Vibration damping laminate with vibration isolating cut therein

Information

  • Patent Grant
  • 6621658
  • Patent Number
    6,621,658
  • Date Filed
    Thursday, July 13, 2000
    24 years ago
  • Date Issued
    Tuesday, September 16, 2003
    21 years ago
Abstract
There is provided a vibration damping structure having an inner metal skin and an outer metal skin and a damping layer secured between the metal skins, with each of said metal skins having a cut therein. The damping layer is a viscoelastic material which is capable of adhering to the metal skins. The cuts are circular, encompassing and isolating an area wherein the vibration damping structure is connected to another body. The cuts extend through the inner metal skin and the outer metal skin to the damping layer.
Description




BACKGROUND




The present invention relates to the reduction of vibration and noise by damping constructions, and particularly such damping constructions utilizing a layer of viscoelastic damping material. The invention has application to damping vibrations in vibrating or vibration generating systems, such as computer disk drive assemblies, automotive body panels, electronic cabinetry, or motor shrouds.




Vibrational energy or force is often transmitted from its source to another structure through a bolt, a screw or other connecting means which connects the vibrational source to the structure. In many applications this transmission of vibrational energy or force has a deleterious effect, often creating noise or excessive wear in critical components. Consequently, the ability to stop or reduce the transmission of vibrational energy or force is of great importance in certain applications.




For example, disk drive assemblies often require a relatively vibration-free environment to function optimally. The rotating parts of disk drive assemblies can inherently generate vibration and noise which, at certain levels, can degrade the performance of the drive assembly. Referring to

FIG. 1

, there is illustrated a portion of a prior art disk drive assembly


10


which has a spindle


11


having a fixed inner portion


12


and a rotating outer portion


13


. The disk drive assembly housing has a cover


14


which is fastened to the inner portion


12


of the spindle


11


, as by a screw


15


. This construction permits vibrations to be mechanically coupled to the cover


14


through the spindle portion


12


and the screw


15


.




To reduce the vibrations of the disk drive assembly, the arrangement of

FIG. 2

was introduced. In this arrangement the head of the screw


15


passes through a hole


16


in the cover


14


. The screw shank also passes through and engages a washer


17


, known as a “whirl” washer, and an overlying viscoelastic layer


18


, which are interposed between the spindle portion


12


and the cover


14


. The washer


17


may be formed of stainless steel, having a thickness in the range of from about 10 mils to about 20 mils, and the viscoelastic layer


18


may have a thickness of about 1-10 mils and could, if desired, be formed by a viscoelastic tape. The layer


18


serves to adhesively secure the cover


14


to the washer


17


which is, in turn, fixed to the spindle portion


12


by the screw


15


. Thus, mechanical transmission of vibration from the spindle to the cover


14


is inhibited. The washer


17


and viscoelastic layer


18


serve to isolate the cover


14


from the spindle


11


at high frequencies and introduce damping into the system of the disk drive and cover assembly at lower frequencies.




Another approach is to damp any vibrations which do get transmitted into the cover


14


, by applying to its outer surface a damping construction, which may be a constrained-layer arrangement including a metal skin having a viscoelastic polymer adhesive on one side thereof which is secured to the outer surface of the cover


14


.




While these prior arrangements, particularly in combination, are effective in damping vibrations, they are relatively expensive to manufacture, involving assembly of a number of parts.




SUMMARY




It is a general object of the invention to provide an improved vibration damping arrangement which avoids the disadvantages of prior arrangements, while affording additional structural and operating advantages.




An important feature of the invention is the provision of a damping arrangement of the type set forth, which is of relatively simple and economical construction.




Another feature of the invention is the provision of a damping arrangement which is adaptable for use in the covers of disk drive assemblies to introduce high damping and to isolate the cover from the mechanical transmission of vibration thereto from the drive assembly.











The invention consists of certain novel features and a combination of parts hereinafter fully described, illustrated in the accompanying drawings, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.




BRIEF DESCRIPTION OF THE DRAWINGS




For the purpose of facilitating an understanding of the subject matter sought to be protected, there are illustrated in the accompanying drawings embodiments thereof, from an inspection of which, when considered in connection with the following description, the subject matter sought to be protected, its construction and operation, and many of its advantages should be readily understood and appreciated.





FIG. 1

is a fragmentary view in vertical section through a portion of a prior art disk drive assembly;





FIG. 2

is a view similar to

FIG. 1

, illustrating a prior art vibration damping arrangement;





FIG. 3

is a view similar to

FIG. 1

, illustrating an embodiment of the present invention;





FIG. 4

is a fragmentary top plan view of the embodiment of

FIG. 3

; and





FIG. 5

is a view similar to

FIG. 1

, illustrating another embodiment of the present invention.











DETAILED DESCRIPTION




Referring to

FIGS. 3 and 4

, an embodiment of the present invention involves constructing the cover of the disk drive assembly


10


to include a vibration damping structure, and eliminating the whirl washer. This cover construction offers the same advantages as applying a constrained-layer damping construction to the outer surface of the prior art cover


14


, but is much simpler and less expensive to fabricate. In this embodiment a damped metal laminate cover


20


has inner and outer metal skins


21


and


22


secured together and spaced apart by a viscoelastic layer


23


. The shank of the screw


15


passes through a hole


26


in the cover


20


dimensioned so that the shank engages the cover, and the cover


20


is clamped between the head of the screw


15


and the fixed portion


12


of the spindle, as seen in FIG.


3


. In order to isolate vibrations from the cover


20


, the inner skin


21


is provided with a circular cut


27


therein coaxial with the screw


15


, and the outer skin


22


has a circular cut


28


therein, also coaxial with the screw and preferably of a slightly smaller diameter than the cut


27


. Preferably, each of the cuts


27


and


28


passes through the entire thickness of the associated metal skin, to the viscoelastic layer


23


. Thus, while mechanical vibrations can be transmitted directly to the portion of the cover


20


immediately surrounding the screw


15


, that portion is effectively isolated by the cuts


27


and


28


from the rest of the cover


20


. Thus, these isolation cuts serve effectively the same purpose as the prior art whirl washer


17


and viscoelastic layer


18


and prevent vibrations from propagating into the cover.




While, in the illustrated embodiment, the cuts are generally V-shaped in transverse cross section, it will be appreciated that they could have other cross sections, such as being straight-sided or the like, the important point being to sever or isolate most of the skin area from the portion immediately surrounding the screw


15


.




Preferably, the cuts


27


and


28


are formed as close as possible to the screw


15


. While the cuts


27


and


28


are preferably of different diameter, it does not matter which one has the larger diameter. While circular cuts are shown, other shapes which encompass the screw


15


could be used.




While optimum isolation benefits are achieved by providing both of the cuts


27


and


28


, the cover


20


could also be provided with only the cut


27


or only the cut


28


and still achieve significant damping, although not as effective as when both cuts are provided.




Referring to

FIG. 5

, there is illustrated a vibration damping structure


50


which reduces the transmission of vibration between the damping structure


50


and a body


51


attached thereto by a securing means


52


extending through an aperture


58


in the vibration damping structure


50


. More specifically, the vibration damping structure


50


includes at least two metal skins


53


and


54


and a damping layer


55


secured between the metal skins


53


, with each of the metal skins having a cut therein. A depression


57


surrounds the aperture


58


isolating most of the vibration damping structure


50


from direct contact with the body


51


.




Preferably, there is only an inner metal skin


53


and an outer metal skin


54


, but additional metal skins may be added for greater stability and support.




The damping layer


55


is preferably a viscoelastic material which is capable of adhering to the metal skins


53


and


54


; however, other materials having vibration damping characteristics can be used.




The cuts


56


are preferably circular, encompassing and isolating an area of the metal skins


53


and


54


in direct contact with the connecting means


52


and the body


51


. The cuts


56


preferably extend through the inner metal skin


53


and the outer metal skin


54


to the damping layer


55


. While optimal vibration damping is achieved by having circular cuts extending to the damping layer, it will be appreciated that vibration damping can still be achieved if the shape and the depth of the cuts are altered.




While the invention is illustrated as being used at the attachment point of the cover to a disk drive assembly spindle, it will be appreciated that the same isolation technique could be used at any of the various fastener locations along the cover. Indeed, this isolation concept can be used in any application wherein a force, from a motor or otherwise, is being transmitted to a sheet metal component, such as a computer cabinet, set-top box, etc., where vibration and/or noise resulting therefrom could have a deleterious effect.




While, in the illustrated embodiment, the skins


21


and


22


of the cover


20


are shown as being substantially thicker than the viscoelastic layer


23


, it will be appreciated that this is simply for purposes of illustration and that, in practice, the relative and absolute thicknesses of these portions may vary widely, depending upon the particular structural and damping requirements of the application.




The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. While particular embodiments have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the broader aspects of applicants' contribution. The actual scope of the protection sought is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.



Claims
  • 1. A vibration damping structure comprising two metal skins and a damping layer secured between said metal skins, each of said metal skins having only a single linear cut therein which extends to but not through the damping layer.
  • 2. The vibration damping structure in claim 1, wherein said damping layer is formed of a viscoelastic material.
  • 3. The vibration damping structure in claim 1, wherein said metal skins are an inner metal skin and an outer metal skin.
  • 4. The vibration damping structure in claim 1, wherein each cut is generally V-shaped in transverse cross section.
  • 5. The vibration damping structure in claim 1, wherein each of the cuts extends through its associated metal skin to said damping layer.
  • 6. The vibration damping structure in claim 1, wherein said vibration damping structure has an aperture extending therethrough, and each of the cuts is circular and coaxial to said aperture.
  • 7. A vibration damping structure comprising two metal skins and a damping layer secured between the metal skins, each of the metal skins having only a single cut therein, the vibration damping structure having an aperture extending therethrough, each of the cuts being circular and coaxial with the aperture, the cut in one metal skin being of a different diameter than the cut in the other metal skin.
  • 8. A vibration damping structure comprising an outer metal skin, an inner metal skin and a damping layer secured between said metal skins, said structure having an aperture therethrough, at least one of said inner and outer metal skins having a linear cut therein which completely encompasses said aperture and extends only to said damping layer.
  • 9. The vibration damping structure in claim 8, wherein said damping layer is of a viscoelastic material.
  • 10. The vibration damping structure in claim 8, wherein both skins have cuts encompassing said aperture.
  • 11. The vibration damping structure in claim 10, wherein each of said cuts extends through its associated metal skin to said damping layer.
  • 12. The vibration damping structure in claim 11, wherein each of said cuts is circular and coaxial with said aperture.
  • 13. The vibration damping structure in claim 12, wherein each of said cuts is generally V-shaped in transverse cross section.
  • 14. The vibration damping structure in claim 13, wherein the cuts have different radii.
  • 15. The vibration damping structure in claim 14, further comprising a fastener extending through said aperture for securing the structure to an associated source of vibrations.
  • 16. The vibration damping structure in claim 8, wherein said cut is coaxial with said aperture.
  • 17. A method of forming a vibration damping structure comprising:providing a laminate having an outer metal skin, an inner metal skin and a damping layer secured between the metal skins, forming an aperture through the laminate, and forming in at least one of the inner and outer metal skins of the laminate only a single narrow linear cut which extends to but not through the damping layer and completely encompasses the aperture.
  • 18. The method of claim 17, wherein the cut extends to the damping layer.
  • 19. The method of claim 17, wherein the forming includes forming narrow cuts respectively in the metal skins.
  • 20. The method of claim 19, wherein the cuts are circular and have different radii.
  • 21. The method of claim 17, wherein the cut is circular in shape.
  • 22. The method of claim 21, wherein the cut is formed to be generally V-shaped in transverse cross section.
  • 23. A disk drive assembly comprising:a cover including two metal skins and a damping layer secured between the metal skins, each of the metal skins having only a single linear cut therein which extends to but not through the damping layer, and a spindle connected to the cover and having a rotatable member.
  • 24. A method of damping vibrations in a damped laminate structure connected at a coupling region to a vibration source and having two metal skins and a damping layer secured between the metal skins, the method comprising:defining an area of at least one of the skins surrounding the coupling region, and separating the area from surrounding portions of the at least one skin so that vibrations transmitted to the area are physically isolated from the surrounding portions of the at least one skin.
RELATED APPLICATION

This application claims the benefit of the filing date of copending U.S. Provisional Application No. 60/143,910, filed Jul. 14, 1999.

US Referenced Citations (41)
Number Name Date Kind
4797762 Levy et al. Jan 1989 A
4819094 Oberg Apr 1989 A
4833667 Castagna et al. May 1989 A
4905110 Krum et al. Feb 1990 A
4924976 Bernett May 1990 A
4965686 Young et al. Oct 1990 A
5101305 Ohkita et al. Mar 1992 A
5214549 Baker et al. May 1993 A
5271142 Moore et al. Dec 1993 A
5343665 Palmersten Sep 1994 A
5418073 Loth et al. May 1995 A
5430589 Moir et al. Jul 1995 A
5430590 Ainslie et al. Jul 1995 A
5483397 Gifford et al. Jan 1996 A
5504637 Asada et al. Apr 1996 A
5517375 Dion et al. May 1996 A
5602370 Kau Feb 1997 A
5619389 Dunfield et al. Apr 1997 A
5645626 Edlund et al. Jul 1997 A
5725931 Landin et al. Mar 1998 A
5771135 Ruiz et al. Jun 1998 A
5790344 Allen Aug 1998 A
5825585 Hatam-Tabrizi Oct 1998 A
5858509 Polch et al. Jan 1999 A
5875067 Morris et al. Feb 1999 A
5896242 Albrecht et al. Apr 1999 A
5914837 Edwards et al. Jun 1999 A
5958603 Ragland et al. Sep 1999 A
5962118 Burgess Oct 1999 A
6005750 Willard et al. Dec 1999 A
6006874 Johnson Dec 1999 A
6012493 Remke et al. Jan 2000 A
6177173 Nelson Jan 2001 B1
6202462 Hansen et al. Mar 2001 B1
6249400 Hong et al. Jun 2001 B1
6251208 Serizawa et al. Jun 2001 B1
6266207 Iwahara et al. Jul 2001 B1
6275352 Tadepalli et al. Aug 2001 B1
6308961 Kunikane et al. Oct 2001 B1
6387535 Mantel May 2002 B1
6428905 Behr et al. Aug 2002 B1
Provisional Applications (1)
Number Date Country
60/143910 Jul 1999 US