The present invention relates to a vibration insulator for a fuel injection valve. The vibration insulator is configured to damp vibration that occurs in the fuel injection valve, which injects fuel into an internal combustion engine.
Conventionally, internal combustion engines of one type in which fuel is injected into the inside of a combustion chamber, that is, internal combustion engines of the in-cylinder injection type, for example, have the distal end portion of a fuel injection valve inserted into and supported by an insertion hole of a cylinder head and have the proximal end portion of the fuel injection valve inserted into and supported by a delivery pipe (a fuel injection valve cup), whereby the fuel injection valve is provided across the cylinder head and the delivery pipe. When a fuel pressure supplied to the fuel injection valve through the delivery pipe has changed due to injection or stopping of the fuel, vibration based on the change in fuel pressure and vibration accompanying the operation of the fuel injection valve usually occur to the above fuel injection valve. For this reason, it is often the case that a vibration insulator to absorb and damp such vibration of a fuel injection valve is attached between the fuel injection valve and an insertion hole of a cylinder head.
On the other hand, the cylinder head and the delivery pipe are originally parts of separate bodies. Therefore, changes in the relative positions thereof, which are caused by, for example, tolerances associated with production or processing of these parts, tolerances associated with assembly in the production, thermal deformation, and various vibrations that accompany the operation of the internal combustion engine, are unavoidable. That is, the axis of the fuel injection valve provided across the cylinder head and the delivery pipe becomes inclined relative to the axis of the insertion hole of the cylinder head, whereby positions at which the fuel injection valve is supported by the cylinder head and the delivery pipe deviate from correct positions. Further, such positional deviation causes problems such as partial slack of an O-ring at the proximal end of the fuel injection valve, the O-ring serving to prevent fuel leakage between the fuel injection valve and the delivery pipe (fuel injection valve cup). Therefore, the positional deviation may possibly cause fuel leakage.
For this reason, insulators designed to not only absorb and damp vibration of the fuel injection valve but also reduce the influence of such inclination of the axis of the fuel injection valve have been proposed, and an insulator described in Patent Document 1 is known as one example thereof. The insulator described in Patent Document 1, as shown in
According to the thus configured insulator, even when the axis C2 of the fuel injection valve 55 has deviated from the centered position between the insertion hole 52 of the cylinder head 51 and a delivery pipe in assembly, the first leg 61 moves along the shoulder section 54 of the insertion hole 52 due to a force generated by the second leg 62, which flexes in accordance with the tapered stepped section 57 of the fuel injection valve 55. This serves to appropriately compensate the positional relations of the fuel injection valve 55 with the insertion hole 52 and the delivery pipe.
When the internal combustion engine is operated, a high pressing force based on the above described fuel pressure is applied to the second leg 62 of the adjustment element 60 through the tapered stepped section 57 of the fuel injection valve 55. At this time, a force toward the shoulder section 54 of the insertion hole 52 and a force toward the outer circumference of the adjustment element 60 are applied to the second leg 62 of the adjustment element 60 from the tapered stepped section 57 of the fuel injection valve 55 in a manner corresponding to the tapering angle of the tapered stepped section 57.
Out of these forces, in
Accordingly, it is an objective of the present invention to provide a vibration insulator for a fuel injection valve, the a vibration insulator being capable of, even when an internal combustion engine is in operation, not only performing the function of damping vibration of the fuel injection valve but also suitably maintaining the fuel injection position of the fuel injection valve.
In order to solve the above problem, the present invention provides a vibration insulator for a fuel injection valve that is configured to damp vibration that occurs to the fuel injection valve. The fuel injection valve is mounted on the cylinder head while being inserted into the insertion hole provided in the cylinder head. While the shoulder section is annularly formed in an inlet portion of the insertion hole to have an opening, the fuel injection valve includes a stepped section, the diameter of which is enlarged in a tapered manner to have a tapered surface facing the shoulder section. The vibration insulator is located between the stepped section and the shoulder section, and the vibration insulator includes a circular ring-like tolerance ring abutting the tapered surface. The above described vibration insulator for a fuel injection valve is characterized in that the tolerance ring has a sleeve section formed integrally therewith in a manner extending from a surface in a part, of the tolerance ring, that faces away from the tapered surface, the sleeve section having a circular ring-like shape that is concentric with the tolerance ring.
According to this configuration, the stiffness of the tolerance ring itself is increased by the sleeve section provided integrally thereto to extend therefrom, whereby the durability of the tolerance ring against a force that is received thereby from the tapered surface of the fuel injection valve and acts in a manner enlarging the opening of the tolerance ring is improved. Thus, warping of the tolerance ring is prevented from occurring, and a position at which the tapered surface of the fuel injection valve abuts the tolerance ring is maintained. That is, the fuel injection position of the fuel injection valve with respect to the combustion chamber is suitably maintained, and the combustion state is appropriately maintained as well.
The vibration insulator may include an elastic member arranged between the tolerance ring and the shoulder section. In order to damp vibration that occurs in the fuel injection valve, the elastic member is formed in a circular ring-like shape corresponding to the bottom surface of the tolerance ring. The sleeve section may extend from the bottom surface of the tolerance ring toward the shoulder section along the elastic member, and may be formed with the extending length of the sleeve section being shorter than the distance between the bottom surface of the tolerance ring and the above shoulder section.
This configuration brings the sleeve section into contact with the shoulder section when the elastic member has deformed by receiving a strong pressing force from the fuel injection valve. Therefore, excessive deformation of the elastic member, which might plastically deform when having deformed greatly, is restricted. That is, it is made possible to use the elastic member with an amount of deformation (height) thereof being limited within a range that permits the elastic member to elastically deform. As a result, the elasticity of the elastic member is suitably maintained, and the function of absorbing and damping vibration by means of the elasticity thereof is maintained.
A coil spring helically arranged in a manner corresponding to the circular ring-like shape of the elastic member may be embedded in the elastic member. The sleeve section, which extends from the bottom surface of the tolerance ring, may be formed with the extending length of the sleeve section being shorter than the diameter of the helix of the coil spring.
This configuration restricts excessive deformation of the elastic member, the elasticity of which is adjusted by the coil spring. In other words, this configuration allows the elastic member to be used within the extent (in height) that permits the elastic member to elastically deform. As a result, the elasticity of the elastic member is suitably maintained, and the function of absorbing and damping vibration by means of the elasticity thereof is maintained.
The sleeve section may be provided toward the outer circumference of the elastic member.
This configuration causes the elastic member, which tends to deform in a manner radially enlarging when being pressed, to press the sleeve section toward the outer circumference. On the other hand, when the tapered surface of the fuel injection valve presses the tolerance ring while abutting the tolerance ring, the tolerance ring receives a force that acts in a direction that enlarges the opening of the tolerance ring. That is, the tolerance ring receives outward-acting forces in both of the surface thereof facing the tapered surface of the fuel injection valve and the sleeve section, respectively. On this basis, as compared to a case, for example, where the tolerance ring receives an outward-acting force only in the surface thereof facing the tapered surface of the fuel injection valve, warping of the tolerance ring is prevented from occurring. This makes it possible to maintain the position at which the tapered surface of the fuel injection valve abuts the tolerance ring. As a result, the fuel injection position of the fuel injection valve with respect to the combustion chamber is suitably maintained, whereby the most suitable combustion state is maintained.
A surface of the sleeve section that faces the elastic member may be formed into a shape that follows the external form of the helix of the coil spring.
According to this configuration, a force from the elastic member, when the elastic member is pressed to deform toward the outer circumference, is more likely to be transmitted to the sleeve section without being dispersed. Therefore, the elastic member, when going to deform, presses the sleeve section with a stronger force toward the outer circumference. As a result, warping of the tolerance ring, which might be caused by a force received by the tolerance ring from the tapered surface of the fuel injection valve, is suppressed to a greater degree. In other words, it is made possible to maintain the position at which the tapered surface of the fuel injection valve abuts the tolerance ring.
The sleeve section may be provided toward each of the inner circumference and the outer circumference of the elastic member.
According to this configuration, reactive forces that a pressing force from the fuel injection valve causes on the elastic member inserted between an inner circumferential sleeve section and an outer circumferential sleeve section of the tolerance ring act toward the tolerance ring. As a result, even when the tolerance ring is pressed by the fuel injection valve, the position of the tolerance ring with respect to the shoulder section is maintained. On this basis, the fuel injection position of the fuel injection valve with respect to the combustion chamber is suitably supported maintained by the tolerance ring. The most suitable combustion state is maintained as well.
The distance between the inner circumferential sleeve section and the outer circumferential sleeve section may be set to become wider toward the shoulder section from the bottom surface of the tolerance ring.
According this configuration, reactive forces caused on the elastic member by a pressing force from the fuel injection valve, which act toward the inner circumference and the outer circumference, are converted into reactive forces resisting the pressing force from the fuel injection valve in accordance with the slope angles of the inner circumferential sleeve section and the outer circumferential sleeve section. These forces act to maintain the position of the tolerance ring with respect to the shoulder section. This also serves to suitably maintain, with respect to the combustion chamber, the fuel injection position of the fuel injection valve supported by the tolerance ring. The most suitable combustion state is maintained as well.
The sleeve section may be provided toward the inner circumference of the elastic member.
According to this configuration, the stiffness of the tolerance ring is improved also by the sleeve section, which extends from the inner circumference. Therefore, improvement in durability of the tolerance ring against a force that is received by the tolerance ring from the tapered surface of the fuel injection valve and acts to enlarge the opening of the tolerance ring is enabled.
The vibration insulator may include an elastic member arranged between the tolerance ring and the shoulder section. The elastic member is formed in a circular ring-like shape corresponding to the bottom surface of the tolerance ring in order to damp vibration that occurs to the fuel injection valve. The sleeve section is extended out to a position facing the surface, of the cylinder head, that has the insertion hole opened therein. The elastic member may be used to provide a predetermined distance between the sleeve section and the surface of the cylinder head.
This configuration also improves the stiffness of the tolerance ring by means of the sleeve section. Thus, improvement in durability of the tolerance ring against a force that is received by the tolerance ring from the tapered surface of the fuel injection valve and acts to enlarge the opening of the tolerance ring is enabled. Furthermore, when the elastic member is deformed into a crushed form, the sleeve section of the tolerance ring abuts the cylinder head. Therefore, excessive deformation of the elastic member is restricted, and it is made possible to use the elastic member within the extent (in height) that permits the elastic deformation thereof. This makes it possible be suitably maintained the elasticity of the elastic member and to maintain the function of absorbing and damping vibration by means of the elasticity.
The vibration insulator may further include a metal plate having a circular ring-like portion located between the elastic member and the shoulder section. The metal plate may be formed into a state pinching the tolerance ring and the elastic member together from the inner circumference of the tolerance ring.
According this configuration, the relative position of the tolerance ring, which is not easy to be strongly joined to the elastic member, with respect to the elastic member is defined by the plate from the inner circumference. This makes it possible to facilitate appropriate stacking of the tolerance ring onto the elastic member. As a result, improvement in feasibility of this vibration insulator is enabled.
The outer circumferential edge of the metal plate may be molded into a shape having a burr generated thereon, the burr having been cut upward toward the elastic member.
According to this configuration, the size of the shoulder section formed on the insertion hole of the cylinder head is formed into the requisite minimum size that enables deviation of the axis of the fuel injection valve from the centered position to be compensated by movement of the vibration insulator.
The tolerance ring may be formed of a metal having the same level of hardness as the housing of the fuel injection valve.
According to this configuration, the pressing force that acts on the fuel injection valve is distributed equally between the tapered surface of the fuel injection valve and the surface of a part, of the tolerance ring, that faces the tapered surface of the fuel injection valve. Therefore, compensating movement that is performed by the tolerance ring in response to the deviation of the axis of the fuel injection valve from the centered position is suitably performed.
a) and 5(b) are diagrams illustrating a compensating function that responds to deviation of the vibration insulator of
As shown in
The insertion hole 15 of the cylinder head 12 is formed, as a hole stepped with multiple steps, to extend through the cylinder head 12 from an outer surface 12A thereof to an inner surface 12B thereof, the hole having a hole diameter that narrows sequentially in a direction from the outer surface 12A of the cylinder head 12 (the upper part of
Since the delivery pipe 13 is designed to supply to the fuel injection valve 11 high pressure fuel, the pressure of which has been accumulated to an injection pressure, the delivery pipe 13 includes the fuel injection valve cup 14 that the proximal end section of the fuel injection valve 11 is inserted into and thereby mounted on. When the proximal end section of the fuel injection valve 11 is inserted into the fuel injection valve cup 14, the fuel sealing performance between the proximal end section of the fuel injection valve 11 and the inner circumferential surface 14A of the fuel injection valve cup 14 is ensured by an O-ring 29 arranged therebetween.
The fuel injection valve 11 is designed to inject high pressure fuel, which is supplied from the delivery pipe 13, into the combustion chamber defined by the cylinder head 12 with predetermined timing. A housing of the fuel injection valve 11 has a cylindrical shape, stepped with multiple steps, which sequentially narrows in directions from the center in the axial direction toward the distal end (the insertion hole 15) and toward the proximal end (the fuel injection valve cup 14).
That is, the housing of the fuel injection valve 11 includes a large diameter section 20 at the center thereof, and includes in order from the large diameter section 20 toward the proximal end: a proximal relay section 26 having a smaller diameter than the large diameter section 20; a proximal insertion section 27 having a smaller diameter than the proximal relay section 26; and a proximal sealing section 28 having a smaller diameter than the proximal insertion section 27. The proximal relay section 26 is provided with a connector 26J to which wiring for transmission of a drive signal to, for example, an electromagnetic valve built inside the fuel injection valve 11 for the purpose of controlling fuel injection. The proximal sealing section 28 is inserted into and thereby supports the O-ring 29.
The O-ring 29 is formed of an elastic member made of rubber or the like that is fuel-resistant, substantially in a circular ring-like shape and has pressure resistance against the pressure of high pressure fuel. The inner circumference of the O-ring 29 is configured to contact tightly to the outer circumferential surface of the proximal sealing section 28, and therefore delivers, through tight contact between the inner circumference of the O-ring 29 and the outer circumferential surface of the proximal sealing section 28, sealing performance that prevents fuel leakage of high pressure fuel between the fuel injection valve 11 and the O-ring 29. Furthermore, the outer circumference of the O-ring 29 is formed into a size that allows the O-ring 29 to tightly contact the inner circumferential surface 14A of the fuel injection valve cup 14 of the delivery pipe 13. As a result, when the proximal end of the fuel injection valve 11 is inserted into the fuel injection valve cup 14 of the delivery pipe 13, the outer circumference of the O-ring 29 of the fuel injection valve 11 tightly contacts the inner circumferential surface 14A of the fuel injection valve cup 14, and thereby displays a sealing performance against the high pressure fuel. When the O-ring 29 displays the sealing performance toward both of the outer circumferential surface of the proximal sealing section 28 and the inner circumferential surface 14A of the fuel injection valve cup 14, the fuel sealing performance against the high pressure fuel is ensured between the fuel injection valve 11 and the fuel injection valve cup 14.
Furthermore, the housing of the fuel injection valve 11 includes in order from the large diameter section 20 toward the distal end: a medium diameter section 21 having a narrower diameter than the large diameter section 20; and a small diameter section 22 having a narrower diameter than the medium diameter section 21. The injection nozzle 23, which injects fuel, is provided at the distal end of the small diameter section 22. A sealing section 25 used for ensuring a sealing performance thereof with the wall surface of the insertion hole 15 to maintain airtightness of the combustion chamber is provided in a part of the small diameter section 22 located nearer to the proximal end than injection nozzle 23 is located.
Between the large diameter section 20 and the medium diameter section 21, a stepped section based on the difference between the outer diameter of the large diameter section 20 and the outer diameter of the medium diameter section 21 is formed, and this stepped section is provided with a tapered surface 24 having a shape narrowed in a direction toward the distal end. That is, when the fuel injection valve 11 is inserted into the insertion hole 15, the tapered surface 24 of the fuel injection valve 11 faces the shoulder section 18 located at the inlet section 17 of the insertion hole 15 of the cylinder head 12 with a predetermined slope. The angle α (refer to
An annular vibration insulator 30 is provided between the tapered surface 24 of the fuel injection valve 11 and the shoulder section 18 of the insertion hole 15. The vibration insulator 30 is designed for absorbing and damping, when a change in the fuel pressure of fuel supplied through the delivery pipe 13 has occurred with the fuel having been injected or stopped by the fuel injection valve 11, vibration that occurs to the fuel injection valve 11 based on the fuel pressure change.
The outer diameter Ra (refer to
As shown in
In order to function as a member that absorbs and damps vibration of the fuel injection valve 11, the vibration damping member 31 includes as shown in
The elastic member 36 is produced using, as a material, rubber or elastomer such as TPE, the rubber having been obtained by using fluorine rubber, nitrile rubber, hydrogenation nitrile rubber, fluorosilicone rubber, or acrylic rubber as a main ingredient and blending into the main ingredient a filler, such as carbon black, silica, clay, or calcium carbonate celite, and an antioxidant, a processing aid, and a vulcanizing agent that are suitable for each kind of rubber.
Thus, characteristics suitable for absorption and damping of vibration that occurs to the fuel injection valve 11 are imparted to the vibration damping member 31 based on vibration absorbing and vibration damping characteristics shown by the elastic member 36 and vibration absorbing and vibration damping characteristics shown by the coil spring 34. Although the elastic member 36 and the coil spring 34 show appropriate vibration absorbing and vibration damping characteristics as long as a load within a predetermined range that permits the maintenance of the elasticity thereof is applied thereto, application of a load exceeding the predetermined range results in plastic deformation thereof and the loss of the elasticity, and thereby prevents the vibration absorbing and vibration damping characteristics from appropriately working. That is, when the elastic member 36 and the coil spring 34 experience deformation to forms vertically crushed by a pressing force from the fuel injection valve 11, the elastic member 36 and the coil spring 34 deform freely as long as an amount of deformation thereof is a predetermined amount of deformation or smaller. However, the elastic member 36 and the coil spring 34 experience plastic deformation when having deformed to a level that exceeds the predetermined amount of deformation. In this embodiment, for example, as long as the height of the vibration damping member 31 after the deformation is within a range from the height H11 thereof in a case when a pressing force is not applied thereto to a predetermined height H12 in a case when a predetermined high pressing force is received thereby, appropriate elastic deformation of the vibration damping member 31 is maintained. In other words, a difference between the height H11 and the height H12 is the predetermined amount of deformation, which indicates the border of the elastic deformation and the plastic deformation of the vibration damping member 31. On the other hand, when a pressing force exceeding the predetermined pressing force causes the vibration damping member 31 to deform such that the height of the vibration damping member 31 is made lower than the height H12, the vibration damping member 31 plastically deforms without appropriate elastic deformation thereof being maintained.
The plate 32 is formed of a metal such as stainless steel, for example, SUS 430, which is a stainless steel material to which a drawing process is easily applicable. As shown in
The vibration damping member 31 is pressed against the upper surface of the plate bottom section 37, and the lower surface of the plate bottom section 37 is caused to abut the shoulder section 18 of the insertion hole 15. As a result, not only suitable sideward sliding ability of the plate 32 with respect to the shoulder section 18 of the insertion hole 15 is maintained, but also the force received by the plate 32 from the vibration damping member 31 is distributed evenly across the annular shoulder section 18. Since the shoulder section 18 is a part of the cylinder head 12 formed of aluminum or the like, the hardness of the shoulder section 18 is lower than that of the coil spring 34. Therefore, it is expected that, when the coil spring 34 comes in direct contact with the shoulder section 18, an inconvenience of having a part of the shoulder section 18, on which a force is concentrated, shaved or deformed may occur. However, in this embodiment, a force received by the plate 32 from the coil spring 34 passes through the annular plate bottom section 37 which corresponds to the annular shoulder section 18, and is transmitted to the shoulder section 18 while being circumferentially dispersed. Therefore, the plate 32 prevents occurrence of the inconvenience that might occur when the coil spring 34 comes in direct contact with the shoulder section 18.
As shown in
The burr section 37R as described above also prevents the outer circumferential end of the plate bottom section 37 from interfering with any bulge portion at the outer circumferential end of the shoulder section 18, even when the vibration insulator 30 has moved until the vibration insulator 30 abuts the outer circumference of the shoulder section 18. In other words, the burr section 37R prevents decrease in movability of the plate 32, which might be caused, for example, when the plate bottom section 37 is caught by a bulge portion at the outer circumferential end of the shoulder section 18. Besides, the burr section 37R prevents, for example, an incidence where a position (a position that is the height Hi upward apart from the shoulder section 18 in
As shown in
The plate cover section 39 extends such that the distal end section of the plate inner wall section 38 covers a part of an inner circumferential sloping surface 42 of the tolerance ring 33 stacked on the vibration damping member 31. Further, the plate cover section 39 is abutted by the inner circumferential sloping surface 42 of the tolerance ring 33, and imparts to the inner circumferential sloping surface 42 a force acting toward the outer circumference and downward. As a result, the plate cover section 39 functions not only to reinforce connection between the tolerance ring 33 and the vibration damping member 31, but also to prevent the relative position between tolerance ring 33 and vibration damping member 31 from changing.
The tolerance ring 33 supports the fuel injection valve 11 with respect to the cylinder head 12 by abutting the tapered surface 24 of the fuel injection valve 11. The tolerance ring 33 is formed of metal such as stainless steel, for example, SUS 304, which is a hard stainless steel material. Although metal having the same hardness as the tapered surface 24 of the fuel injection valve 11 is adopted as metal used as a material for the tolerance ring 33, metal having the same hardness as a member, the coil spring 34 for example, having another level of hardness may be adopted.
As shown in
The ring bottom surface 40 is abutted by the upper surface of the vibration damping member 31, as shown in
The diameter of the ring outer circumferential surface 41 is formed to have a diameter substantially equal to the outer diameter Ra of the plate bottom section 37 of the plate 32. In other words, the diameter of the ring outer circumferential surface 41 is made substantially equal to the outer diameter Ra of the vibration insulator 30, and therefore is set not to narrow a range, in the inlet section 17 of the insertion hole 15, across which the vibration insulator 30 moves in the radial direction thereof.
As shown in
Specifically, the inner circumferential edge of the joint section 43 continues into the inner circumferential edge of the ring bottom surface 40 via the inner circumferential surface of the tolerance ring 33. The plate cover section 39 of the plate 32 is bent toward the outer circumference to abut the joint section 43. In other words, a force that acts toward the outer circumference and downward (toward the vibration damping member 31) is imparted by the plate cover section 39 to the joint section 43. Therefore, pressure contact of the tolerance ring 33 to the vibration damping member 31 is reinforced, and the relative positional relationship thereof with the vibration damping member 31 is maintained unchanged.
A ridgeline 47 serving as a boundary between the inner tapered surface 45 and the outer tapered surface 46 is shown in
b) shows the axis Ca of the fuel injection valve 11 when the axis Ca is off-center with respect to the cylinder head 12. Even when the fuel injection valve 11 inclines as shown in
Furthermore, when the axis C is deviated from the centered position under the influence of thermal expansion or the like, the vibration insulator 30 receives a laterally acting force from the fuel injection valve 11 due to a change in fuel pressure. The vibration insulator 30 is configured to absorb and damp vibration of the fuel injection valve 11 to a certain degree, but not to have the shape thereof flexed to a large degree, at the moment when the vibration insulator 30 receives the laterally acting force. In other words, the laterally acting force is hardly absorbed by the vibration insulator 30 and is efficiently used as a force that laterally moves the vibration insulator 30 on the shoulder section 18. That is, when the axis C is deviated from the centered position, the vibration insulator 30 quickly reacts to a laterally acting force received thereby from the fuel injection valve 11, and makes a movement in the inlet section 17 with a high level of responsiveness.
As shown in
For this reason, in this embodiment, the tolerance ring 33 has a sleeve section 35, which extends from the ring bottom surface 40 toward the plate 32 and has a circular ring-like shape. The sleeve section 35 extends in the axial direction from a part of the ring bottom surface 40 along the outer circumference of the vibration damping member 31, the part being toward the ring outer circumferential surface 41. The sleeve section 35 is formed integrally with the tolerance ring 33, and therefore, is formed of metal such as stainless steel, for example, SUS 304, which is a hard stainless steel material, as in the case of the tolerance ring 33.
The size of the sleeve section 35 that extends from the ring bottom surface 40 toward the plate 32, that is, the size thereof in the axial direction is formed substantially into the height H12. This height H12 is lower than the height H11 of the vibration damping member 31 when a high pressing force is not received thereby (H12<H11). For this reason, a gap (gap≦H11−H12) exists between the distal end section of the sleeve section 35 and the plate bottom section 37 when the tolerance ring 33 does not receive a high pressing force from the fuel injection valve 11. Since the burr section 37R of the plate 32 has the outer circumference thereof warped upward, a portion of the distal end of the sleeve section 35 that faces the burr section 37R is curved into a shape that follows the shape of the burr section 37R, so that a gap between this portion and the burr section 37R may be maintained at the length of H11−H12. For this reason, the size of the outer circumference of the sleeve section 35 in the axial direction is formed shorter than the height H12.
As a result, when the height of the vibration damping member 31 becomes the height H12 in the case that the tolerance ring 33 presses and deforms the vibration damping member 31 through the ring bottom surface 40 upon receiving a high pressing force from the fuel injection valve 11, the sleeve section 35 of the tolerance ring 33 abut the plate 32. Therefore, the distance between the ring bottom surface 40 and the plate 32 is maintained at least at the height H12. That is, the vibration damping member 31 located between the ring bottom surface 40 and the plate 32 is not deformed into a height that is lower than the height H12. The height H12 is a height that guarantees that the amount of the deformation does not exceed a predetermined amount of deformation that permits the maintenance of elastic deformation of the vibration damping member 31. Therefore, the sleeve section 35 eliminates a possibility of having the vibration damping member 31 deformed into a height lower than the height H12 and thereby resulting in a fall in the vibration damping characteristic thereof or in plastic deformation thereof. As a result, the sleeve section 35 guarantees that the vibration damping member 31 is maintained at a height between the height H12 and the height H11 and suitably shows the vibration damping performance thereof.
When the vibration damping member 31 is at the height H12, the sleeve section 35 transmits a pressing force to the shoulder section 18 of the insertion hole 15 through the upper surface of the plate bottom section 37. Therefore, while the suitable lateral sliding ability of the plate 32 on the shoulder section 18 of the insertion hole 15 is maintained, the pressing force from the sleeve section 35 is evenly distributed across the shoulder section 18 through the plate 32. This prevents occurrence of inconveniences such as an incident where, when the sleeve section 35 having a higher level of hardness than shoulder section 18 comes in direct contact with the shoulder section 18 formed of aluminum as a part of the cylinder head 12, the shoulder section 18 is shaved or deformed.
Furthermore, the inner circumferential surface of the sleeve section 35 contacts the vibration damping member 31 but does not contact the coil spring 34. That is, the vibration damping member 31 has the elastic member 36 toward the outer circumference of the coil spring 34, and a part of the elastic member 36 that faces the outer circumference of the coil spring 34 abuts the sleeve section 35. This eliminates a possibility that the vibration absorbing and vibration damping characteristics of the coil spring 34 are changed as a result of contact of the coil spring 34 with the sleeve section 35. The vibration damping member 31 is capable of suitably displaying the vibration absorbing and vibration damping characteristics in a state where the influence from the sleeve section 35 is small.
Next, movement performed by the tolerance ring 33 in response to the pressing force is described.
When the force F from the tapered surface 24 of the fuel injection valve 11 is applied to the tolerance ring 33, the force Fa acting in the direction along the axis parallel C1 and the force Fb acting in the direction orthogonal to the axis parallel C1 are applied to the ridgeline 47 of the tolerance ring 33 in accordance with the angle α of the tapered surface 24. As a result, the force Fa acting in the direction along the axis parallel C1 presses the vibration damping member 31 and, at the same time, is transmitted to the shoulder section 18 through the vibration damping member 31 and the plate 32. At this time, the vibration damping member 31 tends to expand laterally, that is, in the radial direction along with decrease of the height thereof when being pressed by the force Fa. In other words, the inner circumferential surface of the vibration damping member 31 tends to expand toward the inner circumference, and the outer circumferential surface tends to expand toward the outer circumference, whereby forces acting toward the inner circumference and toward the outer circumference occur from the vibration damping member 31. On this basis, a pressing force acting from the vibration damping member 31 toward the outer circumference is transmitted to the sleeve section 35 abutting the outer circumferential surface of the vibration damping member 31. In other words, the sleeve section 35 forming the lower part of the tolerance ring 33 receives an outward acting force.
On the other hand, the force Fb that acts in the direction orthogonal to the axis parallel C1 acts to enlarge the opening of the upper part of the tolerance ring 33 outward, as described above.
That is, in the force F received by the tolerance ring 33 from the tapered surface 24 of the fuel injection valve 11, the force Fb acting in the direction orthogonal to the axis parallel C1 acts to enlarge the upper part of the tolerance ring 33 toward the outer circumference, whereas the force Fa acting in the direction along the axis parallel C1 presses the lower part of the tolerance ring 33 toward the outer circumference through the vibration damping member 31 in this embodiment. As a result, at least a part of the force Fb, which tends to enlarge the upper part of the tolerance ring 33, is cancelled by a force with which the vibration damping member 31 presses the sleeve section 35 laterally. As a result, enlargement of the opening of the upper part of tolerance ring 33 is suppressed. In other words, in such a manner as to oppose a moment attributable to the force Fb, which tends to enlarge the upper part of the tolerance ring 33 in a direction that enlarges the opening thereof, a moment that acts in a reverse direction thereto attributable to a force acting from the vibration damping member 31 on the sleeve section 35, which is the lower part of the tolerance ring 33, comes to act on the tolerance ring 33. This prevents the force Fb from unilaterally warping the tolerance ring 33.
Additionally, since the stiffness (moment of inertia) of the tolerance ring 33 as a whole is improved by integration of the sleeve section 35 with the tolerance ring 33, the opening of the upper part of the tolerance ring 33 is prevented from enlarging. Furthermore, in the lower part of the tolerance ring 33, which is compressed and deformed (shrunken) along with enlargement of the opening of the upper part of the tolerance ring 33, the sleeve section 35 integrally formed comes to have a structure opposing the compression and deformation thereof, and thereby performs the function of suppressing enlargement of the opening of the upper part of the tolerance ring 33.
As described above, the vibration insulator of this embodiment brings about advantages as listed below.
(1) The stiffness of the tolerance ring 33 itself is increased by the sleeve section, which is formed integrally with the tolerance ring 33 and extends from the tolerance ring 33. Therefore, improvement in durability of the tolerance ring 33 against the force Fb that is received by the tolerance ring 33 from the tapered surface 24 of the fuel injection valve 11 and acts to enlarge the opening of the tolerance ring 33 is enabled. This serves to prevent occurrence of warping of the tolerance ring 33, and also to maintain the position of the tapered surface 24 of the fuel injection valve 11 abutting the tolerance ring 33. That is, the fuel injection position of the fuel injection valve 11 is suitably maintained, and the combustion state is also appropriately maintained.
(2) When the elastic member 36 deforms by receiving a strong pressing force from the fuel injection valve 11, the sleeve section 35 comes in contact with the shoulder section 18 through the plate 32. On this basis, excessive deformation of the elastic member 36, which might deform plastically when having deformed to a large extent, is restricted. That is, it is made possible to use the elastic member 36 while keeping the elastic member 36 from deforming beyond the extent (the range of H11 to H12 in terms of height of the elastic member 36. The amount of deformation of the elastic member 36 is 0 to (H11−H12) using the heights) that allows elastic deformation. This serves to suitably maintain the elasticity of the elastic member 36, and maintain the vibration absorption and damping function using the elasticity.
(3) Excessive deformation of the elastic member 36, the elasticity of which is adjusted by the coil spring 34, is restricted by the sleeve section 35. In other words, the elastic member 36 is used within a range (of H11 to H12 in terms of height) that enables elastic deformation thereof. This serves to suitably maintain the elasticity of the elastic member 36, and maintain the vibration absorption and damping function using the elasticity thereof.
(4) While the elastic member 36, which tends to deform in a manner radially expanding when being pressed, presses the sleeve section 35 toward the outer circumference, the abutting section 44 (the ridgeline 47) of the tolerance ring 33 receives from the fuel injection valve 11 the force Fb that acts in the direction that enlarges the opening of the abutting section 44. That is, the tolerance ring 33 receives outward-acting forces at the abutting section 44 (the ridgeline 47) and the sleeve section 35, respectively, whereby occurrence of warping is prevented as compared to a case where an outward-acting force is received only at the abutting section 44 (the ridgeline 47). Consequently, it is made possible to maintain the position, in the tapered surface 24 of the fuel injection valve 11, at which the abutting section 44 of the tolerance ring 33 is abutted thereby. This serves to suitably maintain the fuel injection position of the fuel injection valve 11 with respect to the combustion chamber, and thereby also serves to maintain the most suitable combustion state.
(5) The relative position of the tolerance ring 33, which cannot be easily joined strongly to the elastic member 36, with respect to the elastic member 36 is defined by the plate 32 from the inner circumferential surface of the tolerance ring 33. Therefore, appropriate stacking of the tolerance ring 33 on the elastic member 36 is facilitated, whereby improvement of the feasibility of the vibration insulator 30 as described herein is enabled.
(6) The outer circumferential edge of the plate 32 is molded into a shape where a burr, cut upward toward the elastic member 36, appears. Therefore, even in a case where a bulge portion is formed in a region from the shoulder section 18 of the cylinder head 12 toward the inlet section 17, the plate 32 is prevented from overriding or being caught by the bulge portion. This serves to form the size of the shoulder section 18, formed in the insertion hole 15 of the cylinder head 12, into the requisite minimum size that enables deviation of the axis C of the fuel injection valve 11 from the centered position to be compensated by movement of the vibration insulator 30.
(7) A pressing force that acts on the fuel injection valve 11 is circumferentially evenly distributed when the annular tapered surface 24 abuts the annular abutting section 44 (the ridgeline 47). Therefore, compensating movement that responds to deviation of the axis C of the fuel injection valve 11 from the centered position is suitably performed.
As shown in
The vibration damping member 31 includes: an elastic member 36A formed of rubber or the like, which is similar to the elastic member 36 described in the first embodiment; and an annular coil spring 34 embedded in the elastic member 36A. In this embodiment, the outer circumferential surface of the elastic member 36A covers the circumference of one turn of the helix of the coil spring 34 with a predetermined thickness, thereby being formed into an arcuate shape homothetic to an arc of one turn of the helix thereof.
A sleeve section 35A of the tolerance ring 33 also has a circular ring-like shape extending along the outer circumferential surface of the vibration damping member 31 toward the plate 32 from a part of a ring bottom surface 40 that faces a ring outer circumferential surface 41. In a cross-sectional view, the inner circumferential surface of the sleeve section 35A is formed in an arcuate shape bowed at the center in the height direction thereof. The arcuate shape of this sleeve section 35A is homothetic to the helix of the coil spring 34, and is formed into a state where the arcuate outer circumferential surface of the elastic member 36A is abutted thereby. Therefore, the arcuate outer circumferential surface of the elastic member 36A comes to abut the arc-shaped inner circumferential surface of the sleeve section 35A. That is, the outer circumferential surface of the coil spring 34 is opposed to the arc-shaped inner circumferential surface of the sleeve section 35A through the predetermined-thickness portion of the elastic member 36A. This serves to transmit a force from the outer circumferential surface of the coil spring 34 evenly to the arcuate inner circumferential surface of the sleeve section 35A through the predetermined-thickness portion of the elastic member 36A.
For example, suppose that, when a force from a tapered surface 24 of a fuel injection valve 11 is applied to the tolerance ring 33, a force Fa acting in the direction along a axis parallel C1 and a force Fb acting in the direction orthogonal to the axis parallel C1 is applied to a ridgeline 47 of the tolerance ring 33 in accordance with an angle α of the tapered surface 24. Then, when the coil spring 34 is vertically compressed by the force Fa acting in the direction along the axis parallel C1 and deforms in a laterally expanding manner, a force that expands from the coil spring 34 toward the outer circumference is transmitted evenly to the arcuate inner circumferential surface of the sleeve section 35A, which has a similar shape to the outer circumferential surface of the coil spring 34, through the elastic member 36A, which has an uniform thickness in the direction all along the circumference of the arc. As a result, a force that is generated by the deformation of the coil spring 34 and acts toward the outer circumference is more smoothly transmitted uniformly to the inner circumferential surface of sleeve section 35A all along the vertically extending arc. In other words, a force that cancels a force that enlarges the opening of the upper part of the tolerance ring 33 occurs in a larger magnitude to the sleeve section 35A. Additionally, the length of an arc, appearing in
Furthermore, since the stiffness of the tolerance ring 33 is improved by integration of the sleeve section 35A with the tolerance ring 33, the opening of the upper part of the tolerance ring 33 is prevented from enlarging. Further, in the lower part of the tolerance ring 33, which is shrunk as the opening of the upper part of the tolerance ring 33 enlarges, the sleeve section 35A forms a structure that resists such shrinkage. Also on this basis, enlargement of the opening of the upper part of the tolerance ring 33 is suppressed.
As described above, this embodiment not only brings about advantages that are the same as or similar to the above advantages (1) to (7) of the first embodiment described above, but also brings about advantages as listed below.
(8) A force generated from the outer circumferential surface, having an arcuate shape in a cross section, of the elastic member 36, which deforms toward the outer circumference by being pressed, is transmitted to the inner circumferential surface, having an arcuate shape in a cross section, of the sleeve section 35A without being dispersed. Therefore, when having deformed, the elastic member 36 presses the sleeve section 35A with a stronger force toward the outer circumference. As a result, warping of the tolerance ring 33, which is caused by a force received by the tolerance ring 33 from the tapered surface 24 of the fuel injection valve 11, is suppressed to a greater extent. Therefore, it is made possible to maintain, in the tapered surface 24 of the fuel injection valve 11, a position that abuts the abutting section 44.
As shown in
The vibration damping member 31 includes: an elastic member 362 formed of rubber or the like, which is similar to the elastic member 36 described in the first embodiment; and an annular coil spring 34 embedded in the elastic member 36B.
The tolerance ring 33 includes: an inner sleeve section 35B extending toward the plate 32 from a part of a ring bottom surface 40 in the inner circumference thereof and having a circular ring-like shape; and an outer sleeve section 35C extending toward the plate 32 from another part of the ring bottom surface 40 in the inner circumference thereof and having a circular ring-like shape. The inner circumferential surface of the inner sleeve section 35B is extended out toward the plate 32, along a plate inner wall section 38, in parallel to a axis parallel C1. On the other hand, the outer circumferential surface of the inner sleeve section 35B is inclined relative to the axis parallel C1, so that the cross section of the inner sleeve section 358 is formed in a tapering, wedge shape. In other words, the thickness of the inner sleeve section 35B is formed to be thicker toward the ring bottom surface 40 and thinner toward the plate 32.
Additionally, the outer circumferential surface of the outer sleeve section 35C is extended out toward the plate 32, along a ring outer circumferential surface 41, in parallel to the axis parallel C1. On the other hand, the inner circumferential surface of the outer sleeve section 35C is inclined relative to the axis parallel C1, and the cross section of the outer sleeve section 350 is also formed in a tapering, wedge shape. In other words, the cross section of the outer sleeve section 35C is formed to be thicker toward the ring bottom surface 40 and thinner toward the plate 32. That is, the cross section of a space defined by the inner sleeve section 35B and the outer sleeve section 35C is a trapezoid shape, the size of the above space in the radial direction of the tolerance ring 33 sequentially becomes larger from the ring bottom surface 40 toward the plate 32.
Further, in this embodiment, the vibration damping member 31 is formed into a cross-sectional shape of a trapezoid to be fitted in the space defined as described above and having a trapezoid shape, and is placed in the space. The vibration damping member 31 of this embodiment is also at the height H11.
For example, when the vibration damping member 31 is pressed by the force Fa in the direction along the axis parallel C1 as a result of application of a force from the tapered surface 24 of a fuel injection valve 11 to the tolerance ring 33, deformation of the vibration damping member 31 is suppressed by the ring bottom surface 40, the inner sleeve section 35B and the outer sleeve section 35C, which surround the circumference of the vibration damping member 31. On this basis, a force that tends to deform the vibration damping member 31 acts as a force (a reactive force) that presses back the ring bottom surface 40 upward. Therefore, a part of a downward acting force Fa, which acts on the tolerance ring 33 and acts in the direction along the axis parallel C1, is cancelled.
Furthermore, when being pressed by the force Fa in the direction along the axis parallel C1, the vibration damping member 31 deforms to become lower in height, which prompts the inner circumferential surface thereof to tend to expand toward the inner circumference and prompts the outer circumferential surface to expand toward the outer circumference. However, such expansion is suppressed by the inner sleeve section 35B and the outer sleeve section 35C. Therefore, both of a force that presses the vibration damping member 31 from the inner circumferential surface thereof toward the outer circumference and a force that presses the vibration damping member 31 from the outer circumferential surface thereof toward the inner circumference act on the vibration damping member 31. That is, when the coil spring 34 is pressed downward and going to deform to expand laterally, a force of the coil spring 34 going to expand toward the inner circumference acts on the inner sleeve section 35B, and a part of this force acts as a force that presses the inner sleeve section 35B upward in accordance with the slope of the inner sleeve section 35B. This also serves to cancel a part of the force, which acts on the tolerance ring 33 and acts in the direction along the axis parallel C1. Additionally, a force of the coil spring 34 going to expand to the outer circumference acts on the outer sleeve section 35C, and a part of the thus acting force acts as a force that presses the outer sleeve section 35C upward in accordance with the slope of the outer sleeve section 350. This also serves to cancel a part of the force, which acts on the tolerance ring 33 and acts in the direction along the axis parallel C1.
That is, forces that occur to the vibration damping member 31 when the tolerance ring 33 is going to deform the vibration damping member 31, and act toward the inner circumference and toward the outer circumference are converted by the inner sleeve section 35B and the outer sleeve section 35C, which have sloping surfaces, respectively, into forces that act on the upper part of the tolerance ring 33. Therefore, the height of the vibration damping member 31 is prevented from changing. As a result, the tolerance ring 33 is prevented from entering into the insertion hole 15 of cylinder head 12 more deeply than necessary.
Additionally, since the stiffness of the tolerance ring 33 is improved by integration of the inner sleeve section 35B and the outer sleeve section 35C with the tolerance ring 33, the opening of the upper part of the tolerance ring 33 is prevented from enlarging. Furthermore, in the lower part of the tolerance ring 33, which is shrunk as the opening of the upper part of the tolerance ring 33 enlarges, the inner sleeve section 35B and the outer sleeve section 35C formed integrally with the tolerance ring 33 form a structure that resist the shrinkage of the lower part of tolerance ring 33. Also on this basis, the opening of the upper part of the tolerance ring 33 is prevented from enlarging.
As described above, this embodiment not only brings about advantages that are the same as or similar to the above advantages (1) to (7) of the first embodiment described above, but also brings about advantages as listed below.
(9) The elastic member 36 is sandwiched between the inner sleeve section 35B and the outer sleeve section 35C of the tolerance ring 33. Therefore, a reactive force of the elastic member 36, which occurs in response to a pressing force from the fuel injection valve 11 acts toward the tolerance ring 33 (upward) through the inner sleeve section 355 and the outer sleeve section 35C. As a result, even when the tolerance ring 33 is pressed by the fuel injection valve 11, the vertical position of the tolerance ring 33 with respect to the shoulder section 18 of the cylinder head 12 is maintained. Therefore, the fuel injection position, with respect to the combustion chamber, of the fuel injection valve 11 supported by the tolerance ring 33 is suitably maintained, and the most suitable combustion state is maintained as well.
(10) Forces (reactive forces) that have occurred to the elastic member 36 due to a pressing force from the fuel injection valve 11 and act toward the inner circumference and toward the outer circumference are converted, into reactive forces that resist the pressing force acting from the fuel injection valve 11, in accordance with the sloping angles of the inner sleeve section 35B and the outer sleeve section 35C, which face each other such that the elastic member 36 is sandwiched therebetween. As a result, the vertical position of the tolerance ring 33 with respect to the shoulder section 18 of the cylinder head 12 is maintained. This also serves to suitably maintain, with respect to the combustion chamber, the fuel injection position of the fuel injection valve 11 supported by the tolerance ring 33, and further serves to maintain the most suitable combustion state as well.
As shown in
The vibration damping member 31 includes: an elastic member 36C formed of rubber or the like, which is similar to the elastic member 36 described in the first embodiment; and an annular coil spring 34 embedded in the elastic member 36C.
A sleeve section 35D of the tolerance ring 33 has a circular ring-like shape extending, along the inner circumferential surface of the vibration damping member 31, toward the plate 32 from an inner circumferential part (a part that is closer to the inner circumference than an inner circumferential sloping surface 42 is) of a ring bottom surface 40. The height of the sleeve section 35D from the ring bottom surface 40 is H12. In other words, the distal end section of the sleeve section 350 is formed so that a gap (gap=H11−H12) may be ensured between the distal end section and a plate bottom section 37 in the direction along a axis parallel C1.
As a result, since the stiffness of the tolerance ring 33 is improved by integration of the sleeve section 35D with the tolerance ring 33, the opening of the upper part of the tolerance ring 33 is prevented from enlarging. Furthermore, in the lower part of the tolerance ring 33, which is shrunk as the opening of the upper part of the tolerance ring 33 enlarges, the sleeve section 350 is formed integrally with the tolerance ring 33, thereby forming a structure that resists such shrinkage. Also on this basis, the opening of the upper part of the tolerance ring 33 is prevented from enlarging.
As described above, this embodiment not only brings about advantages that are the same as or similar to the above advantages (1) to (3) and (5) to (7) of the first embodiment described above, but also brings about advantages as listed below.
(11) Even the sleeve section 35D, which extends from the inner circumferential part of the tolerance ring 33, serves to improve the stiffness of tolerance ring 33. Therefore, even when the tolerance ring 33 receives a force that acts to enlarge the opening of the tolerance ring 33 from the tapered surface 24 of the fuel injection valve 11, improvement in durability of the tolerance ring 33 against this force is enabled.
In this embodiment, the distance from the upper surface of a plate bottom section 37 of a plate 32 to an outer surface 12A of a cylinder head 12 is height H12, which is lower than height H11 of the vibration damping member 31. That is, the height between the outer surface 12A of the cylinder head 12 and a shoulder section 18 of an inlet section 17 is set to a height obtained by adding the thickness of the plate 32 to the height H12.
As shown in
A vibration damping member 31 includes: an elastic member 36D formed of rubber or the like, which is similar to the elastic member 36 described in the first embodiment; and the annular coil spring 34 embedded in the elastic member 36D.
A sleeve section 41A of the tolerance ring 33 is a circular ring-like shape extending from a ring outer circumferential surface 41 toward the outer side of the tolerance ring 33 in the radial direction. A lower surface 41B of the sleeve section 41A is formed as a surface continuing from the ring bottom surface 40. The lower surface 41B of the sleeve section 41A projects toward the outer circumference, and goes over the inlet section 17. The size of the sleeve section 41A in the radial direction is set so that, even when the plate 32 slides on the shoulder section 18 in any direction in the range of 0 to 360 degrees in the radial direction (laterally), the outer circumferential surface of the sleeve section 41A may exist on the outer surface 12A of the cylinder head 12. On this basis, a gap (gap=H11−H12) is ensured between the lower surface 41B of the sleeve section 41A and the outer surface 12A of the cylinder head 12.
The above configuration guarantees that the vibration damping member 31 deforms between the height H11 and the height H12, and the vibration damping member 31 displays suitable vibration damping performance. In other words, when the vibration damping member 31 is deformed and compressed into the height H12 by receiving a high pressing force, the lower surface 41B of the sleeve section 41A abuts the outer surface 12A of the cylinder head 12. Therefore, the vibration damping member 31 is prevented from deforming into a height that is lower than the height H12. That is, deterioration in vibration damping performance of the vibration damping member 31 and plastic deformation of the vibration damping member 31 are prevented.
Additionally, since the stiffness of the tolerance ring 33 as a whole is improved by integration of the sleeve section 41A with the tolerance ring 33, the opening of the upper part of the tolerance ring 33 is prevented from enlarging.
As described above, this embodiment not only brings about advantages that are the same as or similar to the above advantages (1) to (3) and (5) to (7) of the first embodiment described above, but also brings about advantages as listed below.
(12) The stiffness of the tolerance ring 33 is improved also by the sleeve section 41A extending out from the outer circumferential surface of the tolerance ring 33. Therefore, improvement in durability of the tolerance ring 33 against a force that acts on the tolerance ring 33 from the tapered surface 24 of the fuel injection valve 11 to enlarge the opening of the tolerance ring 33 is enabled. Additionally, when the elastic member 36 is deformed into a crushed form, the sleeve section 41A of the tolerance ring 33 abuts the cylinder head 12. Therefore, excessive deformation of the elastic member 36 is restricted, whereby it is made possible to use the elastic member 36 within a range (a height of H11 to H12) that permits elastic deformation thereof. This serves to suitably maintain the elasticity of the elastic member 36 and to maintain the vibration absorption and damping function using the elasticity.
Each of the above embodiments may be modified, for example, in the following modes.
Each of the above embodiments shows, as an example, a case where the angle β2 of the outer tapered surface 46 is an angle smaller than 90 degrees with respect to the axis parallel C1. However, the present invention is not limited to such a case, and the angle of the outer tapered surface may be an angle of 90 degrees with respect to the axis parallel C1. For example, as shown in
The third embodiment shown in
Each of the above embodiments shows, as an example, a case where the vibration damping member 31 includes both of the elastic member 36 (or any one of 36A to 36D) and the coil spring 34. However, the present invention is not limited to such a case, and is not limited to a vibration damping member of the exemplified structure. Any vibration damping member having a vibration absorbing and damping function may be used by the application of any vibration damping members formed of elastic materials of various kinds, springs of various kinds or combinations thereof.
Each of
An internal combustion engine to which this invention is applied may be either a gasoline engine or a diesel engine as long as the engine is an internal combustion engine of the in-cylinder injection system.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/062959 | 7/30/2010 | WO | 00 | 11/27/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/014326 | 2/2/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3841277 | Schäfer | Oct 1974 | A |
4362139 | Isobe et al. | Dec 1982 | A |
4647012 | Gartner | Mar 1987 | A |
5046469 | Gmelin | Sep 1991 | A |
5954343 | Sumida et al. | Sep 1999 | A |
6112722 | Barnhart et al. | Sep 2000 | A |
6263863 | Giovannini et al. | Jul 2001 | B1 |
6718949 | Gmelin | Apr 2004 | B2 |
6848425 | Raimann | Feb 2005 | B2 |
6866026 | Mickelson | Mar 2005 | B2 |
6899087 | Norgauer | May 2005 | B2 |
7373925 | Reiter et al. | May 2008 | B2 |
7559312 | Brauneis et al. | Jul 2009 | B2 |
7600502 | Welzmueller et al. | Oct 2009 | B2 |
7827964 | Chern et al. | Nov 2010 | B2 |
7832376 | Mueller et al. | Nov 2010 | B2 |
20040020470 | Norgauer | Feb 2004 | A1 |
20080302336 | Fuerst et al. | Dec 2008 | A1 |
20090071445 | Mueller et al. | Mar 2009 | A1 |
20090235898 | Short | Sep 2009 | A1 |
20130167807 | Kamada et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
A-08-246994 | Sep 1996 | JP |
A-09-195891 | Jul 1997 | JP |
A-11-210885 | Aug 1999 | JP |
A-2001-324021 | Nov 2001 | JP |
A-2004-506136 | Feb 2004 | JP |
A-2004-204991 | Jul 2004 | JP |
A-2007-247893 | Sep 2007 | JP |
A-2008-516133 | May 2008 | JP |
A-2008-128343 | Jun 2008 | JP |
A-2008-256193 | Oct 2008 | JP |
B2-4191734 | Dec 2008 | JP |
A-2010-106758 | May 2010 | JP |
A-2010-106759 | May 2010 | JP |
A-2010-127193 | Jun 2010 | JP |
A-2010-159726 | Jul 2010 | JP |
WO 2005021956 | Mar 2005 | WO |
WO 2011121728 | Oct 2011 | WO |
WO 2012014326 | Feb 2012 | WO |
Entry |
---|
Office Action issued in U.S. Appl. No. 13/635,812, issued Nov. 7, 2013. |
Notice of Allowance issued in U.S. Appl. No. 13/635,812 dated Mar. 14, 2014. |
Number | Date | Country | |
---|---|---|---|
20130167807 A1 | Jul 2013 | US |