Vibration damper for a torque transmission device of a motor vehicle

Information

  • Patent Grant
  • 10400825
  • Patent Number
    10,400,825
  • Date Filed
    Friday, December 20, 2013
    10 years ago
  • Date Issued
    Tuesday, September 3, 2019
    5 years ago
Abstract
A vibration damper for a torque transmission device comprising a first element and a second element which are rotatable relative to each other around an axis of rotation X; and damping means for transmitting a torque and damping the rotational acyclisms between the first element and the second element. The damping means comprise an elastic blade mounted securely on the first element and provided with a cam surface; and the damper comprises a cam follower carried by the second element and arranged to cooperate with the cam surface. The cam surface is arranged such that, for an angular travel between the first element and the second element relative to an angular rest position, the cam follower exerts a flexion force on the elastic blade producing a reaction force able to return the first and second elements to the angular rest position.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS AND CLAIM TO PRIORITY

This application is a national stage application of International Application No. PCT/FR2013/053218 filed Dec. 20, 2013, which claims priority to French Patent Application No. 1262613 filed Dec. 21, 2012, the disclosures of which are incorporated herein by reference and to which priority is claimed.


FIELD OF THE INVENTION

The invention relates to a torsional vibration damper intended to be fitted to a torque transmission device. The invention relates more particularly to the field of motor vehicle transmissions.


BACKGROUND OF THE INVENTION

In the field of motor vehicle transmissions, it is known to provide torque transmission devices with torsional vibration dampers allowing absorption and damping of the vibrations and acyclisms generated by an internal combustion engine.


The vibration dampers comprise an input element and an output element which are rotatable around a common axis of rotation, and elastic damping means for transmitting the torque and damping the rotational acyclisms between the input element and the output element.


Such vibration dampers are used in particular on dual mass flywheels (DVA), clutch friction plates in the case of manual or semiautomatic transmission, or lock-up clutches fitted to hydraulic coupling devices in the case of automatic transmission.


Documents FR 2894006, FR 2913256 and FR 2922620 illustrate vibration dampers fitted respectively to a dual mass flywheel, a clutch friction plate and a lock-up clutch. The elastic damping means used on these vibration dampers are helicoidal springs with circumferential effect, the ends of which come to rest firstly against stops integral with the input elements and secondly against stops integral with the output elements. Thus any rotation of said elements relative to each other causes a compression of the damper springs in one direction or the other, and said compression exerts a return force able to return said elements to a relative angular rest position. The helicoidal springs may be straight or curved.


The stiffness of such a damper is determined as a function of the number of helicoidal springs used therein, the intrinsic stiffness of the springs and the installation diameter of the springs. The choice of stiffness of such vibration dampers results from a compromise between the acyclism filtration efficacy, which increases as the stiffness diminishes, and the capacity to transmit the maximum engine torque without the coils of the springs coming to rest against each other, which requires a sufficient stiffness.


In order to improve the filtration performance for low-torque vibrations, it is known to provide vibration dampers for which the characteristic curve of the torque transmitted as a function of the angular travel has several gradients. Thus at low torque, the stiffness of the damper is less, whereas when approaching the maximum engine torque to be transmitted, the stiffness of the vibration damper is greater. Such a vibration damper is described in particular in document EP 2157336. However, the stiffness change zones cause discontinuities and shocks which are harmful to the quality of the acyclism damping.


Also, as the helicoidal springs are arranged circumferentially, they are extremely susceptible to centrifugal force. Also, the input and/or output elements must be equipped with means allowing the springs to be retained radially and hence prevent their ejection. However these radial retention means introduce parasitic friction, which affects the damping function by blocking the springs when the rotation speed is too high. Attempts have been made to reduce the effect of the parasitic friction by providing complex geometries, surface treatment, or by the introduction of grease. However these measures render production of the vibration dampers more complex and are not therefore totally satisfactory.


Finally, since the space available for the helicoidal springs is limited, the angular travel between the input and output of the vibration damper is also limited, and the helicoidal springs must have a sufficient stiffness to allow transmission of the maximum engine torque.


Thus vibration dampers with helicoidal springs are not totally satisfactory.


SUMMARY OF THE INVENTION

The invention proposes to remedy these problems by proposing a vibration damper with improved performance.


To this end, according to a first aspect, the invention concerns a vibration damper for a torque transmission device comprising:

    • a first element and a second element which are rotatable relative to each other around an axis of rotation X; and
    • damping means for transmitting a torque and damping the rotational acyclisms between the first element and the second element.


The vibration damper is remarkable in that the elastic damping means comprise an elastic blade mounted securely on the first element and provided with a cam surface; and in that it comprises a cam follower carried by a second element and arranged to cooperate with said cam surface. Also, the cam surface is arranged such that, for an angular travel between the first element and the second element relative to an angular rest position, the cam follower exerts a flexion force on the elastic blade producing a reaction force able to return said first and second elements to said angular rest position.


Therefore the damping means are less susceptible to centrifugal force than the helicoidal springs of the prior art, and their damping capacity is not adversely affected by a high rotation speed of the internal combustion engine.


Also, the structure of such a damper allows relatively large travel paths.


Also, such a damper may have a characteristic curve showing variations in the transmitted torque as a function of the angular travel, in which the gradient variations have no inflection points or discontinuities.


Finally, as the cam surface is carried by the elastic blade, production of a damper according to the invention may be partly standardized. In fact, the geometry and characteristics of the blade only require adaptation when the characteristics of a damper must be adapted to the characteristics of the proposed application, in particular to the maximum engine torque to be transmitted.


According to other advantageous embodiments, such a vibration damper may have one or more of the following characteristics:

    • the cam follower is arranged radially outside the elastic blade. Such an arrangement allows radial retention of the elastic blade when it is subjected to centrifugal force. Also, this arrangement allows an increase in stiffness of the elastic blade under the effect of centrifugal force.
    • the cam surface is formed at a free end of the elastic blade.
    • the blade comprises a portion of radial orientation extended by a curved portion, at the free end of which the cam surface is formed. Such a structure gives both a low rigidity and a satisfactory mechanical strength.
    • the damper comprises a second elastic blade provided with a cam surface and mounted securely on the first element, and a second cam follower arranged to cooperate with the cam surface of said second elastic blade. Such an arrangement allows an increase in the torque capacity of the damper.
    • the first and second elastic blades are symmetrical relative to the axis of rotation X. The damper is therefore balanced.
    • the first and second elastic blades are formed from a single piece.
    • the cam follower is a roller mounted rotatably on the second element.
    • the roller is mounted rotatably on the second element via a roller bearing.


According to a second aspect, the invention concerns a torque transmission element, in particular for a motor vehicle, comprising a vibration damper according to the first aspect of the invention.


In one embodiment, the torque transmission element comprises two vibration dampers arranged in series. Such an arrangement allows a further increase in angular travel.


In another embodiment, the torque transmission element comprises two vibration dampers arranged in parallel. Thus the torque transmission element may have a greater torque capacity.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood, and other objectives, details, characteristics and advantages thereof will arise more clearly from the description below of several particular embodiments of the invention which are given solely for illustration and without limitation, with reference to the attached drawings.


On the drawings:



FIG. 1 is a perspective view of a vibration damper according to a first embodiment;



FIG. 2 illustrates the flexion of the blade of the vibration damper according to FIG. 1 on an angular travel between the input and output elements in an direct direction;



FIG. 3 illustrates the flexion of the blade on an angular travel in a reverse direction;



FIG. 4 is a perspective view of a vibration damper according to a second embodiment;



FIG. 5 illustrates in detail the damping means of the vibration damper in FIG. 4;



FIGS. 6a, 6b, 6c illustrate examples of characteristic curves depicting the torque transmitted as a function of the angular travel, obtained by damping means according to the teaching of the invention;



FIG. 7 is a schematic view of a transmission train of a motor vehicle showing the vibration damper between an internal combustion engine and a gearbox.



FIG. 8 is a schematic view of a hydraulic coupling device including the vibration damper according to the present invention in a motor vehicle.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

A torsional vibration damper 14 shown on FIG. 1 is intended to be integrated in a transmission element of the transmission train of a motor vehicle. This transmission element may for example be an engine flywheel equipped with the torsional vibration damper 14, such as a dual mass flywheel, a lock-up clutch of a hydraulic coupling device, or a clutch friction plate. It is also noted that in the case of a clutch friction plate, the torsional vibration damper 14 according to the invention may be formed as a main damper and/or as a pre-damper.


The torsional vibration damper 14 comprises an input element 1 and an output element 2 which are arranged, in the transmission train, on the side of an internal combustion engine 10 and on the side of a gearbox 12, respectively, as illustrated in FIG. 7. For example, when the vibration damper according to the invention is integrated in a dual mass flywheel, the input element 1 may comprise or be carried by a first inertia flywheel intended to be fixed to the end of a drive shaft, such as a crankshaft of an internal combustion engine 10, while the output element 2 comprises or is carried by a second inertia flywheel, generally forming a reaction plate of a clutch for connection to a driven shaft, such as an input shaft of the gearbox 12. FIG. 8 shows the vibration damper 14 of the present invention employed in a hydraulic coupling device 20 for a transmission train of a motor vehicle 23 between the internal combustion engine 10 and the gearbox 12.


The input element 1 and output element 2 are rotatable about a common axis of rotation X. The input element and output element 2 are guided in rotation relative to each other by means of a bearing such as a roller bearing 3.


The input element 1 and output element 2 are connected in rotation by damping means. The damping means are able to transmit a torque exceeding 200 N·m, preferably exceeding 300 N·m, (see FIG. 6a-6c) driving the input element 1 towards the output element 2 (direct direction) and a resistant torque of the output element 2 towards the input element 1 (reverse direction). Secondly, the damping means develop an elastic return torque tending to return the input element 1 and the output element 2 to a relative angular rest position.


The damping means comprise an elastic blade 4. The elastic blade 4 has a free distal end 43 and a connecting portion 44 spaced from the free distal end 43. The connecting portion 44 of the elastic blade 4 is securely (i.e., non-moveably or fixedly) mounted in rotation on the input element 1. At one free end 43, the elastic blade 4 has a cam surface 6 preceding (or anterior to) the free distal end 43 of the elastic blade 4 and arranged to cooperate with a cam follower: a roller 5 mounted on the output element 2. The elastic blade 4 is designed so that it can tolerate high stresses which may amount to 1500 MPa. The elastic blade 4 is for example made of 51CV4 steel which has undergone dedicated heat treatment such as quenching followed by annealing.


The connecting portion 44 of the elastic blade 4 is fixed (i.e., non-moveably coupled) to the input element 1 close to the axis of rotation X. The elastic blade 4 further comprises an arm portion 41 extending substantially radially outwardly from the connecting portion 44 on the input element 1. The arm portion 41 is extended via an elbow by a curved portion 42 adjacent to the connecting portion 44. The curved portion 42 extends substantially circumferentially. As illustrated in FIGS. 1-5, a radially outer surface of the curved portion 42 of the elastic blade 4 forms the cam surface 6, which is anterior to the free distal end 43 of the elastic blade 4, i.e., is disposed between the free end 43 and the arm portion 41 of the elastic blade 4. The radius of curvature of the curved portion 42, and the distance between the elbow extending between the portion 41 and the curved portion 42, are determined as a function of the desired stiffness of the elastic blade 4. The elastic blade 4 may, as required, be produced from one piece or be composed from a plurality of blades axially fixed to each other.


The roller 5 is mounted rotatably on the output element 2 around the axis of rotation 7. The roller 5 is held resting against the cam surface 6 and is arranged to roll against said cam surface 6 on a relative movement between the input element 1 and the output element 2. The roller 5 is arranged radially outside the cam surface 6 so as to hold the elastic blade 4 radially when it is subjected to centrifugal force. In order to reduce the parasitic friction liable to affect the damping function, the roller 5 is mounted in rotation on the output element 2 by means of a roller bearing. For example, the roller bearing may be a ball bearing or a roller bearing. In one embodiment, the roller 5 has an antifriction coating.



FIG. 1 illustrates the input element 1 and the output element 2 in a relative angular rest position.


The cam surface 6 is arranged such that, for an angular travel between the input element and the output element to either side of this relative angular rest position, the roller 5 moves on the cam surface 6 and by doing so, exerts a flexion force on the elastic blade 4. In reaction, the cam surface 6 exerts a return force on the roller 5 which tries to bring the input element 1 and output element 2 back to their relative angular rest position.


The function of the vibration damper will now be explained in relation to FIGS. 2 and 3.


When a driving motor torque is transmitted from the input element 1 to the output element 2 (direct direction), the torque to be transmitted causes a relative travel between the input element 1 and the output element 2 in a first direction (see FIG. 2). The roller 5 is then moved through an angle α relative to the elastic blade 4. The movement of the roller 5 on the cam surface 6 causes a flexion of the elastic blade 4 according to arrow A. To illustrate the flexion of the blade 4, the blade 4 is shown in solid lines in its angular rest position and in dotted lines in its angular travel.


The flexion force P depends in particular on the geometry of the blade and its material, in particular its modulus of transverse elasticity. The flexion force P breaks down into a radial component Pr and a tangential component Pt. The tangential component Pt allows transmission of the engine torque. In reaction, the elastic blade 4 exerts a reaction force on the roller 5, the tangential component of which constitutes a return force which tries to bring the input element 1 and output element 2 back to their relative angular rest position.


When a resistant torque is transmitted from the output element 2 to the input element 2 (reverse direction), the torque to be transmitted causes a relative travel between the input element 1 and the output element 2 in a second opposite direction (see FIG. 3). The roller 5 is then moved through an angle β relative to the elastic blade 4. In this case, the tangential component Pt of the flexion force has an opposite direction to the tangential component of the flexion force illustrated on FIG. 2. Similarly, the elastic blade exerts a reaction force in the opposite direction to that illustrated on FIG. 2, so as to bring the input element 1 and output element 2 back to their relative angular rest position.


The torsional vibrations and the torque irregularities produced by the internal combustion engine are transmitted by the drive shaft to the input element 1, and also generate relative rotations between the input element 1 and output element 2. These vibrations and irregularities are damped by the flexion of the elastic blade 4.



FIGS. 6a, 6b and 6c illustrate characteristic curves of the vibration dampers produced in accordance with the teaching of the invention. FIG. 6a shows the characteristic curve of a pre-damper intended to be fitted to a clutch friction plate, while FIGS. 6b and 6c represent characteristic curves of main dampers intended to be fitted to clutch friction plates. These characteristic curves represent the torque transmitted, expressed in Nm, as a function of the angular travel, expressed in degrees. The relative travel between the input element 1 and output element 2 in the direct direction is shown in dotted lines, whereas the travel in the reverse direction is shown in solid lines. It is noted that a vibration damper according to the invention in particular allows characteristic damping curves of which the gradient varies progressively without discontinuity.


Advantageously, the cam surface 6 and the elastic blade 4 are arranged such that the characteristic function of the torque transmitted as a function of the angular travel is a monotonous function.


Also, the cam surface 6 and the elastic blade 4 are arranged such that the transmissible torque is greater than the maximum engine torque when the roller 5 reaches the two ends of the cam track 4.


For certain applications, the cam surface 6 and the elastic blade 4 may be arranged such that the characteristics of the torque transmitted as a function of the angular travel in the reverse direction and in the direct direction are symmetrical relative to the angular rest position.



FIGS. 4 and 5 show a second embodiment of the invention wherein the vibration damper comprises two elastic blades 4. The first and the second elastic blades 4 are formed from a single piece and are symmetrical relative to the axis of rotation X. Moreover, the first elastic blade and the second elastic blade (4) have a common connecting portion 45 arranged around the axis of rotation X and mounted securely on the first element 1. Each of the blades 4 has a cam surface 6 cooperating with a cam follower 5. Such a structure firstly allows a balanced vibration damper, and secondly may be advantageous when the engine torque to be transmitted is high.


In one embodiment (not illustrated), a torque transmission element according to the invention is fitted with two dampers as described above, arranged in series.


In another embodiment (not illustrated), a torque transmission element is fitted with two dampers as described above, arranged in parallel.


Although the invention has been described in connection with several particular embodiments, it is evident that it is in no way limited to this and comprises all technical equivalents of the means described and their combinations where these fall within the scope of the invention. In particular, it is evident that although, in the embodiment described above, the elastic blade is mounted securely on the input element and the cam follower is mounted on the output element, the elastic blade may equally well be mounted on the output element while the cam follower is mounted on the input element.

Claims
  • 1. A vibration damper (14) for a torque transmitting device of a motor vehicle having an internal combustion engine and a gearbox, the vibration damper comprising: a first element; anda second element, the first and second elements rotatable on a common axis of rotation relative to each other, one of the first and second elements being an input element adapted to be drivingly coupled to the internal combustion engine and another of the first and second elements being an output element adapted to be drivingly coupled to the gearbox;an elastic blade (4) having a free end (43) and a cam surface (6) preceding the free end (43), the elastic blade (4) mounted securely on the first element, the cam surface (6) formed by a radially outer surface of the elastic blade (4);a cam follower (5) carried by the second element and configured to cooperate with the cam surface (6) of the elastic blade (4), the cam follower (5) being a roller rotatably mounted on the second element (2) so as to be arranged radially outside the elastic blade (4);the cam surface (6) being arranged such that, for an angular travel between the first element (1) and the second element (2) relative to an angular rest position, the cam follower (6) exerts a flexion force on the elastic blade (4) producing a reaction force able to return the first element (1) and the second element (2) to the angular rest position.
  • 2. The vibration damper as claimed in claim 1, wherein the cam surface (6) is formed at the free end (43) of the elastic blade (4).
  • 3. The vibration damper as claimed in claim 2, wherein the elastic blade (4) comprises a portion (41) of radial orientation extended by a curved portion (42), and wherein the cam surface (6) is formed by a radially outer surface of the curved portion (42) of the elastic blade (4).
  • 4. The vibration damper as claimed in claim 1, further comprising a second elastic blade (4) provided with a second cam surface (6) and mounted securely on the first element, and a second cam follower (5) arranged to cooperate with the second cam surface (6) of the second elastic blade (4).
  • 5. The vibration damper as claimed in claim 4, wherein the first and second elastic blades (4) are symmetrical relative to the axis of rotation (X).
  • 6. The vibration damper as claimed in claim 4, wherein the first and second elastic blades (4) are integral.
  • 7. The vibration damper as in claim 4, wherein the first elastic blade and the second elastic blade have a common connecting portion arranged around the axis of rotation X and mounted securely on the first element (1).
  • 8. The vibration damper as claimed in claim 1, wherein the roller (5) is mounted rotatably on the second element (2) via a bearing.
  • 9. The vibration damper as claimed in claim 1, wherein the damper is configured to transmit a torque exceeding 200 N·m.
Priority Claims (1)
Number Date Country Kind
12 62613 Dec 2012 FR national
PCT Information
Filing Document Filing Date Country Kind
PCT/FR2013/053218 12/20/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/096735 6/26/2014 WO A
US Referenced Citations (35)
Number Name Date Kind
2551718 Auten May 1951 A
2837902 Stevens Jun 1958 A
4145936 Vincent et al. Mar 1979 A
4300363 Mathues Nov 1981 A
4378220 Seppala Mar 1983 A
4488629 Loizeau Dec 1984 A
4646899 Murakami Mar 1987 A
4703840 Bopp Nov 1987 A
4718530 Loizeau et al. Jan 1988 A
4795012 Durum Jan 1989 A
4800996 Loizeau Jan 1989 A
5066147 Brandenstein et al. Nov 1991 A
5205788 Sacher et al. Apr 1993 A
5477950 Maloof Dec 1995 A
5697261 Mokdad et al. Dec 1997 A
5823311 Mokdad Oct 1998 A
5893355 Glover et al. Apr 1999 A
5908095 Jaeckel et al. Jun 1999 A
6073503 Matsuno Jun 2000 A
6176785 Geislinger Jan 2001 B1
6224487 Yuergens May 2001 B1
6398655 Orlamunder et al. Jun 2002 B1
6471024 Ota Oct 2002 B2
6585091 Reinhart et al. Jul 2003 B2
8202183 Riu Jun 2012 B2
8257211 Riu Sep 2012 B2
8689952 Toshihisa Apr 2014 B2
20010032767 Reinhart et al. Oct 2001 A1
20020052242 Tabuchi et al. May 2002 A1
20030106763 Kimura et al. Jun 2003 A1
20030226734 Uehara Dec 2003 A1
20080171604 Chaudhari et al. Jul 2008 A1
20100122605 Maienschein May 2010 A1
20170234400 Fenioux Aug 2017 A1
20170363195 Durham Dec 2017 A1
Foreign Referenced Citations (62)
Number Date Country
19538722 Apr 1997 DE
19721236 Dec 1997 DE
19729421 Jan 1998 DE
19808730 Sep 1999 DE
19919449 Nov 1999 DE
10017801 Oct 2001 DE
102004024747 Dec 2005 DE
102008018218 Nov 2008 DE
102009050670 May 2010 DE
102010047803 Apr 2011 DE
102010049929 May 2011 DE
1048420 Nov 2000 EP
1195536 Apr 2002 EP
1691107 Aug 2006 EP
2157336 Feb 2010 EP
2530354 Dec 2012 EP
2339107 Aug 1977 FR
2493446 May 1982 FR
2499182 Aug 1982 FR
2546251 Nov 1984 FR
2602560 Feb 1988 FR
2611013 Aug 1988 FR
2628804 Sep 1989 FR
2714435 Jun 1995 FR
2738606 Mar 1997 FR
2752278 Feb 1998 FR
2764958 Dec 1998 FR
2768208 Mar 1999 FR
2823275 Oct 2002 FR
2828543 Feb 2003 FR
2838490 Oct 2003 FR
2828543 Feb 2004 FR
2843432 Feb 2004 FR
2862730 May 2005 FR
2894006 Jun 2007 FR
2913256 Sep 2008 FR
2922620 Apr 2009 FR
2938030 May 2010 FR
1212042 Nov 1970 GB
2000257 Jan 1979 GB
2169380 Jul 1986 GB
2235749 Mar 1991 GB
2262795 Jun 1993 GB
2289558 May 1995 GB
2284875 Jun 1995 GB
2306620 May 1997 GB
2331132 May 1999 GB
2338773 Jul 2002 GB
2468030 Aug 2010 GB
9280317 Oct 1997 JP
2000192992 Jul 2000 JP
2011047462 Mar 2011 JP
WO199528580 Oct 1995 WO
WO9914114 Mar 1999 WO
WO9941525 Aug 1999 WO
WO2004016968 Feb 2004 WO
WO2006070422 Jul 2006 WO
WO2007000140 Jan 2007 WO
WO2008004257 Jan 2008 WO
WO2008004258 Jan 2008 WO
WO2009047816 Apr 2009 WO
WO2011006264 Jan 2011 WO
Non-Patent Literature Citations (1)
Entry
Translation of FR 2828543.
Related Publications (1)
Number Date Country
20150369296 A1 Dec 2015 US