The present disclosure relates to the field of electronic devices and, particularly, to a vibration device.
With the development of electronic technologies, portable consumption electronic product such as cellphone, handheld game player, navigation device or handheld multimedia entertainment device and the like is becoming more and more popular. Generally, these electronic products will use a vibration device for system feedback such as call prompt, message prompt, navigation prompt of a cellphone, and vibration feedback of a game player, etc.
The existing vibration device includes a housing, a stator and a vibrator. The stator and the vibrator are accommodated in the housing. The stator includes a main magnet and a magnetic conductor accommodating the main magnet. A spring is also provided in the housing. The existing spring is of an S-shaped structure, two ends of the S-shaped spring are respectively welded on the vibrator and the housing, and the elastic deformation direction of the spring is the same as the vibration direction of the vibrator. In a vibration device having such a structure, the structure of the spring is complicated and difficult to process, and the elastic deformation direction of the spring is perpendicular to the welding surface between the vibrator and the spring. Therefore, a welding area between the vibrator and the spring may not be easily shaped, which brings difficulty during assembling.
Many aspects of the exemplary embodiment can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
In order to make the purpose, technical solution and advantage of the present disclosure more clearly, the embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. However, it can be understood by those skilled in the art that, in various embodiments of the present disclosure, a plurality of technical details has been presented in order to help readers to better understand the present disclosure. However, even without these technical details, or any variations or modifications based on the following embodiments, the technical solution protected by the claims of the present disclosure can still be implemented.
The present disclosure provides a vibration device, as shown in
The elastic member 40 is a sheet-like spring 4 arranged in a plane perpendicular to the vibrating direction of the vibrator 3. The spring 4 includes a first fixing portion 42 fixedly connected with the second side wall 1112, a second fixing portion 41 fixedly connected with the vibrator 3, and an N-shaped connecting portion 43 which connects the first fixing portion 42 with the second fixing portion 41 and extends along the short axis direction.
From the above contents, it is clear that, since the elastic member 40 is a sheet-like spring 4 provided in the plane perpendicular to the vibrating direction of the vibrator 3, the sheet-like spring 4 has a simple structure, which is easily formed and processed, and can be formed by directly punching. In specific assembling process, it is only necessary to simply weld the second fixing portion 41 of the spring 4 onto the vibrator 3, and weld the first fixing portion 42 onto the second side wall 1112, so that the assembling can be completed. Meanwhile, the stress applied by the spring 4 and subjected by the welding surface between the vibrator 3 and the spring 4 is eliminated, thereby reducing assembling difficulty. In addition, the spring 4 having such a structure does not occupy the vertical space in the vibrating direction of the vibrator 3, which improves space utilization and expands the magnetic circuit space. Moreover, the spring 4 can also be made in other manners other than punching, and an operator can select a specific processing manner according to the specific processing demands, which will not be illustrated in detail herein.
Specifically, in an exemplary embodiment, the housing 1 includes an upper cover plate 11 and a lower cover plate 12 connected with the upper cover plate 11. The upper cover plate 11 further includes an upper bottom plate 110 and a surrounding side wall 111 extending from the upper bottom plate 110 in a direction to the lower cover plate 12. The surrounding side wall 111 includes a pair of first side walls 1111 disposed symmetrically along a long axis direction of the surrounding side wall 111 and a pair of second side walls 1112 disposed symmetrically in the short axis direction thereof. The first fixing portion 42 is welded on an end surface of the surrounding side wall 1112 directly facing the lower cover plate 12.
In addition, it should be noted that, a protrusion 120 protrudes from the lower cover plate 12 in a direction to the upper cover plate 11. The protrusion 120 directly faces a lower end surface of the second side wall 1112 and extends into a slot 1110. Another end of the first fixing portion 42 is welded onto an upper end surface of the protrusion 120 directly facing the second side wall 1112, so that the first fixing portion 42 is fixed between the upper end surface of the protrusion 120 and the lower end surface of the second side wall 1112.
On the other hand, the vibrator 3 is suspended in the housing 1 by the elastic member 40 and vibrates along a direction perpendicular to the upper bottom plate 110. The stator 2 includes a coil 21, and the coil 21 is fixed on the lower cover plate 12. A printed circuit board (Printed Circuit Board, PCB) 6 is also provided between the coil 21 and the lower cover plate 12. The vibrator 3 includes a magnetic circuit unit. The magnetic circuit unit includes a magnetic conductor 31 having containing space, a main magnet 32 provided in the magnetic conductor 31, and a pole plate 33 attached to the main magnet 32. The coil 21 is arranged by winding the main magnet 32 and is spaced from the main magnet 32.
Obviously, the structure of the vibrator 3 is not limited to the above-described composition. It should be understood that, in the vibration device, any component that moves reciprocally in the housing 1 by the electromagnetic induction force between the coil 21 and the main magnet 32 can be regarded as the vibrator 3. It should be noted that, in the present embodiment, the second fixing portion 41 is welded onto the magnetic conductor 31.
It should be understood that, in an exemplary embodiment, each N-shaped connecting portion 43 includes a V-shaped arm 431, an arc arm 432, and a straight arm 433. The V-shaped arm 431 extends from the first fixing portion 42 in a direction to a side of the second fixing portion 41, the arc arm 432 bends from a tail end of the V-shaped arm 431 in a direction to the second fixing portion 41, and the straight arm 433 extends from a tail end of the arc arm 432 in a direction to the second fixing portion 41. It should be understood that, the arc arm 432 can be configured as a circular arc arm or an elliptic arc arm, an operator can make a selection based on the actual work demands, which will not be illustrated in detail herein. In addition, the opening angle of the V-shaped arm 431 and the opening angle of the arc arm 432 can be adjusted based on specific processing demands, so that the spring 4 can be easily processed.
In addition, with reference to
It should be noted that, in an exemplary embodiment, a pair of second fixing portions 41 is provided. The two second fixing portions 41 are also arranged in axial symmetry with respect to the central axis OO′. In this way, the symmetrical structure of the spring 4 allows the vibration of vibrator 3 to be more stable.
In addition, in an exemplary embodiment, the magnetic conductor 31 is spaced from the housing 1 to form interval space 5. The interval space 5 accommodates the N-shaped connecting portion 43 of the spring 4, so as to improve space utilization of the vibration device, and expand the magnetic circuit space.
Those skilled in the art shall understand that, the above embodiments are examples for implementing the present disclosure, in practical application, various modifications can be made without departing from the spirit and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2017 2 0393337 U | Apr 2017 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7671493 | Takashima | Mar 2010 | B2 |
7825742 | Lee | Nov 2010 | B2 |
8288898 | Jun | Oct 2012 | B2 |
9762110 | Wang | Sep 2017 | B2 |
20050121984 | Nakamura | Jun 2005 | A1 |
20100213773 | Dong | Aug 2010 | A1 |
20110006618 | Lee | Jan 2011 | A1 |
20110018364 | Kim | Jan 2011 | A1 |
20110018365 | Kim | Jan 2011 | A1 |
20110204732 | Miyamoto | Aug 2011 | A1 |
20110266892 | Wauke | Nov 2011 | A1 |
20110280433 | Park | Nov 2011 | A1 |
20110316361 | Park | Dec 2011 | A1 |
20120049660 | Park | Mar 2012 | A1 |
20120169151 | Dong | Jul 2012 | A1 |
20120187780 | Bang | Jul 2012 | A1 |
20180297062 | Huang | Oct 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180301615 A1 | Oct 2018 | US |