
In addition to use with implements, sleeves, covers, and the like described above, the material can be used as an athletic tape, padding, bracing material, or the like (as shown in
When the material of the present invention is used to form athletic tape, that athletic tape provides a controlled support for a portion of the person's body. The athletic tape includes a tape body 764 that is preferably stretchable along a longitudinal axis 748 (or stretch axis 750) from a first position to a second position, in which the tape body 764 is elongated by a predetermined amount relative to the first position.
As described below, the configuration of the support structure 717 within the vibration absorbing layer 712 allows the predetermined amount of elongation to be generally fixed so that the athletic tape provides a controlled support that allows limited movement before applying a brake on further movement of the wrapped portion of a person's body. This facilitates movement of a wrapped joint while simultaneously dissipating and absorbing vibration to allow superior comfort and performance as compared to that experienced with conventional athletic tape. While the predetermined amount of elongation can be set to any value, it is preferably less than twenty (20%) percent. The predetermined amount of elongation is more preferably less than two (2%) percent. However, depending on the application any amount of elongation can be used with the material 10 of the present invention.
The tape body 64 preferably includes a first elastomer layer 712 that defines a tape length 766, as measured along the longitudinal axis 748, of the tape body 764. The support structure 717 is preferably disposed within the elastomer layer 712 generally along the longitudinal axis 748 in an at least partially non linear fashion while the tape body is in the first position so that a length of the support structure 717, as measured along a surface thereof, is greater than the tape length 766 of the first elastomer layer 712. It is preferred, by not necessary, that the support structure 717 (or ribbon material) is positioned in a generally sinusoidal fashion within the elastomer layer 712 while the tape body 764 is in the first position. However, the support structure 717 can be positioned in an irregular fashion without departing from the scope of the present invention. As described above, the support structure 717 and/or the elastomer layer 712 can include particles, fibers, or the like (as shown in
Referring to
Referring to
As detailed above, the support structure 717 and/or the elastomer layer 712 may include a plurality of particles therein. Such particles may include any one or combination of gel particles, sand particles, glass beads, chopped fibers, metal particles, foam particles, sand, or any other particle in parting desirable vibration dissipation characteristics to the material 710.
Referring to
Referring again to
The first elastomer layer 712 defines a material length 772, as measured along the stretch axis 750 of the material body 770. The support structure 717 is preferably disposed within the elastomer layer 712 generally along the stretch axis 750 in an at least partially non linear fashion while the material body 770 is in the first position so that a length of the support structure, as measured along the surface thereof, is greater than the material length 772 of the first elastomer layer. When the material body 770 is elongated into the second position, the support structure 717 is at least partially straightened so that the support structure is more linear, relative to when the material body 770 is in the first position.
The support structure 717 is preferably positioned in a sinusoidal fashion within any of the materials 710 of the present invention. The support structure 717 or ribbon may also be positioned in the form of a triangular wave, square wave, or an irregular fashion without departing from the scope of the present invention.
Any of the materials of the present invention may be formed with an elastomer layer 712 formed by silicone or any other suitable material. Depending upon the application, the vibration absorbing material 712 may be a thermoset and/or may be free of voids therein.
Any of the embodiments of the material 710 can be used as an implement cover, grip, athletic tape, an all purpose material, a brace, and/or padding. When the material 710 of the present invention is used as part of a padding, the padding includes a padding body 774 that is elongateable along the stretch axis from a first position to a second position, in which the padding body 774 is elongated by a predetermined amount relative to the first position. The padding includes a first elastomer layer 712 which defines a padding length 776, as measured along the stretch axis 750 of the padding body 774.
The support structure 717 is disposed within the elastomer layer 712 generally along the stretch axis 750 in an at least partially non linear fashion while the padding body 774 is in the first position so that a length of the support structure 717, is measured along a surface thereof, is greater than the padding length 776 of the first elastomer layer 712. When the padding body 774 is elongated into the second position, the support structure 717 is at least partially straightened so that the support structure is more linear, relative to when the padding body 774 is in the first position. The straightening of the support structure 717 causes energy to be dissipated and generally prevents further elongation of the elastomer layer along the stretch axis 750 past the second position.
When the materials 710 of the present invention are incorporated as part of a brace, the brace provides a controlled support for a wrapped portion of a person's body. The brace includes a brace body 778 that is elongateable along the stretch axis 750 from a first position to a second position, in which the brace body 778 is elongated by a predetermined amount relative to the first position. The brace body includes a first elastomer layer 712 that defines a brace length 780, as measured along the stretch axis 750, of the brace body 778.
The support structure 717 is preferably disposed within the elastomer layer generally along the stretch axis 750 in an at least partially non linear fashion while the brace body 778 is in the first position so that a length of the support structure 717, as measured along a surface thereof, is greater than the brace length 780 of the first elastomer layer 712. When the brace body 778 is stretched into the second position, the support structure 717 is at least partially straightened so that the support structure 717 is more linear, relative to when the brace body 778 is in the first position. The straightening of the support structure 717 causes energy to be dissipated and preferably generally prevents further elongation of the elastomer layer 712 along the stretch axis past the second position. Those ordinarily skilled in the art will appreciate that any of the materials 710 of the present invention may be formed into a one piece brace that provides a controlled support as described above without departing from the scope of the present invention.
Referring to
Referring to
Any of the materials 710 of the present invention can be used in conjunction with additional layers of rigid or flexible materials without departing from the scope of the present invention. For example, the materials 710 of the present invention may be used with a hard shell outer layer which is designed to dissipate impact energy over the entire material 710 prior to the material 710 deforming to dissipate energy. One type of rigid material that can be used in combination with the materials 710 of the present invention is molded foam. Molded foam layers preferably include multiple flex seams that allow portions of the foam layer to at least partially move relative to each other even though the overall foam layer is a single body of material. This is ideal for turning an impact force into a more general blunt force that is spread over a larger area of the material 710. Alternatively, individual foam pieces, buttons, rigid squares, or the like can be directly attached to an outer surface of any of the materials 710 of the present invention. Alternatively, such foam pieces, buttons, rigid squares, or the like can be attached to a flexible layer or fabric that will dissipate received impact energy over the length of the fabric fibers prior to the dissipation of energy by the material 710.
a, and 82-86 show yet another embodiment of the inventive material of the invention, in which the material comprises two aramid layers 1010, 1012 with an elastomeric layer 1020 therebetween shown in the simplest configuration in
Alternately, rather than using aramid layers, other fibers could be used, including high tensile strength fibers.
While other high tensile strength materials could be used, aramids with a tensile modulus of between 70 and 140 GPa are preferred, and nylons such as those with a tensile strength of between 6,000 and 24,000 psi are also preferred. Other material layers and fibers could substitute for the aramid layers 1010, 1012; in particular, low tensile strength fibers could be combined with higher tensile strength fibers to yield layers 1010, 1012 that would be suitable to stabilize and contain the elastomeric layer 1020. For example, cotton, kenaf, hemp, flax, jute, and sisal could be combined with certain combinations of high tensile strength fibers to form the supportive layers 1010, 1012.
In use, the first and second aramid material layers 1010, 1012 are preferably coated with a bonding layer 1010a, 1010b, 1012a, 1012b, preferably of the same material as the elastomeric material that facilitates bonding between the aramid layers 1010, 1012 and the elastomeric layer 1020, although these bonding layers are not required. Further, although equal amounts of the bonding layers 1010a, 1010b, 1012a, 1012b are shown on either side of the aramid layers 1010, 1012, the bonding layers 1010a, 1010b, 1012a, 1012b need not be evenly distributed over the aramid layers 1010, 1012.
The applicant has observed that the aramid layers 1010, 1012 distribute impact and vibration over a larger surface area of the elastomeric layer 1020. This finding has suggested using the material in heavier impact applications, such as using it as a motor mount 1030 or flooring 1035, 1037, since the aramid layers 1010, 1012 will discourage displacement of the elastomeric layer 1020, while still absorbing much of the vibration in those applications. This property could be useful in many of the above-noted applications, and in particular in impact absorbing padding, packaging, electronics padding, noise reducing panels, tape, carpet padding, and floor padding.
Exemplary padding materials 1400 and 1500, for example, but not limited to, body padding for athletic and military applications, are illustrated in
Laboratory tests were carried out at a prominent university to evaluate body padding in accordance with the material 1400. The material 1400 used in the testing comprised two layers of reinforcement material, each manufactured from woven Kevlar K-49, embedded within a respective elastomer layer manufactured from cured polyurethane. Each layer of woven Kevlar was approximately 3 mils thick and the polyurethane was applied to a total material thickness of 6 mm. Generally, as illustrated in
In the testing, identical flat Aluminium plates were used with the different padding material pasted onto them. Nine impact locations were marked on the top. One end of the plate was firmly fixed to a work table with an overhang of about 75%. Accelerometer mounts were fabricated from Aluminum and mounted on the bottom of the plate near the middle. Uniaxial accelerometers from Bruel & Kjaer were used in the experiment. They are high precision sensors capable of measuring high level accelerations. These were connected to a Charged amplifier type 2635 which was in turn connected to a data acquisition front end (Module type 3109) which has a 25 KHz LAN interface module (type 7533) that was connected to the LAN port of a PC. The software used for data acquisition was Pulse Labshop version 10.2. There were three test runs for each case. The tests were run for impacts at nine locations.
After the raw data was collected computer programs were used to perform analysis on the effectiveness of the paddings. The top peak magnitude in the frequency spectrum was used as the performance criterion. Analyzing the results, the amplitude of vibration as measured by the accelerations were reduced in the inventive material versus the control material. It was also found that the peak frequency amplitudes, especially at resonant peaks, were reduced by the use of the inventive padding. Reductions in peak amplitudes were as much as 75% at the resonant frequencies.
In view of the results, it was determined that the inclusion of the second material 1410′, including a reinforcement layer 1414′ even without thick elastomer layers 1412′, provided an initial vibration dissipation layer which absorbed and dissipated a significant portion of the impact force, which thereby did not reach the first material 1410.
A padding material 1500 with an alternative initial vibration dissipation layer is illustrated in
a, and 87 show a variant of the material shown in
In use, this material can be used as a flooring 1037, as shown in
In use as a motor mount, the material is formed as a cylinder 1040, in which the aramid layer 1010 forms an outer cylinder with an elastomer 1020 located therebetween. This cylinder 1040 is closed on itself (by gluing or welding) to form the toroidal shaped shock absorber 1050, which could be used as a motor mount.
The foam layer 1110 of the present embodiment is preferably rigid and inflexible, although softer foam layers may be used. Additionally, as explained herein, the elastomer layers may be formed with a foamed structure. The rigid foam layers 1110 present a problem in that many impact-resistant applications require flexible material, i.e., paintball padding and armor that can flex around a person's body. The applicant solved this problem by forming narrow areas of weakness 1111 in the foam layer. These areas can be formed by cutting, stamping, or forming the area of predetermined weakness, but in any event, they allow for the foam layer 1110 to bend at these areas 1111. Various shapes of the areas of predetermined weakness could be used depending on the needed flexibility. As shown, parallel, hexagonal, and herringbone (diamond) areas are presently preferred.
Similar patterns may be utilized in embodiments wherein one of the elastomer layers is a foamed or other structure to provide greater flexibility to the product and/or provide air flow.
Any of the above-mentioned layers could be soaked in, embedded in, encapsulated by, or otherwise distributed with a resistive fluid. Preferably, the resistive fluid layer is separated from the wearer/holder by at least one of the elastomer layers to minimize the direct transmission of impact to the wearer/holder.
Body armor is a frequently cited use of resistive fluids—such an application would work well with all of the vibration-reducing materials described herein because the vibration-reducing material would further protect the wearer from damaging vibration from an impact and puncture.
Illustrative resistive fluids include shear thickening fluids (STFs), or dilatants, and magnetorheological fluid (MRF).
Use as Soundproofing
The materials described herein can be used as soundproofing in many applications, for example, but not limited to: Industrial and Commercial Equipment; Heavy-Duty Machinery; Compressors, Generators, Pumps, Fans; Commercial Appliances and Equipment; HVAC Equipment; Precision Equipment/Electronics; Business Machines, Computers, Peripherals; Medical and Lab Equipment/Instruments; Telecommunications; Consumer Electronics And Appliances; Specialty Applications; Seating, Positioning, Pillows, Mattresses; Footwear; Athletic Equipment; Vehicle; Automotive and Truck; Marine and Aircraft; Bus, Coach, and RV; Personal Leisure Vehicles; Farm and Construction, Off-Highway.
The following description applies generally to many of the materials described above, but is specifically with reference to
In addition to the mechanical radiation damping provided by the high tensile strength fibrous layer 14, the boundaries between the elastomer layers 12A and 12B and the high tensile strength fibrous layer 14 create several additional operative mechanisms for energy dissipation. These beneficial boundary effects include, but are not limited to reflection, transformation, dispersion, refraction, diffraction, transformation, friction, wave interference, and hysteric damping. The combination of these dissipation mechanisms working simultaneously results in a material with extremely efficient damping characteristics compared to traditional materials of the same or greater thickness.
The material 10 can include different numbers of layers, as well as varying orders of the layers compared to the base composite shown. Materials can be added to the composite such as sheet metal to aid in the absorption of specific frequencies and wave lengths of vibration energy or to add strength. Those of ordinary skill in the art will appreciate from this disclosure that the material 10 can be formed of two independent layers without departing from the scope of the present invention. Accordingly, the material 10 can be formed of a first elastomer layer 12A and a high tensile strength fibrous material layer 14, which may be woven into a cloth layer 16, that is disposed on the first elastomer 12A.
It should be understood that what is shown in
Additional Use in the Prevention of Sports Injuries, Including Commotio Cordis
Certain embodiments described above and below are capable of providing at least protective equipment, garments, and the like (which may be referred to by collective terms and phrases herein throughout) that serve in the prevention of concussive effects on the heart, cardiopulmonary system, internal organs, and the like, by a received force. The concussive effects prevented by the disclosed embodiments may owe the provided functionality to the variety of layers that constitute the protective equipment, as well as the particular make-up, order and specification of the layers. These layers may have various constituents, various thicknesses, and may be provided in various combinations that may modify the performance of the protective equipment, but which are nevertheless covered by the disclosed embodiments. For example, although a high tensile strength fibrous material layer 14, such as an aramid layer, discussed herein may experience enhanced performance by having applied thereto an elastomeric coating 12a, 12b on both sides thereof, those of ordinary skill in the pertinent arts will appreciate in light of the discussion herein that such coatings 12a, 12b may be provided on only one side of the high tensile strength fibrous 14 layer or may be provided by various optional elastomeric components, or elastomeric combination in combination with other constituents or features, such as protective randomly distributed nanofibers and the like.
More specifically, a pad, panel, or multiple pads or panels, in addition to other arrangements (which may be referred to by collective terms or phrases herein throughout), may be provided that comprise the aforementioned coated high tensile strength fibrous layer or layers. These apparatuses, which may be hereinafter referred to collectively as panels, may, for example, include other layers in addition to a coated high tensile strength fibrous layer. For example, as set forth in
As referenced above, and as illustrated in Table 1 [Test Results], the arrangement of
Additionally, other layers beyond those illustrated in
Yet further, the thicknesses of layers independently, as well as in combination, may be varied in certain circumstances. For example, protective equipment having panels inclusive of a multi-durometer layer, may, in certain environments, preferably have minimal thickness. For example, in the event a panel is to be inserted into a helmet, such as in a pliable helmet insert, the desired total thickness of the embodiments described in
Because the disclosed embodiments may provide multidurometer layers, such as including high-density and low-density foams, which may correspondingly comprise high durometer and low durometer foams, energy absorption and/or dispersion of the provided panels is optimized. However, because of the high level of deformation suffered by low-density foam, equipment employing only low-density foam compresses so significantly at impact that it does little prevent concussive effect on the body. The disclosed embodiments provide significant comfort even including the use of a high-durometer, such as a four durometer foam, such as in the six to nine pound density range, in part because the high-durometer foam is used in combination with the low-durometer foam such that the thickness of the high-durometer foam is minimized. That is, the disclosed embodiments provide appreciably improved performance through the use of combination of foam densities, i.e., optimal performance is achieved by combining foams of different, specific densities in specific orders.
Moreover, certain of the layers provided in association with the disclosed protective equipment may have preferred characteristics due to the nature of the remaining layers. By way of non-eliminating example, elastomeric layers 12a,12b provided over the high tensile strength fibrous layer portions specifically may be colored, due to the damage that light can inflict on aramid performance. Yet further, the presence of particular layers may indicate the non-presence of other layers. For example, multiple high-density foam layers may be operationally less desirable than a multi-durometer layer disclosed herein, such as because only single or singular frequencies of impact force may be eliminated by multiple layers having similar or the same uniformity. Further, overly thick coating layers in association with the high tensile strength fibrous layer, and/or multiple high tensile strength fibrous layers, may be undesirable because forces to be dissipated are instead trapped between layers and allowed to oscillate rather than dissipate. Still further, the order of particular layers in the protective equipment discussed herein may indicate the placement or order of other layers. For example, performance may be degraded significantly if the coated high tensile strength fibrous layer is placed in the outermost portion, i.e., most adjacent to the impact, of the disclosed panels.
Particular embodiments of the disclosed invention, shown for example in
Although prior studies of commercially available chest wall protectors failed to prevent ventricular fibrillation (VF), this study demonstrated that it is reasonable to expect that chest protector designs incorporating embodiments of the present invention to be effective in the prevention of commotion cordis on the playing field. To conduct the study, juvenile male swine, 12 to 16 weeks old and weighing 15 to 25 kg were sedated and then anesthetized. Left ventricular pressure catheters were placed in the left ventricle and the animals were then positioned prone in a sling to approximate physiologic blood flow and cardiac hemodynamics. Chest wall impact was produced by a lacrosse ball mounted on a lightweight aluminum shaft. The impact object was directed, with echocardiographic guidance, to strike the animal perpendicular to the chest wall, directly over the center of the heart during the vulnerable time window for VF. All impacts were at 40 mph and impacts outside of the necessary time window were excluded from analysis. The study assessed the outcome of four sequential and iterative series of experiments grouped around sets of chest protectors. Primary endpoint was the incidence of VF with chest wall strikes and secondary endpoints included a combined endpoint of VF and nonsustained VF, ST segment elevation, and peek LV pressure and LV dP/dT produced by ball impact.
Unexpectedly, whereas prior studies conducted on commercially available chest protectors for at least baseball and lacrosse were not found to reduce the risk of VF, chest protector designs incorporating embodiments of the invention described herein were found to likely be effective in the prevention of commotio cordis on the playing field. Twelve embodiments of the present invention, in the form of 4 inch by 4 inch squares were tested versus a control, wherein impacts were administered to swine without a chest protector. In the control, wherein impacts were administered to swine without a chest protector, VF was caused in 43 of 80 impacts (54%). Four chest protectors (numbers 6 (
As shown in
As demonstrated, in a method of selecting a preferred make-up of a multi-layer, multidurometer material that may include multiple layers of foam with different durometers, a coated high tensile strength fibrous layer, and optionally a rigid polyurethane layer, the selection of the durometers and thicknesses of the foam and aramid layers may be in a manner that effectively dissipates a broad spectrum of frequencies of received force. Or, the durometers or thicknesses of the foams and the high tensile strength fibrous layer may be selected to dissipate a specific range of frequencies of received force.
Those skilled in the art will appreciate that various different aramids may be employed based upon the desired protective effects. For example, Kevlar K49 may be employed to optimize vibration absorption; K79 may be employed to minimize stabbing forces; and K29 and K129 may be provided to maximize protection again point impact or ballistics forces.
Those skilled in the art will also appreciate various particular embodiments that may be indicated by the aspects discussed herein. For example, the disclosed protective equipment may be included in an athletic shirt, which may be lightweight and/or have wicking properties, and wherein such wicking properties do not adversely affect the performance of the high tensile strength fibrous layer, at least in part due to the presence of the coating on the layer; the protective equipment may comprise an athletic chest protector, such as may be used in lacrosse, cricket, baseball, football, soccer, softball, or the like; or the protective equipment may be provided as a wearable harness, such as through the use of Velcro straps or the like. The protective aspects may be stitched into equipment or garments, inserted into pre-formed pouches, or otherwise integrated with wearable items. The protective equipment may further be utilized in athletic helmets or headbands, such as for example baseball, football, soccer, lacrosse, or the like.
Additionally, a single pad or a panel may be provided, as may be multiple pads or panels, such as in an interlocking format, such as in order to optimize flexibility and mobility in various contexts. By way of non-eliminating example,
More particularly, and as illustrated in
Yet further, where the number of pads in the cardiovascular padding system is greater than one, as shown, various pads of the cardiovascular protection system embodiment may be formed of differing materials, as may be the cardiovascular pads in relation to other pads in a protective garment; that is, the individual pads of a multi-pad system may not all share the same material/size/shape profile. Those skilled in the art will further appreciate that, in a multiple panel and/or interlocking panel context, all panels may not be uniform in size or shape, and different ones of the panels may be provided differently in order to optimize protective coverage. By way of non-eliminating example, the two smaller more rectangular pads shown in the three panel combination of
Moreover, the pads may be in the lowest profile format that functions for a given context, i.e. the pads may be of the minimal depth allowable to protect the cardiovascular system, such as so as to provide optimal performance in protection from commotio cordis. Accordingly, the material profile of individual pad layers may be optimally selected, as discussed herein throughout, so as to minimize the total depth of one or more of the pads. Further, and in order to minimize the profile of the pads, the shirt and/or pocket into which the pads are placed may be substantially fitted to the torso of the wearer, either uniquely to a given user or generally to categories of user body types, so as to minimize the depth profile of the pads with regard to the body of the wearer. A shirt, such as that illustrated in
Of note, a Velcro attachment or other means may allow for adjustability of the exemplary padding system, such as to allow for the padding system to consistently be placed over the cardiac area of the user. The illustrated pad may be useful in, for example, baseball, lacrosse, martial arts, or other sports where there is danger to the cardiac area. Yet further, and as is the case with other pads disclosed throughout, such as the t-shirt based padding system, the low profile of the exemplary padding system may allow for the padding system to be worn under other padding systems, such as under chest and shoulder pads for football, by way of non-limiting example.
Those skilled in the art will appreciate, for example, that other connection aspects may be provided as mentioned above. For example, so called hook and eye connectors may be present, string/lacing connectors that may be tightened may be present, or the like. Further, the padding system may be formed so as to allow for optimal use during sports. For example, the fabric used to maintain the padding system may be lightweight and breathable, such as with a mesh backing, to keep players cool and dry. Accordingly, wicking material may additionally or alternatively be used.
In additional and alternative embodiments, any equipment comprised of the layers discussed herein throughout may additionally be comprised of other layers or protective aspects. By way of non-limiting example, a chest protector may include a pad or pads in accordance with the disclosed aspects only in physical locations correspondent to a prospective commotio cordis event, and may have known, i.e., low density, foam types at other portions of the chest protector, as would be typical of chest protectors in the known art.
It is recognized by those skilled in the art, that changes may be made to the above-described embodiments of the invention without departing from the broad inventive concept thereof. For example, the material 10 may include additional layers (e.g., five or more layers) without departing from the scope of the claimed present invention. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but is intended to cover all modifications which are within the spirit and scope of the invention as defined by the appended claims and/or shown in the attached drawings.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/944,131, filed Jul. 17, 2013, which is a Divisional of U.S. patent application Ser. No. 13/084,866, filed Apr. 12, 2011 which is a Continuation-in-Part of U.S. patent application Ser. No. 12/570,499 filed Sep. 30, 2009 which is a Continuation-in-Part of U.S. patent application Ser. No. 11/873,825 filed Oct. 17, 2007 (now U.S. Pat. No. 8,413,262, issued Apr. 9, 2003) and a Continuation-in-Part of U.S. patent application Ser. No. 11/635,939 filed Dec. 8, 2006 (Abandoned) which is a Continuation-in-Part of U.S. patent application Ser. No. 11/304,079 filed Dec. 15, 2005 (Abandoned) and a Continuation-in-Part of U.S. patent application Ser. No. 11/304,995 filed Dec. 15, 2005 (Abandoned), both of which are a Continuation-in-Part of U.S. patent application Ser. No. 11/019,568 filed Dec. 22, 2004 (now U.S. Pat. No. 7,171,697, issued Feb. 6, 2007), which is a Continuation-in-Part of U.S. patent application Ser. No. 10/999,246 filed Nov. 30, 2004, which is a Continuation-in-Part of U.S. patent application Ser. No. 10/958,611 filed Oct. 5, 2004 (now U.S. Pat. No. 7,150,113, issued Dec. 19, 2006), U.S. patent application Ser. No. 10/958,941 filed Oct. 5, 2004 (Abandoned), U.S. patent application Ser. No. 10/958,767 filed Oct. 5, 2004 (Abandoned), U.S. patent application Ser. No. 10/958,952 filed Oct. 5, 2004 (Abandoned) and U.S. patent application Ser. No. 10/958,745 filed Oct. 5, 2004 (now U.S. Pat. No. 8,142,382, issued Mar. 27, 2012), all of which are a Continuation-in-Part of U.S. patent application Ser. No. 10/856,215 filed May 28, 2004 (now U.S. Pat. No. 6,942,586, issued Sep. 13, 2005) which is a Continuation of U.S. patent application Ser. No. 10/659,560 filed Sep. 10, 2003 (now U.S. Pat. No. 6,935,973, issued Aug. 30, 2005) which is a Divisional of U.S. patent application Ser. No. 09/939,319 filed Aug. 27, 2001 (now U.S. Pat. No. 6,652,398, issued Nov. 25, 2003). This application also claims priority to U.S. 62/269,723, filed Dec. 18, 2015. Each of the aforementioned applications is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62269723 | Dec 2015 | US | |
62155193 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13084866 | Apr 2011 | US |
Child | 13944131 | US | |
Parent | 09939319 | Aug 2001 | US |
Child | 10659560 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10659560 | Sep 2003 | US |
Child | 10856215 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13944131 | Jul 2013 | US |
Child | 15085274 | US | |
Parent | 12570499 | Sep 2009 | US |
Child | 13084866 | US | |
Parent | 11873825 | Oct 2007 | US |
Child | 12570499 | US | |
Parent | 11635939 | Dec 2006 | US |
Child | 11873825 | US | |
Parent | 11304995 | Dec 2005 | US |
Child | 11635939 | US | |
Parent | 11019568 | Dec 2004 | US |
Child | 11304995 | US | |
Parent | 11304079 | Dec 2005 | US |
Child | 11635939 | US | |
Parent | 11019568 | Dec 2004 | US |
Child | 11304079 | US | |
Parent | 10999246 | Nov 2004 | US |
Child | 11019568 | US | |
Parent | 10958745 | Oct 2004 | US |
Child | 10999246 | US | |
Parent | 10856215 | May 2004 | US |
Child | 10958745 | US | |
Parent | 10958952 | Oct 2004 | US |
Child | 10999246 | US | |
Parent | 10856215 | May 2004 | US |
Child | 10958952 | US | |
Parent | 10958767 | Oct 2004 | US |
Child | 10999246 | US | |
Parent | 10856215 | May 2004 | US |
Child | 10958767 | US | |
Parent | 10958941 | Oct 2004 | US |
Child | 10999246 | US | |
Parent | 10856215 | May 2004 | US |
Child | 10958941 | US | |
Parent | 10958611 | Oct 2004 | US |
Child | 10999246 | US | |
Parent | 10856215 | May 2004 | US |
Child | 10958611 | US |