When a ball bat (such as a baseball or softball bat) collides with a ball, the impact causes vibration in the bat that batters may experience as a painful sting in their hands. Vibration may be more severe when the ball impacts the bat away from a center of percussion in the barrel (sometimes referred to as the “sweet spot”). If the vibration is especially severe, it may injure a batter. To reduce the vibration transferred to a batter's hands (in turn, to reduce the “sting”), batters may wear padded gloves or use a thick cushioned grip on the bat handle. But some padded gloves and thick grips reduce tactile gnosis, and a thick grip may add unnecessary weight to a ball bat. It is desirable to dampen vibrations in a ball bat without reducing tactile gnosis and without adding unnecessary weight.
Representative embodiments of the present technology include an end-cap assembly configured to be attached to a distal end of a barrel of a ball bat. In some embodiments, the end-cap assembly includes a sprung-mass portion, a base portion, and one or more flexible members connecting the sprung-mass portion to the base portion. The sprung-mass portion is movable relative to the base portion along one or more directions, such as one or more directions transverse to the longitudinal axis of the ball bat or along the longitudinal axis of the bat. In some embodiments, the base portion is configured to be attached to the distal end of the barrel.
In some embodiments, a ball bat may include a handle with a knob, a barrel attached to the handle, and an end-cap assembly attached to the barrel, the end-cap assembly including a sprung-mass portion, a base portion, and one or more flexible members connecting the sprung-mass portion to the base portion to allow the sprung-mass portion to move relative to the distal end of the ball bat or the base portion.
In some embodiments, the sprung-mass portion and the base portion are connected to each other by only the one or more flexible members. In some embodiments, the one or more flexible members include a partial or complete ring of flexible material positioned around the sprung-mass portion and between the sprung-mass portion and the base portion. In some embodiments, the one or more flexible members include a plurality of ribs extending radially inwardly from the base portion. In some embodiments, the one or more flexible members may extend longitudinally between the base portion and the sprung-mass portion. In some embodiments, the sprung-mass portion includes a hub, and the one or more flexible members includes a plurality of serpentine ribs extending between the hub and the base portion. In some embodiments, the sprung-mass portion is spaced apart from the base portion along the longitudinal axis of the bat to form a gap between the sprung-mass portion and the base portion.
In some embodiments, an end-cap assembly includes a sprung-mass portion and one or more flexible members extending from the sprung-mass portion to connect the end-cap assembly to the barrel of a ball bat. The one or more flexible members may enable movement of the sprung-mass portion relative to the barrel of the ball bat.
Other features and advantages will appear hereinafter. The features described above can be used separately or together, or in various combinations of one or more of them.
In the drawings, wherein the same reference number indicates the same element throughout the several views:
The present technology is directed to vibration-damping end caps for ball bats, and associated systems and methods. Various embodiments of the technology will now be described. The following description provides specific details for a thorough understanding and enabling description of these embodiments. One skilled in the art will understand, however, that the invention may be practiced without many of these details. Additionally, some well-known structures or functions, such as those common to ball bats, may not be shown or described in detail so as to avoid unnecessarily obscuring the relevant description of the various embodiments. Accordingly, embodiments of the present technology may include additional elements or exclude some of the elements described below with reference to
The terminology used in this description is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this detailed description section.
Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all the items in the list, or (c) any combination of items in the list. Further, unless otherwise specified, terms such as “attached” or “connected” are intended to include integral connections, as well as connections between physically separate components.
The bat 100 may have any suitable dimensions. The bat 100 may have an overall length of 20 to 40 inches, or 26 to 34 inches. The overall barrel diameter may be 2.0 to 3.0 inches, or 2.25 to 2.75 inches. For example, typical ball bats may have diameters of 2.25, 2.625, or 2.75 inches. Bats having various combinations of these overall lengths and barrel diameters, or any other suitable dimensions, are contemplated herein. Bats suitable for use in baseball or softball or other similar activities are contemplated herein. The specific preferred combination of bat dimensions is generally dictated by the user of the bat 100, and may vary greatly between users.
The base portion 210 (or the end-cap assembly 150 as a whole) may be molded, bonded, pressed, or otherwise locked in the distal end 160 of the bat such that it stays attached to the bat during use. In one embodiment, a ridge or lip 230 protruding inwardly and extending around all or part of the wall 240 of the bat engages a corresponding groove or recess 250 circumscribing the base portion 210 of the end-cap assembly 150. The base portion 210 functions as a retention ring to hold the remainder of the end-cap assembly 150 in or on the distal end 160 of the bat. Although specific connections between end-cap assemblies or base portions and distal ends of ball bats are illustrated and described herein, any suitable connection may be used to restrain the end-cap assemblies or base portions to the distal end of a ball bat.
The base portion 210 supports and suspends the sprung-mass portion 200 via the flexible member 220. In some embodiments, the sprung-mass portion 200 may have any suitable shape, for example, a cone, a disk, or any other configuration having mass. In some embodiments, the sprung-mass portion 200 is concentrically positioned within the base portion 210, separated from the base portion 210 by the flexible member 220. In some embodiments, the flexible member 220 includes a partial or complete ring of flexible material (such as an elastomeric material) around the sprung-mass portion 200. The flexible member 220 may include any material or shape suitable for movably suspending the sprung-mass portion 200 relative to the base portion 210. In other words, in various embodiments of the present technology, a sprung-mass portion, such as the sprung-mass portion 200 shown in
Upon impact with a ball, the sprung-mass portion of an end-cap assembly according to embodiments of the present technology may move relative to the distal end 160 of the ball bat. For example, the sprung-mass portion may move along the longitudinal axis x (see
For general context, the impulse force from a bat-ball collision may be in the range of thousands of pounds for approximately one or two milliseconds. The force of the collision with the ball causes the bat to change speed during the batter's swing as the ball compresses and changes direction. For example, the bat may change speed for a short period of time, such as 0.0007 seconds, by a measure of approximately 300 g (g-force), or by other quantities (which may be large). When the product of the mass of the sprung-mass portion of the end-cap assembly and the change in speed of the bat is greater than the spring force suspending the sprung-mass portion (provided by, for example, one or more flexible members, such as the flexible member 220), the sprung-mass portion of the end-cap assembly will move relative to the distal end 160. The motion of the sprung-mass portion will lag behind the motion of the ball bat (or the sprung-mass portion may stay generally stationary relative to the ball bat) until the product of the mass of the sprung-mass portion of the end-cap assembly and the change in speed of the bat is less than or equal to the spring force suspending the sprung-mass portion. The sprung-mass portion will oscillate relative to the bat depending on the characteristics of the material suspending the sprung-mass portion, which will dissipate some of the vibrational energy (for example, in the form of heat) from the impact, until the sprung-mass portion returns to its original resting position. In other words, the sprung-mass portion moves relative to the bat to dampen shock and vibration from the impact between the bat and the ball.
End-cap assemblies configured in accordance with embodiments of the present technology (including assemblies described herein) may be formed as unitized structures in which the sprung-mass portion (such as the sprung-mass portion 200, or other sprung-mass portions), the base portion (such as the base portion 210, or other base portions, if a base portion is implemented), and the flexible member (such as the flexible member 220 or the flexible member 270, or other flexible members) are integrally formed. In some embodiments, end-cap assemblies may be formed from separate components brought together. Additional end-cap assemblies configured in accordance with embodiments of the present technology are disclosed herein, however, the present technology generally contemplates any end-cap assembly in which a sprung mass is suspended relative to (such as in or on) a distal end of a ball bat by one or more flexible members that facilitate movement of the sprung mass relative to the distal end of the bat.
End-cap assemblies configured in accordance with embodiments of the present technology may be formed such that the mass of the sprung-mass portion (such as the sprung-mass portion 200) is at least 5 percent of the overall mass of the end-cap assembly or up to 99 percent (such as 95 percent or more) of the overall mass of the end-cap assembly, or other percentages of the overall mass of the end-cap assembly. In some embodiments, for example, end-cap assemblies may weigh approximately 0.8 ounces (26.7 grams), while the sprung-mass portion may weigh between 0.04 ounces and 0.79 ounces. In other embodiments, end-cap assemblies may weigh other amounts, and the sprung-mass portions may weigh other amounts.
In some embodiments, the flexible members 330 or the sprung-mass portion 320 may be formed with a material having a hardness rating that is less than a hardness rating of a material forming the base portion 310. In some embodiments, the flexible members 330 may be soft and flexible enough to allow the sprung-mass portion 320 to compress toward the base portion 310 during installation of the end-cap assembly 300 (end-cap assemblies may be pressed into the distal end of the bat). Accordingly, in some embodiments, a tool or stiffening element may be positioned in or near the gap 340 to prevent damage to the flexible members 330 during installation.
The sprung-mass portion 420 may include a hub 440 extending toward the knob of the ball bat and positioned concentrically within the base portion 410. The flexible members 430 may be in the form of curved ribs (such as serpentine ribs) that curve inwardly from the base portion 410 to the hub 440. The flexible members 430 allow the sprung-mass portion 420 to move relative to other components of the end-cap assembly or the distal end (e.g., transverse to the bat's longitudinal x-axis, such as perpendicular to the x-axis, along the radial y-axis, or other motion). In some embodiments, the flexible members 430 may be sufficiently stiff to limit axial movement along the bat's longitudinal axis x.
In some embodiments, a gap 450 may be located between the base portion 410 and the sprung-mass portion 420, such that the base portion 410 and the sprung-mass portion 420 are spaced apart from each other along the longitudinal axis x of the bat and connected to each other only by the flexible members 430. In some embodiments, the gap 450 may be minimal to limit movement of the sprung-mass portion 420 along the longitudinal x-axis of the bat (while still allowing movement transverse to the longitudinal x-axis, such as radial movement along the y-axis or other side-to-side movement), which in turn may help prevent overstressing the flexible members 430 during installation of the end-cap assembly 400 into the distal end 160 of the bat. In some embodiments, one or more optional axial support nubs 460 positioned on the base portion 410 and extending along the longitudinal x-axis of the bat toward the sprung-mass portion 420 may partially fill portions of the gap 450 to further limit movement of the sprung-mass portion 420 along the longitudinal x-axis. In some embodiments, similar nubs 460 may be implemented in the gap 340 described above with regard to
One or more flexible members, such as a flexible member 660, may be positioned between the connecting portion 630 of the sprung-mass portion 620 and the connecting portion 650 of the base portion 610 to enable dampened movement between the sprung-mass portion 620 and the base portion 610. The one or more flexible members may also provide a force or forces that tend to bias the sprung-mass portion 620 to be centered and concentric with the base portion 610. For example, the flexible member 660 may include an O-ring (made of foam or another suitable elastomeric material) as shown in
A sprung-mass portion 720 is connected to the base portion 710. In some embodiments, the sprung-mass portion 720 may be connected to the base portion 710 by one or more hooks or other connectors or connections (such as one or more cantilever hooks, compressive hooks, bayonet-finger connections, traps, ball and socket joints, annular snap joints, heat staking, riveting, spin-welding, vibrational welding, interference fit, adhesive, or other suitable manners of attachment). In a specific example, as shown in
With reference to
As explained above, in some embodiments, the sprung mass may constitute nearly the entire mass (such as 95% or more) of the end-cap assembly. Other embodiments in which that may be achieved include an end cap molded from a flexible foam material and bonded to the bat frame, or a rigid end cap sized to leave a gap between the bat wall and the end cap, whereby the foam or elastomeric material is positioned in the gap to function as a flexible member.
End-cap assemblies configured in accordance with embodiments of the present technology may be formed as integral or unitary pieces, or as multiple pieces attached together. End-cap assemblies or components thereof configured in accordance with embodiments of the present technology may be formed with any suitable resilient, elastomeric, or flexible material, such as polyurethane, polyolefins, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polybutene-1 (PB-1), polyolefin elastomers (POE), polyisobutylene (PIB), ethylene propylene rubber (EPR), ethylene propylene diene monomer rubber (EPDM rubber), thermoplastic elastomers (TPE), thermoplastic rubber (TPR), other rubbers, styrene-butadiene rubber (SBR), natural rubber (NR), isoprene (IR), neoprene (CR), nitrile (NBR), silicone, polybutylene terephthalate (PBT), acrylonitrile butadiene styrene (ABS), polyamide (PA), metal materials such as spring steel or other metals, or other relatively rigid materials or relatively soft materials suitable for providing resilience and mass. In some embodiments, materials used to make traditional ball bat end caps may be used. In some embodiments, materials with hardness ratings greater than Shore 60D may be used, although materials with any suitable hardness rating may be used.
Advantages of embodiments of the present technology include providing vibration damping without adding excess weight or requiring a special grip or glove. Many bats already implement standard end caps. Embodiments of the present technology implement vibration damping into end caps, such that embodiments of the present technology do not add significant complication or additional parts. In other words, the present technology uses mass similar to that which is otherwise traditionally fixed to the end of a bat as a movable sprung mass to function as a vibration damper.
End caps configured in accordance with embodiments of the present technology may also limit bat performance to help maintain compliance with league regulations (such as regulations associated with Bat-Ball Coefficient of Restitution or “BBCOR”, Batted-Ball Speed or “BBS”, or Bat Performance Factor or “BPF”). For example, the sprung mass may remain generally stationary during impact between the bat and the ball, or it may lag behind the rebound motion of the bat. The inventors observed that in some configurations, this may happen when the stiffness of the “spring” (for example, the flexible material carrying the sprung mass in a cap) has a natural frequency less than 1000 Hertz. In some embodiments, if the sprung mass of the end cap has a natural frequency greater than 1000 Hertz, only the portion of the energy moving out of phase for a one-millisecond impact (the time the ball is generally in contact with the bat) will act against propelling or rebounding the ball. For example, an end-cap assembly having a sprung mass with a natural frequency of 2000 Hertz may result in only half of the vibration cycles moving out of phase of the ball during the one-millisecond impact. In other words, the sprung mass delays and reduces vibration, and it may also limit performance to assist in meeting performance regulations.
The sprung mass may help limit bat performance in other ways. For example, during the short time the ball is in contact with the bat (which may be approximately one millisecond), the momentum of the sprung mass is not acting on the ball. This slight loss of momentum lowers the impact power of the bat, which results in a lower batted-ball speed. Accordingly, a batter using an end cap configured in accordance with some embodiments of the present technology may experience a small decrease in batted ball speed but will experience a corresponding reduction in bat vibration (particularly when the ball does not impact the sweet spot).
From the foregoing, it will be appreciated that specific embodiments of the disclosed technology have been described for purposes of illustration, but that various modifications may be made without deviating from the technology, and elements of certain embodiments may be interchanged with those of other embodiments, and that some embodiments may omit some elements. For example, the mass of the sprung-mass portions, the flexibility of the flexible members (and their natural frequencies, which may be relatively high or low, or other frequencies), and other characteristics may be selected to tune the damping effect to a given bat or style of play. In some embodiments, the sprung-mass portions may include recesses or other regions positioned and configured to receive interchangeable weights to customize the amount of sprung mass. In some embodiments, one or more additional manners of attachment may be used to secure the end-cap assemblies or their component parts to the bat to resist removal of the end-cap assemblies or their component parts from the bat.
Further, while advantages associated with certain embodiments of the disclosed technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology may encompass other embodiments not expressly shown or described herein, and the invention is not limited except as by the appended claims.